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Abstract

Tumor evolution is dependent on and constrained by the genotypes emerging from genome

instability. We hypothesized that non-site-specific copy number motifs would correlate

with underlying replication defects and also with tumor and patient fate. Six feature de-

tectors were defined to characterize and score the local spatial behaviour of a copy number

profile. By accumulating scores across genomic regions, a low-dimensional representa-

tion of the tumor genome was obtained. The proposed Copy Aberration Regional Mapping

Analysis (CARMA) algorithm was applied to 2384 breast tumors from three breast can-

cer cohorts, revealing distinct copy number motifs in established molecular subtypes. A

prognostic index combining the features predicted breast cancer specific survival better

than both the genomic instability index (GII) and all commonly used clinical stratifica-

tions. CARMA offers effective comparison of tumor subgroups and extracts biologically

and clinically relevant features from allele-specific copy number profiles.
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1 Introduction

The allele-specific copy number profile of a tumor is a window into its past history

and its future evolutionary potential [1, 2, 3]. A range of different mechanisms and

defects may be involved, including aneuploidy, genomic duplication, deletion, in-

version, translocation, double minute chromosomes, breakage-fusion-bridge cy-

cles, chromothripsis and chromoplexy [4, 5, 6, 7]. Depending on the events and

their cause, distinct traces may be left on the copy number level, including the

presence of global aberration patterns such as simplex, complex and sawtooth

[8, 9].

Several algorithms have been proposed to detect locus specific or type specific

copy number aberrations in tumors. The chromosomal instability index (CINdex)

[10] and the genomic instability index (GII) [11] both quantify the total amount

of genomic aberrations. Stratifications aiming to identify specific aberration pat-

terns are also available, including locus specific aberrations (GISTIC) [12, 13],

simplex and complex copy number events [9] and structural rearrangement pat-

terns [14].

In general, we may consider a copy number profile as consisting of both site-

specific events and more general regional features (motifs) present throughout the

genome. Here, we hypothesize that such motifs represent a substantial propor-

tion of the copy number variation in a tumor and also partly explains the high

inter-tumor copy number heterogeneity frequently observed in cancer. We further

hypothesize that the presence or absence of specific motifs is informative of a tu-

mor´s past and future evolutionary trajectory. Detailed characterization of such

features would thus allow prediction of disease behaviour and could potentially

direct choice of treatment. The potential link between such features and DNA re-

pair defects and mutational processes has recently been demonstrated in ovarian

cancer [15].

Here, we present a computational framework for extraction and analysis of re-
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gional non-site specific motifs from allele-specific copy number profiles. The core

of this framework is the Copy Aberration Regional Mapping Analysis (CARMA) al-

gorithm, which creates a compact representation of the aberration architecture.

Conceptually, the algorithm represents copy number profiles as real-valued func-

tions over the genomic domain and derives a small set of scores representing

distinct regional features. CARMA can be viewed as an extension of the chromo-

somal and genomic instability indices that also takes into account copy number

amplitude, distribution of copy number break points (including spatial distribu-

tion along the chromosome) and allelic imbalance. It captures the degree of re-

gional fluctuations in copy number, a signature feature of e.g. chromothripsis

and chromoplexy. By generating a low-dimensional representation of the copy

number data, the proposed algorithm also avoids the ’curse of dimensionality’.

To demonstrate that the proposed method captures biologically and clinically

relevant characteristics, the method was applied to three different breast cancer

data sets (METABRIC, Oslo2, and OsloVal). A novel prognostic index integrating

all six modes of genomic aberrations is derived and is shown to predict breast

cancer specific survival better than commonly used clinical variable stratifica-

tions. The proposed index also outperforms the genomic instability index GII.

We demonstrate the relation between the copy number motifs and established

molecular and clinical expression markers and the relation to driver gene based

classifications of breast cancer.

CARMA is applicable to allele-specific copy number data from any type of plat-

form, including SNP arrays and high-throughput sequencing. Software will be

made available on GitHub.
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2 Results

2.1 Brief outline of the analysis approach

CARMA is applicable to allele-specific copy number profiles from one or several

tumors, obtained from SNP array analysis or DNA high-throughput sequencing.

