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ABSTRACT2

Model-based simulations of walking have the theoretical potential to support clinical decision3
making by predicting the functional outcome of treatments in terms of walking performance. Yet4
before using such simulations in clinical practice, their ability to identify the main treatment targets5
in specific patients needs to be demonstrated. In this study, we generated predictive simulations of6
walking with a medical imaging based neuro-musculoskeletal model of a child with cerebral palsy7
presenting crouch gait. We explored the influence of altered muscle-tendon properties, reduced8
neuromuscular control complexity, and spasticity on gait function in terms of joint kinematics,9
kinetics, muscle activity, and metabolic cost of transport. We modeled altered muscle-tendon10
properties by personalizing Hill-type muscle-tendon parameters based on data collected during11
functional movements, simpler neuromuscular control by reducing the number of independent12
muscle synergies, and spasticity through delayed muscle activity feedback from muscle force and13
force rate. Our simulations revealed that, in the presence of aberrant musculoskeletal geometries,14
altered muscle-tendon properties rather than reduced neuromuscular control complexity and15
spasticity were the primary cause of the crouch gait pattern observed for this child, which is in16
agreement with the clinical examination. These results suggest that muscle-tendon properties17
should be the primary target of interventions aiming to restore a more upright gait pattern for this18
child. This suggestion is in line with the gait analysis following muscle-tendon property and bone19
deformity corrections. The ability of our simulations to distinguish the contribution of different20
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impairments on walking performance opens the door for identifying targeted treatment strategies21
with the aim of designing optimized interventions for neuro-musculoskeletal disorders.22

Keywords: computational biomechanics, Hill-type muscle model, human locomotion, magnetic resonance imaging, muscle-tendon23
complex, optimal control, spasticity, synergy24

1 INTRODUCTION

Cerebral palsy (CP) is the most common cause of motor disability amongst children, affecting 2 to 325
per 1000 live births in Europe (Surveillance of Cerebral Palsy in Europe (2002)). CP is caused by a26
non-progressive lesion in the immature brain that may induce inabilities to selectively control muscles,27
spasticity, and weakness. These deficits undermine walking performance and, over time, lead to secondary28
impairments, such as bone deformities and muscle contracture, that may further deteriorate walking29
abilities (Gage et al. (2009)). Numerous treatments target these impairments with the aim of improving30
walking performance, such as single-event multi-level orthopedic surgeries (SEMLS) to correct multiple31
bone and muscle impairments in a single intervention (McGinley et al. (2012)). Yet walking involves32
complex interactions between the musculoskeletal and motor control systems, which are both impaired33
in CP. Hence, the treatment outcome does not only depend on the success of the intervention in terms of34
musculoskeletal remediation but also on the remaining motor control (Schwartz et al. (2016)). As a result,35
over the last decades, only modest, unpredictable, and stagnant treatment outcomes have been documented36
for children with CP (Schwartz (2018)). For example, SEMLS have been reported to improve walking37
performance in only 25 to 43% of the patients (Filho et al. (2008); Chang et al. (2006)) and to lead to38
clinically meaningful improvements over natural progression in only 37% of the cases (Rajagopal et al.39
(2018)). Computer models that can predict the functional outcome of treatments on walking performance40
have the potential to improve this success rate by allowing clinicians to optimize the clinical decision41
making (e.g., by discriminating the effects of musculoskeletal restoration due to surgical interventions to42
those from tone reduction and physical therapy targeting motor control impairments). However, predictive43
simulations are not yet applied in clinical practice, in part due to computational and modeling challenges.44

Predictive simulations generate novel movements based on a mathematical model of the neuro-45
musculoskeletal system without relying on experimental data. Typically, these simulations consist in46
identifying muscle excitations that follow a certain control strategy and drive the musculoskeletal model47
to achieve a movement-related goal (e.g., moving forward at a given speed). For such simulations to be48
valuable in predicting the functional outcome of treatments on walking performance, they should be based49
on models that are complex enough to describe the musculoskeletal structures and motor control processes50
underlying walking that may be impaired and thus affected by treatment. Yet these complex models are51
computationally expensive in predictive simulations (Anderson and Pandy (2001); Miller (2014); Song52
and Geyer (2015); Lin et al. (2018)) and, therefore, their ability to predict the variety of gaits encountered53
under different conditions (e.g., healthy and pathological gaits) has been only scarcely explored in the54
literature. We recently developed a simulation framework to generate rapid (i.e., about 30 minutes of55
computational time) predictive simulations of gait with complex models (Falisse et al. (2019)). Further,56
we demonstrated the ability of our framework to predict the mechanics and energetics of a broad range57
of gaits, suggesting that our models and simulations were sufficiently generalizable for use in clinical58
applications. Nevertheless, the ability of our simulations to identify the main treatment targets in specific59
patients remains untested. Specifically, for children with CP, simulations should allow distinguishing the60
effects of musculoskeletal versus motor control impairments on walking performance to be able to help61
clinicians optimize treatments.62
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Predicting the effects of impairments on walking performance in children with CP requires that the neuro-63
musculoskeletal model captures these impairments. In this work, we focus on two types of impairments:64
motor control impairments that include spasticity and non-selective muscle control, and musculoskeletal65
impairments that include bone deformities and altered muscle-tendon properties.66

Spasticity has been described as a velocity-dependent increase in tonic stretch reflex responses resulting67
from hyper-excitability of the stretch reflex (Lance (1980)). Following such description, models have been68
developed to describe the measured response in muscle activity (i.e., electromyography (EMG)) to passive69
stretches based on feedback from muscle velocity (van der Krogt et al. (2016)). However, we previously70
showed that a model based on feedback from muscle force and force rate better explains the response71
of spastic hamstrings and gastrocnemii than length- and velocity-based models (Falisse et al. (2018)).72
Further, we found that a force-based model could predict muscle activity in agreement with pathological73
EMG during gait. While spasticity manifests during passive stretches, its influence during gait remains74
unclear (Dietz and Sinkjaer (2007)). Incorporating spasticity models in predictive simulations would allow75
evaluating the impact of spasticity on gait performance, providing insights into the role of spasticity during76
gait. Further, modeling spasticity is a prerequisite for simulating the effects of treatments aiming to reduce77
spasticity, such as botulinum toxin type A (BTX-A) injections.78

