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1 Introduction

Single-cell Hi-C sequencing (scHi-C) technology (Nagano et al., 2017) allows us to understand chromatin orga-
nization dynamics and cell-to-cell heterogeneity, and connects many important genome research areas, includ-
ing gene regulation and epigenomics. However, interpretation of scHi-C data exposes intrinsic data analysis
challenges, such as the fact that Hi-C data are essential two-dimensional pairwise measures rather than one
dimensional measures as RNA-seq data and ATAC-seq data, and practical data analysis challenges, such as
sparsity of contact maps, batch effect, and sequencing noise.

Previously, similarity measures for comparing Hi-C contact matrices mostly focus on bulk Hi-C data (Yardımcı
et al., 2019). These methods evaluate how likely two bulk Hi-C experiments are generated from the same bio-
logical sample. In a recent work (Liu et al., 2018), these reproducibility methods have been applied on single
cell Hi-C data to evaluate similarity among n single cells, and coupled with multidimensional scaling (MDS)
to project these n single cells into a lower dimensional Euclidean space. Among these methods, HiCRep (Yang
et al., 2017) yielded the best performance, but its O(n2) computational complexity makes it impractical when
the number of cells is large. In our scHiCTools, we implemented a faster version of HiCRep, together with
another Hi-C similarity measure named Selfish (Ardakany et al., 2019), and a new inner product approach
which provides a more efficient way of embedding scHi-C data. All of the three approaches have O(n) compu-
tational complexity. We demonstrated that the new inner product approach runs faster than original HiCRep,
and produces comparably accurate projection. To deal with the sparsity in scHi-C data, three smoothing ap-
proaches were implemented, including linear convolution, random walk, and network enhancing (Wang et al.,
2018). Among the three, linear convolution appeared to be most effective for smoothing sparse datasets. Our
open source toolbox, scHiCTools, as the first toolbox of such kind, can be useful for analyzing scHi-C data.

2 Methods

Three embedding approaches are implemented in scHiCTools. The first approach is a faster implementation
of original HiCRep (Yang et al., 2017). Original HiCRep calculates m stratum-adjusted correlation coefficients
(SCCs) of the m strata near the diagonal of two contact maps, and then uses weighted sum to aggregate them
into one score. It is equivalent to finding a feature vector for each contact map and then computing the inner
product among the feature vectors (Supplementary Note 1). This simplification reduces HiCRep’s computation
complexity from O(n2) to O(n), and we name it fastHiCRep, which is implemented in our toolbox. Alterna-
tively, we can further simplify fastHiCRep by directly setting the concatenated z-normalized strata as feature
vectors (Supplementary Note 1). With the feature vectors, an inner product is then calculated to obtain the
similarity matrix of a group of cells. We name this second approach InnerProduct. In the end, a dimension
reduction method, Multidimensional Scaling (MDS), is used to get a lower-dimensional embedding of each cell.
The third embedding approach Selfish (Ardakany et al., 2019) was recently proposed for bulk Hi-C compar-
ative analysis. It first uses a sliding window to obtain a number of square regions along the diagonal of the
contact map, and then counts overall contact numbers in each region. Then, it generates a one-hot “fingerprint
matrix” for each contact map based on pairwise comparison of these reads. Gaussian kernels over the fingerprint
matrices are calculated as similarities among the cells.

Our toolbox scHiCTools includes three smoothing approaches. Linear convolution is based on a 2D filters
(a.k.a., convolution kernels) with equal values in every position, which can be viewed as smoothing over nearby
bins in Hi-C contact maps. For example, original HiCRep uses a parameter h to describe a (2h + 1)×(2h + 1)
kernel, i.e. h = 1 indicating a 3×3 kernel with each element equals 1

9 . Because this approach is similar to
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Figure 1: Benchmarking experiment results. (a) The embedding of single cells in a cell cycle study (Nagano
et al., 2017). (b) Evaluating the three embedding methods with a cell-cycle phasing task by average ROCs.
(c) Smoothing methods do not perform well when all positions in Hi-C maps are randomly downsampled. The
x-axis is the negative logarithm of sampling rates; y-axis is the average AUCs from ROC curves. (d) Linear
convolution improves the performance of embedding when the dropped out rate is high.

reducing resolution, it is believed to be effective when contact maps are sparse. Random walk is a stochastic
process updating the elements of the input matrix W by W ′ = W · B, in which Bij =

Wij∑
i
Wij

. In network

enhancing (Wang et al., 2018), a special random walk is used to increase gaps between leading eigenvalues of
a doubly stochastic contact matrix, which makes the partition of contact maps more prominent, enhancing the
boundaries for topologically associated domains (TADs).

3 Results

We benchmarked the projection performance and run time of these methods on a recent scHi-C dataset (Nagano
et al., 2017), exactly following the evaluation procedure in a recent work (Liu et al., 2018) (Supplementary Note
2). We had following observations.

InnerProduct produced satisfactory projection. InnerProduct produced satisfactory projection of the
single cells (Fig. 1a), achieving an average area under the ROC curve (AUC) of 0.943, which was as good as
original HiCRep reported in the recent work (Liu et al., 2018). The AUCs from fastHiCRep and Selfish were
relatively lower (Fig. 1b). Implemented fastHiCRep did not perform as well as the original HiCRep in this
task, which might due to their subtle difference (Supplementary Note 3).

All the three embedding methods are efficient. The run time of the three methods was compared
in Supplementary Table 1. Overall, the three embedding methods were efficient. For embedding 800 cells,
all three methods finished within minutes up to an hour. Given the fact that all of the three embedding ap-
proaches have O(n) computation complexity, they can scale up very well for a large number of cells. FastHiCRep
was slightly slower than InnerProduct, which was slower than Selfish under the default parameters. Note that
run time of these approaches depends on parameter settings, which is further discussed in Supplementary Note 4.

Linear convolution smoothing and random walk improves projection at high dropout rates.
We applied two sparsification methods on the scHi-C dataset (Nagano et al., 2017), and applied InnerProduct
together with the three smoothing approaches, and evaluated the projection performance (see Supplementary
Note 5 for additional details). The first sparsification method was used to randomly reduce 40% ∼ 99.9% of
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the contacts for all positions (reducing the contact number from ∼200,000 to ∼500 in each cell). The second
one was used to discard contacts from 5% ∼ 60% genomic loci (to simulate dropouts in sequencing data). It
was observed that under the second sparsification method, linear convolution and random walk showed some
consistent improvement. Linear convolution increased projection accuracy more effectively at higher dropout
rates. However, none of the three improved the projection performance when the first sparsification was used.

4 Implementation of scHiCTools

Our scHiCTools is implemented in Python. The source code is available and maintained at https://github.com/liu-
bioinfo-lab/scHiCTools. The toolbox is quite easy to use. Users can choose different input formats, including
.hic files, sparse matrices in text files, and customized formats. For customized formats, some simple additional
information such as reference genome and deliminators is required. Users can also choose the resolution of the
contact maps, any of the three smoothing methods (linear convolution, random walk, and network enhancing),
any of the three embedding methods (fastHiCRep, Inner Product and Selfish), different ways of aggregating
similarity across different chromosomes (taking mean or median), which chromosome(s) to use, and how many
strata to use (Supplementary Note 6). In the future, we will keep updating the toolbox with new scHi-C analysis
algorithms.
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