The analysis pipeline is depicted in Figure 1a. First, the algorithm extracts mul-

tiple local features, and next these are accumulated across genomic regions by

integration to form six numerical regional scores (Figure 1b). Precise mathemati-

cal definitions are deferred to Material and Methods. The extracted features detect

generic variational properties of functions and link closely to chromothripsis, loss

of heterozygosity, and genomic loss and gain (Figure 1c). An application of the al-

gorithm to three breast tumor samples in the Oslo2 cohort and with chromosome

arms as regions is shown in Figure 1d. Specific regional features are discernible,

illustrating how CARMA can be used to perform between-sample comparison of

copy number features that are not locus specific.

2.2 Molecular subgroups have distinct CARMA signatures

We next considered the distribution of CARMA scores within established molec-

ular stratifications of breast carcinomas (PAM50 and IntClust). PAM50 [16, 17]

is an expression based classification system defining five distinct subgroups of

breast tumours based on the correlation to a set of 50 genes. IntClust [1, 18]

identifies ten different subtypes based on the pattern of copy number aberra-

tions exerting an effect on gene expression in cis. The distribution of CARMA

scores within these classification systems were explored in three different breast

cancer data sets of varying sample size (n = 1943, n = 276, and n = 165). The per-

centage of tumors with scores exceeding a median threshold was plotted for all

arm scores and for each PAM50 and IntClust subtype separately (Figure 2a and

Supplementary Figure 1-3). The CARMA scores consistently reflected differences
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in the landscapes of genomic architecture in the different biological and clinical

patient groups. This visual overview of aberration patterns highlights subtype

specific features such as frequent allelic loss on 17p and frequent gain and high

complexity on 17q in IntClust1; gain on 1q, frequent asymmetric gain and com-

plex aberrations on 11q and allelic loss on 16q in IntClust2; etc. The signatures

of regional CARMA scores within the PAM50 subtypes highlight known features,

including whole arm 1q gain/16q loss in luminal A tumours, the more complex

copy number aberrations in luminal B tumours, the 17q alterations dominating

Her2-enriched tumours and the global instability of basal-like tumours. Three-

dimensional scatter plots of CARMA scores were plotted for all tumors in the Oslo2

cohort (n = 276) and METABRIC cohort (n = 1943) (see Figure 2b). Trend curves

and subtype centroids both demonstrate high degree of consistency between the

two cohorts.

2.3 Predicting survival from regional scores

To assess the association between breast cancer specific survival and genome-

wide CARMA scores, a univariate Cox proportional hazards regression model was

fitted with each score as a covariate (see Supplementary Table 3). For this pur-

pose we used the largest cohort (METABRIC set). All scores were associated with

survival (P < 10−6) and the strongest associations were found for the genes STP

and CRV (P < 10−15).

We next split the METABRIC cohort into a discovery cohort (n = 1295) and a

test cohort (n = 648). We fitted a multivariate Cox regression model to disease

specific survival (DSS) and progression free survival (PFS) data in the discovery

cohort based on the six predictors. The predictors were defined by taking an

unweighted mean across all the regional (arm-wise) CARMA scores (Figure 2c).

The fitted model was next applied to the test set, producing a single unweighted

prognostic value per patient. Thresholds corresponding to the 1/3 and 2/3 per-
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centile were applied to classify samples into groups of low, intermediate and high

risk, with numerical values ranging from 1-3. This final score was termed the

CARMA Prognostic Index (CPI). An alternative prognostic index was defined using

the 252 armwise CARMA scores directly as predictors and fitting a Cox regres-

sion model with Lasso penalty to the training set. Coefficients derived from the

analysis (Supplementary Figure 4) were used as weights to calculate a weighted

prognostic index termed CPIweighted.

To compare the efficacy of the CPI and CPIweighted to established clinically and

biologically relevant parameters, we fitted a univariate Cox regression model in

the METABRIC test set using the prognostic indices and the clinical parameters

as covariates (Table 1 and Supplementary Table 4-5). The P-value for the CPI

from the analysis was lower than for any of the other clinical parameters when

looking at both DSS and PFS (P = 2.4 · 10−13 and P = 3.8 · 10−12 for DSS and PFS

respectively), and also performed better than the CPIweighted. The CPIweighted did

however remain strongly significant in the analysis (P = 2.2 · 10−7 and P = 6.6 · 10−9

for DSS and PFS respectively) presenting P-values lower than many of the other

established parameters.