The inability to selectively control muscles has been described through muscle synergies (Ivanenko79
et al. (2004)), which are independent groups of muscles activated in a fixed ratio by a single input signal.80
Children with CP have been shown to use fewer synergies (i.e., a simpler neuromuscular control strategy)81
than typically developing (TD) individuals during walking (Steele et al. (2015)) as well as to use synergies82
exhibiting a greater stride-to-stride variability (Kim et al. (2018)). However, assessing the relationship83
between simpler neuromuscular control and impaired gait is difficult. For example, Shuman et al. (2019)84
showed that treatments such as BTX-A injections, selective dorsal rhizotomy, and SEMLS minimally85
affected synergies despite changing the walking patterns. Predictive simulations have the potential to relate86
synergy complexity to impaired walking abilities, which might help designing specific treatments (e.g.,87
physical therapy protocols) targeting impaired selective motor control.88

Bone deformities and resultant altered muscle path trajectories make the use of generic musculoskeletal89
models linearly-scaled to the subjects’ anthropometry inappropriate for clinical analyses in children with90
CP. A well established approach to capture these aberrant geometries is through the use of models created91
from Magnetic Resonance Imaging (MRI) (Arnold et al. (2001); Scheys et al. (2009, 2011a)). Such92
models have been shown to improve, for example, the accuracy of moment arm estimation in children93
with CP (Scheys et al. (2011b)). Besides geometries, the muscle-tendon properties are also altered in94
these children (e.g., smaller muscle volumes and shorter fiber lengths as compared to TD individuals)95
(Barrett and Lichtwark (2010); Smith et al. (2011); Barber et al. (2011a,b, 2012)). This makes the use of96
Hill-type muscle-tendon models with generic (i.e., anthropometry-based) parameters unsuited for clinical97
studies. Indeed, such parameters may not reflect altered muscle force generating capacities and, therefore,98
result in unrepresentative simulations. To capture the impact of altered muscle-tendon properties on99
walking performance, the muscle-tendon parameters should be personalized. Different approaches have100
been proposed for such purpose, including methods based on angle-torque relationships from functional101
movements (Lloyd and Besier (2003); Falisse et al. (2017)).102

Predictive simulations have the potential to shed light upon the influence of altered musculoskeletal103
properties, impaired selective motor control, and spasticity on walking performance by evaluating the104
isolated effects of these impairments. Yet only few predictive analyses have used simulations for such105
purpose. Recent modeling work showed that a musculoskeletal model could reproduce an unimpaired106
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walking pattern with five synergies but not with two synergies similar to those seen after neurological injury,107
suggesting that impaired control affects walking performance (Meharbi et al. (2019)). Another predictive108
analysis explored the effects of aging on walking performance by adjusting skeletal and neuromuscular109
parameters and reported a predominant contribution of loss in muscle strength and mass to reduced110
energy efficiency (Song and Geyer (2018)). Both studies, however, relied on simple two-dimensional (2D)111
models, neglecting motor control mechanisms in the frontal plane. To the authors’ knowledge, no study112
has yet attempted to relate patients’ clinical examination reports to the outcome of predictive simulations113
evaluating the effects of musculoskeletal and motor control impairments on walking performance based on114
three-dimensional (3D) subject-specific models.115

The purpose of this study was to evaluate the ability of our predictive simulation platform to differentiate116
the effects of musculoskeletal and motor control impairments on the impaired walking pattern (i.e.,117
crouch gait) of a specific child with CP. To this aim, we evaluated the effect of these impairments on118
gait patterns predicted by performance optimization (Figure 1A). We first investigated the influence of119
using personalized rather than generic muscle-tendon parameters, thereby assessing the contribution of120
the child’s altered muscle-tendon properties to the crouch gait pattern. We then evaluated the impact of121
imposing a number of synergies lower than typically reported for unimpaired individuals, thereby testing122
how reducing neuromuscular control complexity affects walking performance. We finally investigated123
the effect of spasticity modeled based on muscle force and force rate feedback. In all cases, we used a124
MRI-based musculoskeletal model of the child to take his aberrant geometries into account. We found125
that the altered muscle-tendon properties rather than the control impairments alone caused a crouch gait126
pattern. As an additional analysis, we investigated whether the child’s impairments impede a walking127
pattern similar to TD walking or rather make such a walking pattern less optimal. To this aim, we extended128
the performance criterion of the predictive simulations with a tracking term that penalized deviations from129
a TD walking pattern. We found that the musculoskeletal impairments did not prevent an upright walking130
pattern resembling TD walking but that upright walking was less optimal than walking in crouch.131

2 MATERIAL AND METHODS

The overall process to evaluate the effects of impairments on walking performance through predictive132
simulations is outlined in Figure 1B. The following sections provide details of this process.133

Experimental data134

We collected data from one child with diplegic CP (male; age: 15 years; height: 143 cm; mass: 33.1135
kg). The data collection was approved by the Ethics Committee at UZ Leuven (Belgium) and written136
informed consent was obtained from the child’s parents. The child was instrumented with retro-reflective137
skin mounted markers whose 3D trajectories were recorded (100 Hz) using a motion capture system (Vicon,138
Oxford, UK) during overground walking at self-selected speed. Ground reaction forces were recorded139
(1000 Hz) using force plates (AMTI, Watertown, USA). EMG was recorded (2000 Hz) using a telemetric140
Zerowire system (Cometa, Milan, Italy) from eight muscles of each leg (rectus femoris, biceps femoris141
short head, semitendinosus, tibialis anterior, gastrocnemius lateralis, vastus lateralis, soleus, and gluteus142
medius). EMG from the rectus femoris and vastus lateralis was of poor quality and excluded from the143
analysis.144

On the same day as the gait analysis, spasticity of the right medial hamstrings and gastrocnemii was145
assessed using an instrumented passive spasticity assessment (IPSA; described in detail by Bar-On et al.146
(2013)). Hamstrings and gastrocnemii were passively stretched by moving knee and ankle, respectively,147
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Figure 1. Overview of (A) clinical questions and corresponding simulations, and (B) methodology.
MRI images are used to generate a musculoskeletal model of the child with subject-specific geometries.
This MRI-based model as well as experimental data collected during walking and instrumented passive
spasticity assessments (IPSA) are inputs to optimization procedures providing personalized estimates of
Hill-type muscle-tendon parameters characterizing altered muscle-tendon properties and personalized
feedback gains characterizing spasticity. The framework for predictive simulations generates gait patterns
by optimizing a cost function, describing a walking-related performance criterion, subject to the muscle and
skeleton dynamics of the MRI-based musculoskeletal model. We investigated the effects of impairments on
predicted gait patterns (dotted arrows): Qi we evaluated the effect of altered versus unaltered muscle-tendon
properties by using personalized versus generic muscle-tendon parameters in the muscle dynamics; Qii we
assessed the influence of reducing the neuromuscular control complexity by imposing a reduced number of
muscle synergies; Qiii we explored the impact of spasticity on walking performance. Details on how we
modeled these impairments are described in the methods. As an additional analysis, Qiv, we evaluated how
well the model was able to reproduce the gait pattern of a typically developing (TD) child by adding a term
in the cost function penalizing deviations between predicted gait pattern and measured gait data of a TD
child. All these analyses can be combined as well as performed in isolation. Details are provided in section
“model-based analyses”.

