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Abstract 24 

Background: Factors that influence vaginal microbiota composition, including its 25 

source, are not well understood. To determine if vaginal microbiota transmission from 26 

mother to daughter at birth influences the human vaginal microbiota composition in 27 

adolescence, we investigated the relationship between the vaginal microbiota of 13 28 

mother/daughter pairs and the daughter’s birth mode.  29 

Results: Based on analysis of bacterial 16S rRNA gene sequences, the vaginal 30 

microbiotas of mother/daughter pairs were more similar to each other if the daughter 31 

was born by vaginal delivery rather than by C-section. Additionally, genome sequences 32 

from an important member of the vaginal microbiota, Lactobacillus crispatus, isolated 33 

from one mother/daughter pair in which the daughter was born by vaginal delivery, were 34 

highly similar.  35 

Conclusions: Both community-level analysis and isolate genome sequence analysis 36 

are consistent with birth-mode dependent transmission and persistence of at least some 37 

members of the vaginal microbiota. 38 

Importance 39 

The composition of the human vaginal microbiota is related to many aspects of health 40 

from infection susceptibility to preterm birth. Our study provides evidence that 41 

transmission of vaginal bacteria from mother to daughter at birth may be an important 42 

factor influencing vaginal microbiota composition into adolescence. 43 

Keywords 44 

Vaginal microbiota, transmission, birth mode, 16S rRNA gene sequences, Lactobacillus 45 

crispatus genomics 46 
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Background 47 

The vaginal microbiota plays an important role in human health.  The community 48 

structure of the vaginal microbiota is linked to infection susceptibility and preterm birth 49 

(1-6). The composition of the vaginal microbiota is distinct from other body sites and 50 

contains types of bacteria that seem specific to the vagina (7). For example, the vaginal 51 

microbiota is often dominated by specific types of Lactobacillus, most commonly L. 52 

crispatus and L. iners (8, 9). Vaginal Lactobacillus sp. are thought to maintain 53 

dominance and inhibit colonization of other microbes through lactic acid production (10, 54 

11).  55 

Despite strong evidence that the vaginal microbiota can have significant impacts 56 

on health, the factors that influence the composition of the vaginal microbiota are not 57 

well understood. It is not known how this vagina-specific community is maintained from 58 

generation to generation. One possibility is that at least some members of the vaginal 59 

microbiota are transmitted from mother to daughter at birth and maintained in daughters 60 

through adolescence. 61 

In healthy babies, the first large, direct exposure to microbes occurs at birth. Birth 62 

mode has been shown to influence the composition of the newborn microbiota (gut, 63 

skin, mouth), likely due to different bacterial exposure in vaginal delivery and C-sections 64 

(12, 13). However, the effect of birth mode on the composition of the vaginal microbiota 65 

has not been investigated. In this study, we compared the vaginal microbiotas of 13 66 

mother/daughter pairs and investigated the effect of birth mode on mother/daughter 67 

microbiota similarity. We also compared the genome sequences from Lactobacillus 68 

crispatus isolates from one mother/daughter pair. We hypothesized that the vaginal 69 
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microbiota of mothers and daughters would be more similar if the daughter was born by 70 

vaginal delivery than by C-section.  71 

Methods  72 

Subject recruitment and sample collection 73 

 Mother/daughter pairs were recruited from the Pediatric and Adolescent 74 

Gynecology Clinic at the University of Michigan Health System in 2014 and 2015. 75 

Exclusions were pregnancy and age of less than 15 years. Written, informed consent 76 

was obtained and participants completed a baseline survey on their demographics and 77 

pertinent gynecologic and medical history. Vaginal samples were self-collected using a 78 

dual-headed swab (Starplex Scientific, S09D) at baseline and then weekly for 4 weeks.  79 

The baseline swab was obtained in the clinic, with immediate storage on ice and 80 

transfer to -80°C within a few hours. The subsequent swabs were returned via mail at 81 

ambient temperature. After the fifth swab was received and a completion incentive was 82 

mailed to the subject, the link between samples and subject names was destroyed, 83 

irreversibly de-identifying all samples. The study was approved by the University of 84 

Michigan IRB (HUM00086661). 85 

DNA isolation and 16S rRNA gene sequencing 86 

 One of the swab heads from each sample was clipped directly into the bead plate 87 

of a PowerMag Microbiome RNA/DNA Isolation Kit (Mo Bio Laboratories, Inc.). DNA 88 

isolation was performed according the manufacturer’s instructions using an epMotion 89 

5075 liquid handling system. The V4 region of the 16S rRNA gene was amplified from 1 90 

or 7μl DNA and sequenced with a MiSeq (Illumina, San Diego, CA) using the 500 cycle 91 