Cox regression models with the prognostic indices as predictors and adjusting

for available clinical variables were also considered (Table 1 and Supplementary

Table 4-5). The CPI consistently showed smaller P-values than all other clinical

variables. The CPIweighted also remained significant when adjusting for other vari-

ables (Supplementary Table 4-5). Corresponding Hazard ratios for CPI is shown

in Figure 2d and Supplementary Figure 5.

The CPI was used to stratify patients into low, intermediate and high-risk

groups in the two validation cohorts with survival data available (METABRIC test

set and OsloVal). A logrank test was performed for the three groups in each data

set (Figure 2e). P-values were significant when considering both DSS (P < 10−13

in METABRIC test and P < 10−4 in OsloVal) and PFS (P < 10−11 in METABRIC test;

PFS data was not available for OsloVal).
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Finally, the unweighted continuous prognonstic score that was used to obtain

the CPI, was utilized to calculate a Harrell´s C score inn the METABRIC test set.

The C scores obtained from the analysis were 0.65 and 0.64 based on DSS and

PFS respectively.

3 Methods and Materials

Deriving allele-specific copy number profiles

Affymetrix CEL-files were preprocessed using the PennCNV libraries for

Affymetrix data [19] that includes quantile normalization, signal extraction and

summarization. All samples were normalized to a collection of around 5000 nor-

mal samples from the HapMap project [20], the 1000 genome project [21] and

the Wellcome Trust Case Control Consortium [22]. The resulting LogR and BAF

(B allele frequency) values were segmented with the PCF (piecewise constant fit-

ting) algorithm [23] and processed with the ASCAT algorithm (version 2.3) [24]

after adjusting LogR for GC binding artifacts [25]. ASCAT infers an allele specific

copy number profile of a tumor after correction for tumor ploidy and tumor cell

fraction, and is based on allele specific segmentation of normalized raw data [23]

with penalty parameter (γ) set to 50. The profile reflects the copy number state

at m genomic loci for which two alleles are present in the germline in the general

population, and can be represented as a sequence of pairs (nAi, nBi) (i = 1, . . . ,m)

where nAi and nBi denote the number of copies of each of two alleles (here called

A and B) being present in the tumor genome at the ith locus. Pairs are ordered

according to location, and since the labels A and B are arbitrary, we may assume

that nAi ≥ nBi.
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Calculating regional instability scores

We characterize the allele specific copy number in a small genomic neighborhood

on a chromosome arm by six features: degree of alteration in negative direction,

degree of alteration in positive direction, degree of change, degree of oscillation,

extent of loss of heterozygosity, and extent of allelic imbalance (see Figure 1c).

Sliding the genomic region along the chromosome arm from one end to the other,

we may regard each feature as a function of genomic position. Specifically, sup-

pose we have measured allele-specific copy numbers (nAi, nBi) at genomic loci Li,

i = 1, . . . ,m. We can represent this as a pair of piecewise constant functions

(fA, fB) defined on the unit interval R = [0, 1]. The interpretation of this is that

we have a one-to-one correspondence between t ∈ [0, 1] and genomic loci L(t), and

if Lk is the measurement locus closest to L(t), then fA(t) = nAk and fB(t) = nBk.

We assume that fB(t) ≤ fA(t) for all t ∈ R, i.e. B is the minor allele when al-

lelic imbalance is present. The median centred total copy number in locus t is

f(t) = fA(t) + fB(t) − m, where m is the least number in Range(f) that satifies

µ(f−1((−∞,m])) ≥ 1/2, where µ is the Lebesgue measure. Informally, this means

that m is chosen as the observed copy number with the property that half the

genome has a total copy number less than or equal to m. We define the change in

total copy number as the derivative Df(t) of the first order spline interpolation to

the center points of segments in f , i.e. Df(t) is the slope of the line segment con-

necting the pair of segment centers immediately to the left and right of position

t. Note that Df is also a piecewise constant function. We define the oscillation

in total copy number as D2f(t) = D(Df(t)), which is also a piecewise constant

function. This process can in principle be repeated to define higher order proper-

ties of f such as D3f(t) = D(D2f(t)); however, in practice further levels add little

additional information.