one at a time from a predefined position throughout the full range of motion (ROM). The stretches148
were performed at slow and fast velocities. EMG was collected from four muscles (semitendinosus,149
gastrocnemius lateralis, rectus femoris, and tibialis anterior) using the same system and electrode placement150
as used for gait analysis. The motion of the distal and proximal segments were tracked using two inertial151
measurement units (Analog Devices, ADIS16354). The forces applied to the segment were measured using152
a hand-held six degrees of freedom (DOFs) load-cell (ATI Industrial Motion, mini45). The position of the153
load-cell relative to the joint axis was manually measured by the examiner.154
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Muscle strength, selectivity, and ROM were evaluated (Table 1) with a standardized clinical examination155
protocol (Desloovere et al. (2006)). The child had close to normal ROM at the hip and ankle but bilateral156
knee extension deficits, bilateral spasticity in most muscles, good strength in most muscles although slight157
deficits in hip extensors, knee extensors, and hip abductors, and good to perfect selectivity in most muscles.158
MRI images were collected for the hip region (i.e., pelvis and femur according to the protocol described by159
Bosmans et al. (2014)). The child was classified at a level II in the Gross Motor Function Classification160
System (GMFCS).161

Table 1. Clinical examination. Spasticity, MAS is for Modified Ashworth Scale: 1 is low, 1+ is medium,
and 2 is high spastic involvement; Tard is for Tardieu test. Strength: 3 is medium and 4 is good strength;
strength from 3 indicates ability to move against gravity. Selectivity: 1 is medium, 1.5 is good, and 2 is
perfect selective control. Clinically meaningful deviations from unimpaired individuals are in bold.

Range of motion Spasticity
Left Right Left Right

Hip flexion 145◦ 140◦ Hip flexion MAS 2 2
Hip extension -10◦ -10◦ Hip adduction (Knee 0◦) MAS 1.5 1.5

Hip abduction (Knee 0◦) 25◦ 25◦ Hip adduction (Knee 90◦) MAS 0 0
Hip abduction (Knee 90◦) 45◦ 45◦ Hamstrings MAS 1.5 1

Hip adduction 0◦ 0◦ Hamstrings Tard -70◦ /
Hip internal rotation (prone) 60◦ 70◦ DuncanElly MAS 1.5 1.5
Hip external rotation (prone) 25◦ 25◦ DuncanElly Tard 2◦ 2◦
Hip internal rotation (supine) 25◦ 30◦ Soleus MAS 0 0
Hip external rotation (supine) 55◦ 50◦ Soleus Tard / /

Knee flexion 120◦ 120◦ Gastrocnemius MAS 1.5 1.5
Knee extension -20◦ -15◦ Gastrocnemius Tard 0◦ 5◦

Knee spontaneous position -30◦ -25◦ Tibialis Post MAS 0 0
Popliteal angle unilateral -70◦ -65◦ Clonus 0 0
Popliteal angle bilateral -65◦ -60◦

Ankle dorsiflexion (Knee 90◦) 20◦ 25◦ Alignment
Ankle dorsiflexion (Knee 0◦) 15◦ 15◦ Left Right

Ankle plantarflexion 35◦ 35◦ Femoral anteversion 35◦ 35◦

Ankle inversion 40◦ 45◦ Tibia-femoral angle 25◦ 25◦

Ankle eversion 10◦ 10◦ Bimalleor angle 40◦ 40◦

Selectivity Strength
Left Right Left Right

Hip flexion 2 2 Hip flexion 4 4
Hip extension 1.5 1.5 Hip extension 3 3
Hip abduction 1.5 1.5 Hip abduction 3+ 3+
Hip adduction 2 2 Hip adduction 4 4
Knee flexion 1.5 1.5 Knee flexion 4 3+

Knee extension 1 1.5 Knee extension 3+ 3+
Ankle dorsiflexion (Knee 90◦) 1.5 1.5 Ankle dorsiflexion (Knee 90◦) 4 4
Ankle dorsiflexion (Knee 0◦) 1.5 1.5 Ankle dorsiflexion (Knee 0◦) 4 4

Ankle plantarflexion 1.5 1.5 Ankle plantarflexion 4 3+
Ankle inversion 1.5 1.5 Ankle inversion 4 4
Ankle eversion 2 1.5 Ankle eversion 4 4

We processed the experimental gait and IPSA data, used as input for the estimation of muscle-tendon162
parameters and feedback gains (Figure 1; details below), with OpenSim 3.3 (Delp et al. (2007)) using the163
MRI-based model described below.164

Subject-specific musculoskeletal model generation165

A 3D musculoskeletal model with subject-specific geometries was created from MRI images (Scheys166
et al. (2009, 2011a); Bosmans et al. (2014)). Bones of the lower limbs and pelvis were segmented using167
Mimics (Materialize, Leuven, Belgium). Anatomical reference frames, joint axes, and muscle origin and168
insertion points were defined using a previously developed workflow (Scheys et al. (2008)). The model169
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consisted of 21 DOFs (six between the pelvis and the ground; three at each hip joint; one at each knee,170
ankle, and subtalar joint; and three at the lumbar joint), 86 muscles actuating the lower limbs (43 per leg),171
three ideal torque actuators at the lumbar joint, and four contact spheres per foot (Delp et al. (1990, 2007)).172
We added passive torques to the joints of the lower limbs and the trunk to model the role of the ligaments173
and other passive structures (Anderson and Pandy (2001)). These passive torques varied exponentially with174
joint positions and linearly with joint velocities.175