MiSeq Reagent Kit, v. 2 (Illumina, catalog No. MS-102–2003) by the University of 92 
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Michigan Microbial Systems Molecular Biology Laboratory as described previously  93 

(14). The other swab head was used for cultivation or stored at -80°C. 94 

Bacterial community analysis 95 

The 16S rRNA gene sequences were processed using mothur v.1.36.1 and 96 

v.1.39.5 following the mothur MiSeq SOP (15, 16). Details of the processing steps are 97 

available in mother.daughter_mothur.batch 98 

(https://github.com/cbassis/MotherDaughter_Vaginal_Microbiota.study). After sequence 99 

processing and alignment to the SILVA reference alignment (Release 102) (17), 100 

sequences were binned into operational taxonomic units (OTUs) based on 97% 101 

sequence similarity using the average neighbor method (18, 19). Samples with fewer 102 

than 1000 sequences were excluded from the analysis. OTUs were classified to the 103 

genus level within mothur using a modified version of the Ribosomal Database Project 104 

(RDP) training set (version 9) (20, 21). To further classify the Lactobacillus OTUs, 105 

representative sequences were analyzed using standard nucleotide BLAST for highly 106 

similar sequences (megablast) on the National Center for Biotechnology Information 107 

(NCBI) BLAST web page (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (22). OTU relative 108 

abundances were calculated and plotted in a heatmap. To compare bacterial 109 

communities between pairs, within pairs and within subjects, we calculated θYC 110 

distances (a metric that takes relative abundances of both shared and non-shared 111 

OTUs into account) (23). A Kruskal-Wallis test with a Dunn’s posttest or a Wilcoxon 112 

(Mann-Whitney) test were used to determine if differences in θYC distances were 113 

statistically significant. Principal coordinates analysis (PCoA) was used to visualize the 114 

θYC distances between samples. R Studio (Version 1.1.456) with R (Version 3.5.1) was 115 
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used for the statistical tests and plotting the heat map, box and whisker plots, and the 116 

ordination using the code available: 117 

https://github.com/cbassis/MotherDaughter_Vaginal_Microbiota.study/tree/master/R_co118 

de. Adobe Illustrator (CS6) was used for labeling and formatting figures. 119 

Lactobacillus crispatus isolation 120 

 For pair I, the second swab head from the freshly collected baseline vaginal 121 

sample was swabbed onto an MRS agar plate and incubated in an anaerobic chamber 122 

(Coy Laboratory Products) at 37°C. Individual isolates were identified via Sanger 123 

sequencing of the near-full length 16S rRNA gene.  124 

DNA isolation and genome sequencing 125 

 Three Lactobacillus crispatus isolates from pair I, 2 from the mother and 1 from 126 

the daughter, were grown overnight in 1 ml liquid MRS in an anaerobic chamber (Coy 127 

Laboratory Products) at 37°C. Genomic DNA was isolated from the liquid cultures using 128 

the PowerMicrobiome™ RNA Isolation Kit (Mo Bio Laboratories, Inc.) without the DNase 129 

treatment. Genome sequencing was performed by the Microbial Systems Molecular 130 

Biology Laboratory at the University of Michigan using an Illumina Nextera™ sequencing 131 

kit and a MiSeq (Illumina, San Diego, CA). 132 

Genome sequence analysis 133 

Phylogenetic relationships between L. crispatus isolates from mother/daughter pair I 134 

and all L. crispatus strains with genome sequences available as fastq files from NCBI 135 

on December 27th, 2018 were determined based on recombination-filtered single 136 

nucleotide polymorphisms (SNPs). Quality of reads was assessed with FastQC v0.11.3 137 

(24), and Trimmomatic 0.36 (25) was used for trimming adapter sequences and low-138 
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quality bases.  Variants were identified by (i) mapping filtered reads to reference 139 

genome sequence L. crispatus ST1 (SAMEA2272191) using the Burrows-Wheeler 140 

short-read aligner (bwa-0.7.17) (26, 27), (ii) discarding polymerase chain reaction 141 

duplicates with Picard (picard-tools-2.5.0) (28), and (iii) calling variants with SAMtools 142 

(samtools-1.2) and bcftools (29). Variants were filtered from raw results using GATK ’s 143 

(GenomeAnalysisTK-3.3-0) VariantFiltration (QUAL, >100; MQ, >50; >=10 reads 144 

supporting variant; and FQ, <0.025) (30). In addition, a custom python script was used 145 

to filter out single-nucleotide variants that were (i) <5 base pairs (bp) in proximity to 146 

indels, (ii) fell under Phage and Repeat region of the reference genome (identified using 147 

Phaster (31) and Nucmer (MUMmer3.23) (32)), (iii) not present in the core genome, or 148 