Regional instability scores are next defined by integrating the above local scores

over the desired region (e.g. over a chromosome arm). To assess the degree of
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positive or negative deviation within a region, we define two scores:

J1 =

∫
R

{f(t)+}2 dt and J2 =

∫
R

{f(t)−}2 dt (1)

where z+ = z if z > 0 and z+ = 0 otherwise, and z− = z if z < 0 and z− = 0

otherwise. For example, in a region with total copy number equal to the median,

we have J1 = J2 = 0, while in a region with some gains and no losses relative to the

median, we have J1 > 0 and J2 = 0. The regional degree of change and oscillation

in copy number are captured by the following two scores:

J3 =

∫
R

{Df(t)}2 dt and J4 =

∫
R

{D2f(t)}2 dt (2)

In a region with constant total copy number, we have J3 = J4 = 0. In a region with

gradually increasing (or decreasing) copy number, J3 > 0 while J4 is close to zero,

and in a region with fluctuations between smaller and larger copy numbers we

have J3 > 0 and J4 > 0. Loss of heterozygosity and allelic asymmetry are captured

by the last two scores:

J5 =

∫
R

{10(fB(t))} dt and J6 =

∫
R

(fA(t)− fB(t))2 dt (3)

where 10(z) = 1 if z = 0 and 10(z) = 0 otherwise. In a region with only one allele

present we have J5 > 0 and the magnitude of the score reflects the proportion of

the region with loss of heterozygosity. In a region with allelic imbalance, we have

J6 > 0. Further computational details can be found in Supplementary Materials.

3.1 Materials

The data material in this study was obtained from three different patient cohorts:

METABRIC (n=1943), Oslo2 (n=276) and OsloVal (n=165). The distribution of clin-

ical parameters within each of the datasets can be found in Supplementary Tables

1-2. The METABRIC cohort was randomly split in a 2:1 ratio into a discovery set

(n=1295) and a test set (n=648) for the purpose of model validation. See webpage
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for detailed information regarding sample stratification. For more details about

the three cohorts, see Supplementary Material and Methods. Survival data were

not available for the Oslo2 cohort. The Regional Comittee for Medical and Health

Research Ethics for southeast Norway has approved the study (approval number

1.2006.1607, amendment 1.2007.1125).

4 Discussion

Structural DNA distortions are a result of deregulated DNA repair and mainte-

nance, and mutagenic processes operating in the cells. The conventional focus

in studies of DNA copy number alterations in tumors is the identification of re-

currently deleted and amplified genes which may define key driver events in car-

cinogenesis or potential targets for treatment. We and others have previously

shown that in addition to this gene centered or locus centered approach, the

structural changes provide important information for classification and survival

prediction [8, 9, 26]. The methodology presented in this study complements gene

specific analyses by providing a systematic framework to characterize the infor-

mation embedded in the copy number profile of a tumor. CARMA assigns scores

to any predefined collection of genomic regions. In this study, a region was either

the whole genome or a chromosome arm. Irrespective of the selection of regions

on which to assign scores, the fact that regions are identical across tumors al-

lows CARMA scores to be used directly as features in clustering, regression and

classification. Normally, the number of features will also be quite small, thus

substantially reducing statistical problems related to high dimensionality.

Molecular taxonomy of breast cancer based on gene expression has proved

important for the biological understanding of the disease [16]. IntClust [1] is a

more recent driver-based classification of breast cancer and has been shown to

also reflect degree of chemosensitivity [27]. The CARMA scores revealed distinct

aberration signatures for the 10 IntClust groups, suggesting that the copy number
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motifs reflect a driver-based classification of tumors. As seen from the Manhattan

plots, the expression signatures defining the IntClust subtypes are to a large de-

gree correlated to focal copy number aberrations, representing driver alterations

in these subtypes. The copy number aberrations in these driver regions also ex-

hibit differences in their pattern. This is for instance illustrated by the different

types of copy number gains found on the 1q arm in the IntClust 8 subtype, as com-

pared to the gains found on the 11q arm in the IntClust2 group. The first type of

gain represents non-complex low-amplicon whole arm translocations – captured

by the AMP and ASM scores, while the latter represents more complex rearrange-

ments with high-amplicon gains [28] captured by all of the CARMA scores. Even

though both of the observed patterns represent copy number gains, the underly-

ing mechanisms causing these patterns are fundamentally different. The CARMA

scores manage to capture these nuances, illustrating the potential of the method

to discriminate between a richer set of aberrational patterns. The plot also gives

an indication of the global background variation from copy number aberrations

– maybe most apparent in the IntClust 10 subtype. Interestingly, the degree to

which the different subtypes are affected by this background variation seems to

correlate well with the fraction of TP53 mutations observed within each subtype

[29]. This again supports the notion that copy number motifs reflect underlying

biological traits.