We used Raasch’s model (Raasch et al. (1997); De Groote et al. (2009)) to describe muscle excitation-176
activation coupling (muscle activation dynamics) and a Hill-type muscle-tendon model (Zajac (1989);177
De Groote et al. (2016)) to describe muscle-tendon interaction and the dependence of muscle force on178
fiber length and velocity (muscle contraction dynamics). We modeled skeletal motion with Newtonian179
rigid body dynamics and smooth approximations of compliant Hunt-Crossley foot-ground contacts (Delp180
et al. (2007); Sherman et al. (2011); Falisse et al. (2019)). We calibrated the Hunt-Crossley contact181
parameters (transverse plane locations and contact sphere radii) through muscle-driven tracking simulations182
of the child’s experimental walking data as described in previous work (Falisse et al. (2019)). To increase183
computational speed, we defined muscle-tendon lengths, velocities, and moment arms as a polynomial184
function of joint positions and velocities (van den Bogert et al. (2013); Falisse et al. (2019)).185

Personalized muscle-tendon parameter estimation186

The force-length-velocity relationships describing the force generating capacity of the Hill-type muscle-187
tendon model are dimensionless and can be scaled to a specific muscle through five muscle-tendon188
parameters: the maximal isometric force Fmax

m , the optimal fiber length lopt
m , the tendon slack length lst ,189

the optimal pennation angle αopt
m , and the maximal fiber contraction velocity vmax

m (assigned to ten times190
l
opt
m ). In this study, we used generic and personalized parameters when generating predictive simulations of191

walking (Figure 1).192

The generic parameters were derived by linearly scaling the parameters of a generic musculoskeletal193
model (Delp et al. (1990)) to the child’s anthropometry. The linear scaling was only performed for the194
optimal fiber lengths and tendon slack lengths. The maximal isometric muscle forces were scaled based on195
body mass M (van der Krogt et al. (2016)):196

Fmax
m,subject = Fmax

m,gait2392

(
Msubject

Mgait2392

)(2/3)

, (1)

where gait2392 refers to the OpenSim gait2392 model (Delp et al. (1990, 2007)).197

The personalized parameters reflect the muscle force generating capacity of the subject. Only optimal198
fiber lengths and tendon slack lengths were personalized as gait simulations have been shown to be the199
most sensitive to these two parameters (De Groote et al. (2010)). The personalization process was based on200
an extension of an optimal control approach to solve the muscle redundancy problem while accounting201
for muscle dynamics (De Groote et al. (2016); Falisse et al. (2017)). Solving the muscle redundancy202
problem identifies muscle excitations that reproduce joint torques underlying a given movement while203
minimizing a performance criterion (e.g., muscle effort). We augmented this formulation in different ways.204
First, we added optimal fiber lengths and tendon slack lengths as optimization variables. Second, we205
introduced a term in the cost function minimizing the difference between muscle activations and scaled206
EMG signals where scale factors were included as optimization variables. Third, we assumed that muscles207
operate around their optimal fiber lengths, and that maximal and minimal fiber lengths across movements208
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should hence be larger and smaller, respectively, than their optimal fiber lengths. Fourth, we assumed209
that resistance encountered when evaluating the ROM during the clinical examination may be, at least210
in part, attributed to passive muscle forces. Hence, we included a term in the cost function minimizing211
the difference between fiber lengths at these extreme positions of the ROM and reference fiber lengths212
generating large passive forces. Finally, we minimized optimal fiber lengths, assuming that children with213
CP have short fibers (Barrett and Lichtwark (2010)). The problem thus consisted in identifying muscle214
excitations and parameters that minimized a multi-objective cost function:215

Jestimation =

∫ tf

t0

w1‖a‖22︸ ︷︷ ︸
Muscle
effort

+w2‖a− EMG‖22︸ ︷︷ ︸
EMG

deviation

+w3‖lmax
m − lmax

ref ‖
2
2︸ ︷︷ ︸

Passive forces in
extreme positions

+w4

∥∥lopt
m

∥∥
1︸ ︷︷ ︸

Short
fibers

+w5‖ar‖22︸ ︷︷ ︸
Reserve
actuators

 dt, (2)

where t0 and tf are initial and final times, a are muscle activations, lmax
m and lmax

ref = 1.5 are simulated216
and reference fiber lengths, respectively, at the extreme positions of the ROM, ar are reserve actuators,217
w1−5 are weight factors, and t is time. This cost function was subject to constraints enforcing muscle218
dynamics, that resultant muscle forces should reproduce joint torques calculated from inverse dynamics,219
that fiber lengths should cross their optimal fiber lengths during the movement, and that the difference220
between activations and EMG should not be larger than 0.1. Reserve actuators are non-physiological ideal221
actuators added to muscle-generated torques to ensure that joint torques from inverse dynamics can be222
reproduced. The weights were manually adjusted to the following: w1 = 10 × 10−4, w2 = 30 × 10−4,223
w3 = 3550× 10−4, w4 = 1010× 10−4, and w5 = 5400× 10−4. These weights primarily penalized the224
use of reserve actuators and encouraged the generation of passive forces in the extreme positions of the225
ROM. We solved this problem while simultaneously considering data from four gait trials of each leg and226
six passive stretches (IPSA measurements) of the right hamstrings, rectus femoris, and gastrocnemii at227
slow and fast velocities (one stretch per muscle per speed). Data from 14 trials (gait and passive trials228
combined) was thus included. Data from passive stretches of left leg muscles was not available. Hence, we229
imposed that corresponding parameters of both legs could not differ by more than 5%. The parameters230
were allowed to vary between 50 and 200% of the generic values.231

Spasticity model - Personalized feedback gain estimation232

We modeled spasticity through delayed feedback from muscle-tendon force and its first time derivative233
(i.e., force rate) (Falisse et al. (2018)). The model relates sensory information s (i.e., muscle force and234
force rate) to feedback muscle activations as through a first order differential equation:235

τ
das
dt

=

{
−as, s ≤ Ts

−as + gs(s− Ts), s > Ts
(3)

where Ts is a feedback threshold, gs is a feedback gain, and τs = 30 ms is a time delay.236

We determined the threshold for force feedback as the value 20 ms before the EMG onset (Staude237
and Wolf (1999)) and used a zero threshold for force rate feedback. We identified the personalized238
feedback gains that minimized the difference between EMG and feedback muscle activations during fast239
passive stretches (IPSA measurements). We performed such optimization for the right medial hamstrings240
(i.e., biceps femoris long head, semitendinosus, and semimembranosus) and for the right gastrocnemii241
(i.e., gastrocnemius lateralis and medialis). We used semitendinosus EMG to drive the three hamstrings242
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and gastrocnemius lateralis EMG to drive both gastrocnemii. We normalized EMG using scale factors243
identified when estimating the personalized muscle-tendon parameters. We described the optimization244
process in detail in previous work (Falisse et al. (2018)). We incorporated the spasticity model with245
personalized feedback gains in our framework for predictive simulations (Figure 1). Since we only had246
IPSA measurement for the right leg, we used feedback gains and thresholds identified with right leg data247
for left leg muscles. Gait EMG data and spasticity, as clinically assessed (Table 1), were comparable for248
both legs.249