(iv) in a recombinant region identified by Gubbins 2.3.1 (33). A maximum likelihood tree 149 

was constructed in RAxML 8.2.8 (34) using a general-time reversible model of 150 

sequence evolution. Bootstrap analysis was performed with the number of bootstrap 151 

replicates determined using the bootstrap convergence test and the autoMRE 152 

convergence criteria (-N autoMRE). Bootstrap support values were overlaid on the best 153 

scoring tree identified during rapid bootstrap analysis (-f a). The final maximum 154 

likelihood tree was plotted and pairwise SNP distances were calculated in R Studio 155 

(Version 1.1.463) with R (Version 3.5.3): 156 

https://github.com/cbassis/MotherDaughter_Vaginal_Microbiota.study/blob/master/R_co157 

de/Mother_Daughter_Figure_3_Genome_Tree_and_Genome_Analysis.Rmd. Adobe 158 

Illustrator (CS6) was used for labeling and formatting the figure. 159 

Calculation of doubling time estimate for vaginal L. crispatus in vivo 160 
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 We used the number of SNPs between the pair I mother and daughter L. 161 

crispatus isolates to estimate the doubling time of vaginal L. crispatus in vivo if all SNPs 162 

in the recombination-filtered core genome were due to mutations acquired since the 163 

daughter’s birth: 164 

Doubling time=(mutation rate)(daughter’s age)(genome length)/(# of mutations) 165 

The mutation rate of L. crispatus is unknown, so for this estimate we used the published 166 

mutation rate of another Lactobacillus, L. casei Zhang, in vitro, without antibiotics 167 

(1.0x10-9 bp/generation) (35). The pair I daughter’s age in hours was: 175,200 hours 168 

=(20 years)(365 days/year)(24 hour/day). The average length of the recombination-169 

filtered core genome (940,943 bp) was used for genome length. We assumed that the 170 

isolates arose from a common ancestor and that all mutations were non-convergent, so 171 

the number of mutations acquired by each isolate would equal the number of SNPs 172 

between the mother’s isolate and the daughter’s isolate divided by 2. We also estimated 173 

the number of mutations acquired per isolate core genome per year as (# of 174 

mutations)/(daughter’s age)=(# of SNPs)/2(daughter’s age). 175 

 176 

Results 177 

Subject characteristics and sequencing results 178 

A total of 107 self-collected, vaginal swab samples were obtained from 26 179 

subjects (13 mother/daughter pairs) (Table 1). Each subject returned 1-5 weekly 180 

samples (median=5 samples/subject, IQR=1). After sequence processing and exclusion 181 

of samples with fewer than 1000 sequences, a total of 2,336,437 high quality bacterial 182 

16S rRNA gene sequences from 101 samples were analyzed with an average of 23,133 183 
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+/- 10,212 sequences per sample. 184 

 185 

An individual’s vaginal microbiota is relatively stable over 4 weeks 186 

During the sampling period, the vaginal microbiota of each subject was relatively 187 

stable. The high stability of the vaginal microbiota is apparent from the consistent within 188 

subject community composition (Figure 1). For example, high relative abundances of 189 

OTU1 (L. crispatus) and/or OTU2 (L. iners) persisted from week to week in many 190 

subjects. Additionally, average θYC distances were significantly lower within subjects 191 

than between subjects (Figure 2A) and samples clustered by subject in a PCoA based 192 

on θYC distances (Supplemental Figure 1).  193 

Daughters born via vaginal delivery have greater microbiota similarity with their 194 

Table 1. Subject Characteristics   

  Mother (n=13) Daughter  (n=13) 

  

Daughter's birth 

mode: Vaginal 

(n=10) 

Daughter's birth 

mode: C-section 

(n=3) 

Daughter's birth 

mode: Vaginal 

(n=10) 

Daughter's birth 

mode: C-section 

(n=3) 

Age, mean ± SD, 

years 44.8±5.6 54±2.4 17.1±2.0 18.7±1.9 

Race: White (vs. 

Black, Asian, 

Hispanic, other) 90% (n=9) 100% (n=3) 90% (n=9) 100% (n=3) 

Subject Birth 

mode: Vaginal (vs. 