In order to assess the ability of the method to predict breast cancer specific

survival, a univariate Cox regression model was fitted to genome-wide CARMA

scores in the METABRIC cohort. All genome-wide scores showed a strong and

significant association to survival. As a first step this supports the assumption

that each of the selected scores are informative and thus qualifies for use in fur-

ther survival analyses. The scores were combined to produce the unweighted and

weighted prognostic indices CPI and CPIweighted. When these prognostic indices

were compared to established clinical and biological parameters through univari-

ate and pairwise bivariate Cox regression analyses, it was evident that the CPI
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consistently outperformed all other variables. This might point towards a role of

specific aberration motifs, proceeding from specific types of genomic instability, as

determinants of malignancy potential in a tumor. One shall also take note of the

fact that the CPI outperformed GII in these analyses, supporting the idea of ad-

ditional information added through multifaceted measurements of copy number

aberrations.

The observation that the CPIweighted obtained poorer prognostic predictions than

CPI might stem from the somewhat strict variable selection exerted by the Lasso

regression model. The Lasso model excludes arm-specific scores that individu-

ally do not contribute strongly to the survival prediction. Aggregated however,

these arm-specific scores might confer additional prognostic information. The

CPI, which is based on combining all arm-scores in an unweighted manner is not

subject to the same kind of selection bias. The fact that this more “inclusive” ap-

proach performed better in our analyses suggests that all parts of the genome copy

number aberration profile contribute to the real signal when assessing survival.

This supports the notion that our method captures omnipresent background vari-

ation caused by underlying DNA disruptions.

In the future it would be of high interest to apply the methodology to different

cancer types to compare aberration patterns across tumors at different sites, for

example using The Cancer Genome Atlas Pan-Cancer dataset [30]. Transloca-

tion of genomic material is not captured by any array based DNA analysis, and

data from high-throughput sequencing would be required to fully characterize ge-

nomic architecture. The complex patterns described in this manuscript are likely

to reflect specific mutational processes that could be further elucidated in future

studies, linking CARMA with sequencing data. Finally, ASCAT has recently been

implemented for whole genome sequencing data [31], and it would be interest-

ing to apply our methodology directly to the allele-specific copy number profiles

extracted from such data.

Several extensions of the CARMA algorithm are possible. One could for ex-
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ample increase the genomic resolution by partitioning the genome into a fairly

large number of equal-sized regions (say 1000), and then assign separate scores

to each of these. At some point, however, the regions may become too small to

meaningfully assign scores, most notably for the indices reflecting complex re-

arrangements (STP and CRV ). Another possible extension would be to consider

regions harboring genes involved in specific processes or pathways, thus directly

linking CARMA scores to biological function.
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Figure legends

Figure 1. Outline of the CARMA algorithm. a Analysis pipeline. b Construction

of regional CARMA scores. The input is one or more allele-specific copy number

profiles. The algorithm extracts local features and accumulates these across ge-

nomic regions to form six regional scores. c Prototype patterns captured by each

of the six CARMA scores. d An application of the algorithm to three breast tu-

mor samples in the Oslo2 cohort. Lower panel: total copy number (logR values)

and allele fraction as a function of genomic locus. Upper panel: Circos plots of

regional (arm-wise) CARMA scores.

Figure 2. Stratification and outcome prediction with CARMA. a CARMA score

distribution within each of the 10 IntClust subtypes defined in Curtis et al.[1].