Muscle synergies250

We modeled the reduced neuromuscular control complexity through muscle synergies. These synergies251
consisted of two matrices: a Nsyn ×Nf matrix H , where Nsyn is the number of synergies and Nf is the252
number of frames, containing synergy activations and a Nm ×Nsyn matrix W , where Nm is the number of253
muscles, containing weights that determine the contribution of each muscle in each synergy. Individual254
muscle activations were composed from synergies as follows:255

a = W ×H, (4)

where a has dimensions Nm × Nf . Importantly, we did not impose subject-specific synergies when256
generating predictive simulations (Figure 1). Instead, we modeled the effect of reducing the neuromuscular257
control complexity by limiting the number of synergies per leg to four or three, thereby limiting the258
selection of independent muscle activations. This represents a reduction of the neuromuscular control259
complexity under the assumption that five synergies describe healthy human locomotion (Ivanenko et al.260
(2004)).261

Problem formulation262

We predicted gait patterns by optimizing a gait-related cost function, independent of experimental data,263
based on the MRI-based musculoskeletal model described above. In addition to optimizing performance,264
we imposed average gait speed and periodicity of the gait pattern. We optimized for a full gait cycle to265
account for asymmetry of CP gait. We solved the resultant optimal control problem via direct collocation.266
The problem formulation and computational choices are detailed in previous work (Falisse et al. (2019)).267

The cost function represents the goal of the motor task. We modeled this task-level goal as a weighted268
sum of gait-related performance criteria including metabolic energy rate, muscle fatigue, joint accelerations,269
passive joint torques, and trunk actuator excitations:270

Jprediction =

∫ tf

0

1

d

w1

∥∥∥Ė∥∥∥2
2︸ ︷︷ ︸

Metabolic
energy rates

+w2‖a‖1010︸ ︷︷ ︸
Muscle
fatigue

+ w3‖q̈‖22︸ ︷︷ ︸
Joint

accelerations

+ w4‖Tp‖22︸ ︷︷ ︸
Passive joint

torques

+ w5‖et‖22︸ ︷︷ ︸
Trunk actuator

excitations

 dt, (5)

where tf is unknown gait cycle duration, d is distance travelled by the pelvis in the forward direction, Ė are271
metabolic energy rates, a are muscle activations, q̈ are joint accelerations, Tp are passive joint torques, et272
are excitations of the trunk torque actuators, w1−5 are weight factors, and t is time. We modeled metabolic273
energy rate using a smooth approximation of the phenomenological model described by Bhargava et al.274
(2004). This metabolic model requires parameters for fiber type composition and muscle specific tension,275
which we obtained from the literature (Uchida et al. (2016)). We manually adjusted the weight factors276
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until we found a set of weights that predicted human-like walking: w1 = (25/86/body mass) × 10−2,277
w2 = 25/86 × 102, w3 = 50/21, w4 = 10/15 × 102, and w5 = 1/3 × 10−1. We added several path278
constraints enforcing a prescribed average gait speed corresponding to the child’s average gait speed279
(d/tf = 1 m s−1), imposing periodic states over the complete gait cycle (except for the pelvis forward280
position), and preventing inter-penetration of body segments.281

Model-based analyses282

We investigated the differential effects of altered muscle-tendon properties, reduced neuromuscular283
control complexity, and spasticity on gait patterns predicted with the MRI-based musculoskeletal model284
(Figure 1). In particular, we compared predicted joint kinematics and kinetics, muscle activity, and stride285
lengths to their experimental counterparts. We also evaluated how impairments affected the metabolic cost286
of transport (COT), defined as metabolic energy consumed per unit distance traveled.287

First, we tested the influence of altered versus unaltered muscle-tendon properties by using personalized288
versus generic muscle-tendon parameters in the muscle dynamics (Qi in Figure 1). In this initial analysis,289
we did not include spasticity, nor imposed synergies.290

Second, we assessed the impact of reducing the neuromuscular control complexity by imposing fixed291
numbers of synergies (Qii in Figure 1). To assess the effect of reducing the number of synergies, we292
compared the synergy activations resulting from simulations with three and four synergies using the293
coefficient of determination R2 and the synergy weights using Pearson’s coefficient of correlation r. We294
generated simulations with both sets of muscle-tendon parameters to explore the effect of synergies in295
isolation as well as in combination with altered muscle-tendon properties.296

Finally, we evaluated the effect of spasticity in the three medial hamstrings and two gastrocnemii of both297
legs (Qiii in Figure 1). We modeled muscle activations as the sum of reflex muscle activations determined298
based on the personalized spasticity model and feedforward muscle activations:299

asum = aff + aFt + adFt , (6)

where aff are feedforward muscle activations, and aFt and adFt are muscle activations from muscle force300
and force rate feedback, respectively. We only tested the effect of spasticity based on the model with301
personalized muscle-tendon parameters, since these parameters were used to estimate the feedback gains.302
We tested the effect of spasticity in combination with selective control (i.e., no synergy constraints) as well303
as with a reduced number of muscle synergies.304

305

As an additional analysis, we investigated whether the child adopted an impaired crouch gait pattern306
because of neuro-mechanical constraints or because it was more optimal (Qiv in Figure 1). To this aim, we307
added a term in the cost function that penalized deviations from measured kinematics of a TD child:308

Jtracking =

∫ tf

0

w6‖q − q̂‖22︸ ︷︷ ︸
TD kinematics

deviation

 dt, (7)

where q̂ are measured joint positions of a TD child and w6 = 100/20 is a weight factor. We generated309
these simulations with personalized parameters as well as with and without synergies. We did not include310
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spasticity in this analysis since it had little influence on the walking pattern in the simulations described311
above.312

We formulated our problems in MATLAB using CasADi (Andersson et al. (2019)), applied direct313
collocation using a third order Radau quadrature collocation scheme with 150 mesh intervals per gait cycle,314
and solved the resulting nonlinear programming problems with the solver IPOPT (Wächter and Biegler315
(2006)). We applied algorithmic differentiation to compute derivatives (Falisse et al. (2019)). We started316
each optimization from multiple initial guesses and selected the result with the lowest optimal cost. Initial317
guesses for joint variables were based on experimental data. Specifically, for all simulations, we used318
two initial guesses derived from experimental kinematics of the CP and the TD child. For simulations319
accounting for synergies, we added initial guesses derived from simulated kinematics with the lowest320
optimal costs produced without synergies and with more synergies (e.g., with three synergies, initial321
guesses were derived from the best kinematic solutions with four synergies and without synergies). For322
simulations accounting for spasticity, we added initial guesses derived from simulated kinematics with323
the lowest optimal costs produced without spasticity. In all cases, initial guesses for muscle, trunk, and324
synergy variables were constant across time and not informed by experimental data. Initial guesses for325
synergy weights were constant across muscles and independent of experimental data.326

RESULTS

Gait analysis327

The child walked with a pronounced crouch gait pattern characterized by bilateral knee extension deficits328
with reduced knee ROM during swing, a lack of right ankle dorsiflexion at the end of swing, excessive left329
ankle dorsiflexion, excessive and deficient right and left hip adduction, respectively, and excessive bilateral330
hip internal rotation (Figures 2 and S1).331

Influence of the muscle-tendon parameters332

Using personalized versus generic muscle-tendon parameters resulted in a crouch (i.e., excessive knee333
flexion) versus a more upright gait pattern (Figures 2 and S1; Movies S1-2). Personalized optimal fiber334
lengths and tendon slack lengths were generally smaller and larger, respectively, than their generic335
counterparts (Tables S1-2). The use of personalized parameters resulted in decreased deviations (smaller336
root mean square error (RMSE)) between measured and predicted knee angles (RMSE of 17◦ and 11◦337
for the left and right leg, respectively) as compared to the use of generic parameters (RMSE of 43◦ and338
25◦). The gastrocnemius lateralis and soleus (ankle plantarflexors) were activated earlier in stance with339
the crouch gait, as observed in the child’s EMG. The vasti (knee extensors) activity was also increased340
during stance when the model walked in crouch. The COT was higher with the personalized parameters341
(crouch gait; 3.45 J kg−1m−1) than with the generic parameters (more upright gait; 3.18 J kg−1m−1).342
Predicted stride lengths were larger than the average stride length of the child but were within two standard343
deviations.344

Influence of the synergies with generic muscle-tendon parameters345

Reducing the number of synergies in combination with generic muscle-tendon parameters did not induce346
the amount of crouch that was experimentally measured in the child, although it altered muscle coordination347
and increased COT (Figures 3 and S2; Movie S3). The right knee flexion angles increased during stance348
with the reduction of the neuromuscular control complexity but were still smaller than experimentally349
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Figure 2. Influence of the muscle-tendon parameters on the predicted walking gaits. Variables from
the right leg are shown over a complete gait cycle; left leg variables are shown in Figure S1 (Supplementary
Material). Vertical lines indicate the transition from stance to swing. Experimental data is shown as mean
± two standard deviations. Experimental EMG data was normalized to peak activations. GRF is for ground
reaction forces; BW is for body weight; COT is for metabolic cost of transport; lh is for long head.

measured. This was accompanied with increased rectus femoris (knee extensor) activity. The synergies had350
a limited effect on the left leg that had a straight knee pattern during stance. The COT increased with the351
reduction of the neuromuscular control complexity (3.58 and 3.90 J kg−1m−1 with four and three synergies,352
respectively). The synergies had little effect on the predicted stride lengths that were larger than the child’s353
average stride length but were within two standard deviations. The synergies of the three-synergy case were354
similar to the first three synergies of the four-synergy case (average R2 and r over three common synergy355
activations and weight vectors, respectively, of both legs: 0.84 ± 0.19 and 0.83 ± 0.10). The additional356
synergy in the four-synergy case was activated in early stance and at the transition between stance and357
swing, and mainly consisted of hip adductors.358

Influence of the synergies with personalized muscle-tendon parameters359

Reducing the number of synergies in combination with personalized muscle-tendon parameters had a360
minor effect on gait kinematics but altered muscle coordination and increased COT (Figures 4 and S3;361
Movie S4). Specifically, synergies only had a slight effect on the kinematics during the swing phase of the362
right leg but affected the activation pattern of certain muscles (e.g., gastrocnemius medialis and lateralis).363
The COT increased with the reduction of the neuromuscular control complexity (3.94 and 4.09 J kg−1m−1364
with four and three synergies, respectively). Stride lengths slightly decreased with synergies but remained365
larger than the child’s average stride length. The synergies of the three-synergy case were similar to the366
first three synergies of the four-synergy case (average R2 and r: 0.85 ± 0.05 and 0.87 ± 0.09, respectively).367
The additional synergy in the four-synergy case was activated in early stance and at the transition between368
stance and swing, and mainly consisted of the gemellus, piriformis, tibialis posterior, and several ankle369
plantarflexors.370

This is a preprint 12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2019. ; https://doi.org/10.1101/769042doi: bioRxiv preprint 

https://doi.org/10.1101/769042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Falisse et al. Predictive simulations of CP gaits

Figure 3. Influence of the synergies on walking gaits predicted with the generic muscle-tendon para-
meters. Variables from the right leg are shown over a complete gait cycle; left leg variables are shown
in Figure S2 (Supplementary Material). Vertical lines (solid) indicate the transition from stance to swing.
Panels of synergy weights are divided into sections (A-I) to relate bars to muscle names provided in the
bottom bar plot, which is an expanded version of the plot of weights with title 4 synergies: 3. Lh and sh
are for long and short head, respectively. Weights were normalized to one. Experimental data is shown as
mean ± two standard deviations.

Influence of spasticity371

Spasticity had a limited effect on muscle coordination and almost no influence on gait kinematics (Figures372
5 and S4; Movie S5). Specifically, spastic activity was predicted in the medial hamstrings in early stance373
but this had, overall, a minor effect on the total (i.e., combined spastic and non-spastic contributions)374
medial hamstrings activity when compared to simulations without spasticity. Bursts of spastic activity375
were also observed in early swing. Medial hamstrings activity contributes to knee flexion but since similar376
(timing and magnitude) activity profiles were predicted with and without spasticity, there was no difference377
in predicted knee flexion angles. A constant low spastic contribution was predicted for the gastrocnemius378
lateralis during stance, whereas a minor contribution was predicted for the gastrocnemius medialis during379
stance and at the transition between stance and swing. Spasticity hence does not explain the lack of right380
ankle dorsiflexion (i.e., increased plantarflexion) observed at the end of swing in experimental data. Similar381
observations hold with and without synergies. The COT increased when incorporating spasticity (3.75 and382
4.18 J kg−1m−1 with zero and four synergies, respectively).383
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Figure 4. Influence of the synergies on walking gaits predicted with the personalized muscle-tendon
parameters. Variables from the right leg are shown over a complete gait cycle; left leg variables are shown
in Figure S3 (Supplementary Material). Vertical lines (solid) indicate the transition from stance to swing.
Panels of synergy weights are divided into sections (A-I) to relate bars to muscle names provided in the
bottom bar plot, which is an expanded version of the plot of weights with title 4 synergies: 3. Lh and sh
are for long and short head, respectively. Weights were normalized to one. Experimental data is shown as
mean ± two standard deviations. Experimental EMG data was normalized to peak activations.