The height of each bar represents the proportion of samples in the subgroup with

an arm score above the median score for this index across all arms and subtypes.

b Three-dimensional scatter plots of tumors using three of the CARMA scores

designed to detect three major categories of copy number aberration patterns

in tumors (amplifications: AMP, allelic loss: LOH and complex rearrangements:

CRV). Colors indicate PAM50 subtype (see legend at bottom) and large spheres

show subtype centroids. Upper panel: Oslo2 cohort (n = 276); Lower panel:

METABRIC cohort (n = 1943). c Flow chart depicting the construction of prog-

nostic indices (CPIs) from the arm-wise CARMA scores, based on the METABRIC

discovery cohort. Upper panel: Construction of the CPI. Arm-wise scores are first

collapsed by taking an unweighted average, and the resulting six genome-wide

scores are combined by multivariate Cox regression. Thresholds corresponding

to the 1/3 and 2/3 percentile were applied to classify samples into groups of low,

intermediate and high risk, with numerical values ranging from 1-3. Lower panel:

Construction of the CPIweighted. Arm-wise scores are combined by cross-validated

multivariate Cox-Lasso regression, resulting in one genome-wide score. Thresh-
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olds corresponding to the 1/3 and 2/3 percentile were applied as above to classify

samples into groups of low, intermediate and high risk. d Hazard ratios and 95%

confidence intervals(CI) for clinical variables, the CARMA prognostic index(CPI)

based on unweighted averages of arm-wise CARMA scores, and the genomic in-

stability index(GII). Shown are unadjusted estimates for disease specific survival

(DSS) and progression free survival (PFS). e Survival prediction using the CPI

stratified into low, intermediate and high risk groups. Kaplan-Meier plots of dis-

ease specific survival (DSS) for the three risk stratifications within the METABRIC

test and OsloVal set, as well as for progression free survival within the METABRIC

test set. From left to right: DSS METABRIC test cohort; DSS OsloVal cohort; PFS

METABRIC test cohort.
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Table 1. Prognostic value of clinical variables, the CARMA prognostic index(CPI), and
the genomic instability index(GII), for disease specific survival (DSS) and progression free
survival (PFS). HR: hazard ratio.

Disease specific survival Progression free survival

Type Covariate P value HR P value HR

Unadjusted Age (≤ 60 vs > 60 years) 2.2e-01 1.19 5.3e-02 1.29
Unadjusted T-status (pT1, pT2, ≥pT3) 9.2e-07 1.76 2.9e-05 1.59
Unadjusted N-status (Positive vs Negative) 5.5e-09 2.28 8.2e-07 1.94
Unadjusted Histological grade (1-3) 5.9e-08 2.01 3.2e-06 1.74
Unadjusted Estrogen Receptor (Negative vs Positive) 2.0e-06 2.00 2.3e-03 1.57
Unadjusted HER2 receptor (Positive vs Negative) 1.6e-09 2.79 7.0e-06 2.19
Unadjusted Tp53 status (Mutated vs Wildtype) 7.2e-08 2.44 1.0e-04 1.90
Unadjusted GII (+1SD) 1.2e-09 1.51 3.9e-08 1.43
Unadjusted CPI (Low,Interm.,High risk) 2.4e-13 1.95 3.8e-12 1.83

Adjusted CPI (Low,Interm.,High risk) 4.5e-13 1.94 1.1e-11 1.81
Age (≤ 60 vs > 60 years) 5.8e-01 1.08 2.1e-01 1.18

Adjusted CPI (Low,Interm.,High risk) 6.8e-12 1.88 6.2e-11 1.78
T-status (pT1, pT2, ≥pT3) 1.0e-05 1.68 4.7e-04 1.49

Adjusted CPI (Low,Interm.,High risk) 7.3e-13 1.93 8.7e-12 1.82
N-status (Positive vs Negative) 1.8e-08 2.22 2.0e-06 1.90

Adjusted CPI (Low,Interm.,High risk) 2.0e-08 1.74 2.5e-08 1.71
Histological grade (1-3) 1.8e-03 1.53 2.8e-02 1.32

Adjusted CPI (Low,Interm.,High risk) 2.9e-11 1.86 8.7e-11 1.79
Estrogen Receptor (Negative vs Positive) 1.4e-03 1.61 1.7e-01 1.23

Adjusted CPI (Low,Interm.,High risk) 8.1e-10 1.79 1.2e-09 1.73
HER2 receptor (Positive vs Negative) 4.1e-04 1.88 3.2e-02 1.48

Adjusted CPI (Low,Interm.,High risk) 3.7e-05 1.64 4.2e-05 1.60
Tp53 status (Mutated vs Wildtype) 3.4e-03 1.71 1.2e-01 1.33

Adjusted CPI (Low,Interm.,High risk) 1.4e-06 1.75 3.2e-06 1.72
GII (+1SD) 1.2e-01 1.15 4.2e-01 1.07
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