Figure 5. Influence of spasticity on the predicted muscle activity. Activations from right leg muscles
only are shown over a complete gait cycle; left leg activations are shown in Figure S4 (Supplementary
Material). When accounting for spasticity, total activations (green) combine spastic (solid black) and non-
spastic (dotted black) activations. Vertical lines indicate the transition from stance to swing. Experimental
data is shown as mean ± two standard deviations. Experimental EMG data was normalized to peak
activations. Lh is for long head.
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Influence of tracking the kinematics of a TD child384

Tracking the TD kinematics while using personalized muscle-tendon parameters produced an upright gait385
pattern when not incorporating synergies, but decreased the overall gait performance (Figures 6 and S5;386
Movie S6). Specifically, the simulated gait had a similar COT (3.46 J kg−1m−1) as the crouch gait pattern387
predicted without such tracking term but the contribution of most terms in the cost function increased,388
suggesting that walking upright is not prevented by mechanical constraints (i.e., aberrant musculoskeletal389
geometries and altered muscle-tendon properties) but is less optimal, due to these mechanical constraints,390
than walking in crouch for this child. The contribution of the muscle fatigue term increased by 29%, in391
part driven by higher activations of the glutei. The contribution of the joint acceleration, metabolic energy392
rate, and passive joint torque terms increased by 15, 15, and 36%, respectively, when walking upright.393
Similarly, passive muscle forces increased when walking upright for the iliacus and psoas (hip flexors),394
and biceps femoris short head (knee flexor). Knee flexion increased when adding synergies but did not395
reach the angle that was experimentally measured in the child (Figure S6). Nevertheless, this suggests that396
reduced neuromuscular control complexity may contribute to crouch gait. The gastrocnemius lateralis and397
soleus (ankle plantarflexors) were also activated earlier during stance with synergies. Imposing synergies398
increased the COT (4.12 and 4.05 J kg−1m−1 with four and three synergies, respectively).399

Figure 6. Influence of tracking the TD kinematics on predicted walking gaits. Variables from the
right leg are shown over a complete gait cycle; left leg variables are shown in Figure S5 (Supplementary
Material). Vertical lines indicate the transition from stance to swing. Experimental data is shown as mean
± two standard deviations. Muscle fatigue is modeled by activations at the tenth power. Passive muscle
forces are normalized by maximal isometric muscle forces. Sh is for short head. The influence of synergies
on predicted walking gaits is depicted in Figure S6 (Supplementary Material).

DISCUSSION

We demonstrated the ability of predictive simulations to explore the differential effects of musculoskeletal400
and motor control impairments on the gait pattern of a child with CP. In this specific case, aberrant401
musculoskeletal geometries and altered muscle-tendon properties explained the key gait deviation of402
the child, namely the crouch gait pattern. Accounting for aberrant geometries alone (i.e., MRI-based403
model with generic muscle-tendon parameters) did not result in a crouch gait pattern. Despite altered404
muscle-tendon properties and aberrant geometries, the model could still adopt a more upright gait pattern405
(TD kinematics tracking). Yet such pattern was less optimal as it induced higher muscle fatigue compared406
to the crouch gait pattern. These simulations thus suggest that adopting an upright gait pattern for this407
child might produce an early onset of fatigue, which might explain in part why the child walks in crouch.408
Importantly, not only fatigue, but also joint accelerations, passive joint torques, and metabolic energy rates409
increased with an upright gait pattern, likely contributing to the selection of a crouch gait pattern.410

Decreasing the neuromuscular control complexity through a reduced number of synergies had a lower411
effect on the simulated gait patterns than muscular deficits as evaluated when comparing simulated gait412
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patterns obtained with personalized and generic muscle-tendon parameters. Nevertheless, the synergies413
resulted in increased knee flexion in several simulations, indicating that impaired selective motor control414
may contribute to gait deficits as suggested in prior simulation studies (Meharbi et al. (2019)). In this study,415
we imposed the number of synergies but not the synergy structure (synergy weights and activations were416
optimization variables and not informed by experimental data). We thus explored the effect of reducing the417
neuromuscular control complexity but not the impact of imposing the child’s experimental synergies. We418
expect this impact to be limited for this child since he had a good selectivity. Nevertheless, further work419
should consider such investigation.420

Our predictive simulations generated both movement patterns and the underlying synergies. Only421
imposing the number of synergies resulted in synergies that presented common features with those reported422
in the literature, such as one synergy activated during early stance and composed by the glutei and vasti,423
and one synergy activated during late stance consisting of the glutei, ankle plantarflexors, and iliacus (De424
Groote et al. (2014)). This suggests that synergy structures might emerge from mechanical constraints and425
performance optimization during walking. Future research should explore this hypothesis based on a larger426
population.427

Decreasing the number of synergies resulted in a larger COT, as may be expected with a higher level428
of co-activations. This finding has been hypothesized in previous studies (Steele et al. (2017); Meharbi429
et al. (2019)) but not tested explicitly. It is indeed difficult to dissociate the influence of the neuromuscular430
control complexity on the COT through experiments or based on measured data, since many other factors431
(e.g., spasticity (Hemingway et al. (2001)) and weakness (van der Krogt et al. (2012))) might also play432
a role. Overall, our predictive simulations allow exploring the effects of isolated impairments on gait433
energetics, which was not possible through analyses based on measured data.434

Spasticity had a minor influence on the predicted gait kinematics, suggesting a low impact of spasticity435
on gait performance for this child. This hypothesis is in agreement with severeal studies reporting a lack of436
correlation between spasticity as diagnosed during passive movements and determinants of gait (Ada et al.437
(1998); Marsden et al. (2012); Willerslev-Olsen et al. (2014)). However, it would be premature to draw438
such conclusion based on this analysis for a single child. First, spasticity was only taken into account for439
the medial hamstrings and gastrocnemii, whereas the rectus femoris and several hip flexors and adductors440
were also reported to be spastic (Table 1). Including these other muscles may have an influence on walking441
performance. Second, experimental data from the spasticity assessment was only collected for the right leg,442
whereas bilateral spasticity was reported (Table 1). We optimized the feedback parameters using that data443
but used the resulting parameters for both legs, which might affect our predictions. Third, we used feedback444
parameters optimized from passive stretches to predict spasticity (i.e., reflex activity) during gait, assuming445
no reflex modulation. This assumption is in line with the decreased reflex modulation reported for patients446
with spasticity (Sinkjaer et al. (1996); Faist et al. (1999); Dietz (2002); Dietz and Sinkjaer (2007)). Yet447
further research is needed to ensure that the same model is valid in passive and active conditions. Finally,448
the optimized feedback gains depend on EMG that was normalized using scale factors optimized during449
the muscle-tendon parameter estimation. However, these factors may not truly reflect the magnitude of450
the spastic responses, which may result in an under- or over-estimation of the predicted spastic activity451
during gait. In previous work (Falisse et al. (2018)), we showed that predicted spastic responses of the452
gastrocnemii were in agreement with large EMG signals observed in early stance in subjects with an453
equinus gait (i.e., toe walking). Interestingly, in this study, the child walked on his toes but we did not454
observe such EMG rise. Hence, our model predictions were in agreement with the lack of gastrocnemius455
EMG activity observed during early stance.456
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Our analysis suggests that muscle-tendon properties rather than selective motor control and spasticity457
should be the target of interventions aiming to restore an upright posture for this child. This suggestion is458
in line with the surgical report and one-year post-operative gait analysis. Specifically, the child underwent459
SEMLS consisting of bilateral rectus femoris transfer, distal femur extension and derotation osteotomy,460
tibia derotation, and patella distalization that successfully addressed the knee extension deficits and restored461
the upright gait pattern. The intervention also included bilateral BTX-A injections in the psoas (hip flexor)462
and gracilis (hip flexor, adductor, and knee flexor) to reduce spasticity. However, BTX-A injections are463
unlikely to have had an effect one year post-treatment (Molenaers et al. (2010)), suggesting a limited464
contribution of reduced psoas and gracilis spasticity on restored knee extension. Note that our study did465
not investigate the sensitivity of the predicted walking patterns to bone misalignment as we considered466
the same aberrant geometries for all analyses. Studying the effect of bone deformities on the gait pattern467
should be considered in future work.468

Our simulations with personalized muscle-tendon parameters captured salient features of the child’s469
walking pattern. Nevertheless, they deviated from measured data in different ways. In particular, our model470
did not adopt the observed equinus gait. Such pattern might have different underlying roots. On the one471
hand, it might be an ankle strategy to add functional limb length and compensate for the knee extension472
deficits. Our simulations did not predict such compensation strategy but also lacked knee flexion in early473
stance as compared to measured data (Figure 2). Increased knee flexion might strengthen the need for474
ankle compensation, causing the model to adopt an equinus gait. On the other hand, it might be due to475
contracture of the plantarflexors (Wren et al. (2005); Mathewson et al. (2015)) although this hypothesis is476
less likely for this child who had a normal ROM in terms of plantarflexion.477

Other factors might have contributed to the deviations between predicted and measured movements.478
First, the musculoskeletal model had generic rather than subject-specific (i.e., MRI-based) geometries479
for feet and tibias. Since the child later underwent a surgery that included bilateral tibia derotation,480
these generic geometries might have contributed to the gait deviations. Second, the clinical examination481
indicated that the child’s trunk was leaning forward. This is likely a compensation strategy, since no fixed482
lordosis was reported. However, our model had a very simple trunk representation (i.e., one joint with483
three DOFs), limiting the emergence of compensation strategies. Hence, our simulations resulted in an484
upright trunk posture, whereas a forward leaning posture might have caused an equinus gait. How to485
model the trunk to capture such compensations remains an open question. Third, our control strategy486
likely did not capture all complex control mechanisms that might be at play during gait. For instance,487
we did not consider in our cost function criteria such as head stability (Menz et al. (2003)) and pain that488
might contribute to gait control. Further, we designed our cost function based on previous work with489
a healthy adult but the same performance criterion might not hold for children with CP. Nevertheless,490
our cost function predicted, as expected, a crouch gait pattern with personalized parameters and a more491
upright gait pattern with generic parameters, suggesting that it captured at least part of the child’s control492
strategy. Finally, the personalized muscle-tendon parameters might not accurately capture the effect of493
the child’s altered muscle-tendon properties. In previous work (Falisse et al. (2017)), we underlined the494
importance of incorporating experimental data from multiple functional movements when calibrating495
muscle-tendon parameters in order to obtain valid parameter estimates (i.e., representative of the subject).496
In this study, the available experimental data was limited to walking trials and passive stretches from one497
leg. Hence, it is likely that some parameters were calibrated to fit the experimental data but did not truly498
reflect the force-generating capacities of the child. When used in conditions different from the experiments,499
these parameters may hence result in non-representative force predictions. A challenge for upcoming500
research will be the design of experimental protocols to collect experimental data that contains sufficient501
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information for providing valid muscle-tendon parameter estimates while accounting for physiological502
limitations of impaired individuals and practical limitations of clinical contexts. It is also worth noting503
that our parameter estimation procedure only adjusted optimal fiber lengths and tendon slack lengths,504
whereas other parameters may need to be personalized, such as maximal isometric muscle forces, tendon505
compliance, or maximal muscle contraction velocities. The muscle force-length-velocity relationships506
might also be altered in children with CP due to their longer sarcomere lengths. Overall, further tuning507
of the neuro-musculoskeletal model and validation of the simulation framework outcome with a large508
population are necessary for augmenting the representativeness of the simulations.509

CONCLUSION

This study suggests that predictive simulations are able to identify the main treatment targets for specific510
patients. In particular, our results showed that, in the presence of aberrant musculoskeletal geometries,511
altered muscle-tendon properties rather than reduced neuromuscular control complexity and spasticity were512
the primary driver of the impaired crouch gait pattern observed for the child with CP of this study. Based513
on this observation, we would recommend altered muscle-tendon properties to be the primary target of514
clinical interventions aiming to restore a more upright posture, which is in line with the surgical report515
and one-year post-operative gait analysis. Validation of our simulation workflow through analysis of many516
more cases is, however, necessary to build confidence in the simulation outcomes. Overall, these results517
open the door for predicting the functional outcome of treatments on walking performance by allowing in518
silico assessment of the effect of changes in the neuro-musculoskeletal system on the gait pattern.519
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