C-section) 70% (n=7) 100% (n=3) 100% (n=10) 0% (n=0) 

Reproductive 

stage: 

Premenarchal 0% (n=0) 0% (n=0) 10% (n=1) 0% (n=0) 

Reproductive 

stage: 

Reproductive 70% (n=7) 33% (n=1) 90% (n=9) 100% (n=3) 

Reproductive 

stage: 

Postmenopausal 30% (n=3) 67% (n=2) 0% (n=0) 0% (n=0) 
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mothers than those born via C-section 195 

To determine if mothers and their daughters had more similar vaginal microbiotas 196 

than unrelated subjects, we compared the average θYC distances between all unrelated 197 

subjects (between pairs) and the average θYC distances between mothers and their own 198 

daughters (within pairs) (Figure 2A). There was a trend toward greater similarity (lower 199 

θYC distances) within all mother/daughter pairs than between subjects in different 200 

mother/daughter pairs. To determine if birth mode was related to vaginal microbiota 201 

similarity within mother/daughter pairs, we compared the average within pair θYC 202 

distances for pairs in which the daughter was born by vaginal delivery and by C-section 203 

(Figure 2B). The average within pair θYC distances were significantly lower for pairs in 204 

which the daughter was born by vaginal delivery compared to C-section (Fig. 2B).  205 

Therefore, the vaginal microbiotas of daughters born by vaginal delivery were 206 

significantly more similar to their mothers’ than the daughters born by C-section were to 207 

their mothers’ (Fig. 2B). 208 

Lactobacillus crispatus isolates from mother/daughter pair I have highly similar 209 

genome sequences 210 

 The birth mode-dependent similarity of the vaginal microbiotas of mothers and 211 

their daughters suggested that vaginal bacteria could be transmitted between 212 

generations at birth and persist into adolescence. However, it is possible that genetic or 213 

environmental factors shared by a mother and her daughter lead to acquisition of similar 214 

bacteria later, resulting in the de novo establishment of similar vaginal communities. To 215 

investigate the possibility of direct transmission and persistence of one member of the 216 

vaginal microbiota, we generated draft genome sequences of Lactobacillus crispatus 217 
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strains isolated from the freshly collected second swab head of mother/daughter pair I. 218 

The draft genome sequences of these isolates were compared with publicly available L. 219 

crispatus genome sequences by constructing a maximum likelihood phylogenetic tree 220 

based on a recombination-filtered core genome alignment. Interestingly, the three 221 

strains of L. crispatus from mother/daughter pair I, UMP1M1, UMP1M2 and UMP1D1, 222 

were more similar to each other than to any of the other strains, including others 223 

isolated from the female reproductive tract (Fig.3). 224 

 We also calculated the number of SNPs between our isolates using the 225 

recombination-filtered core genome alignment. There were 11 recombination-filtered 226 

SNPs between the 2 isolates from the mother (UMP1M1 and UMP1M2) and 25 and 16 227 

recombination-filtered SNPs between the daughter’s isolate (UMP1D1) and the 2 228 

isolates from the mother (UMP1M1 and UMP1M2, respectively).  229 

Estimate of in vivo doubling time and mutation rate for vaginal L. crispatus 230 

 To further investigate the plausibility that the L. crispatus strain isolated from 231 

daughter I descended from a strain transmitted from her mother at birth, we estimated 232 

the doubling time that would allow our isolates to acquire the observed number of SNPs 233 

over 20 years. Based on the 25 SNPs between UMP1M1 and UMP1D1, the estimated 234 

doubling time for L. crispatus in vivo would be 13.2 hours. Based on the 16 SNPs 235 

between UMP1M2 and UMP1D1, the estimated doubling time would be 20.6 hours. We 236 

also estimated the in vivo mutation rate of the core genome of the L. crispatus isolates 237 

to be 0.4-0.6 mutations per year.  238 

Discussion  239 

Our study provides preliminary evidence that the vaginal microbiota may be 240 
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vertically transmitted from mother to daughter at birth via vaginal delivery and persists 241 

into adolescence. Because the daughters in our study were 15-21 years old, both 242 

transmission and persistence were required to observe evidence of vertical 243 

transmission. The first piece of evidence supporting vertical transmission is that the 244 

vaginal microbiotas of mothers and their adolescent daughters were more similar if their 245 

daughter was born by vaginal delivery rather than C-section. The second piece of 246 

evidence supporting vertical transmission and persistence is that an important member 247 

of the vaginal microbiota, L. crispatus, isolated from a vaginally-born, 20-year-old 248 

daughter and her mother (pair I) had highly similar genome sequences.  249 

Other studies have compared the vaginal microbiotas of mothers and daughters 250 

without analyzing the effect of birth mode (36-38). One study found greater similarity 251 

between the vaginal microbiotas of mothers and daughters than between unrelated 252 

subjects (38). This was similar to the trend we observed toward greater community 253 

similarity within mother/daughter pairs, regardless of birth mode, than between 254 

unrelated subjects in different mother/daughter pairs (Figure 2A). Notable similarity 255 

between the vaginal microbiota of mothers and daughters was not detected in the other 256 

studies (36, 37). If many of the daughters in the other studies were born by C-section 257 

then high similarity between mothers and daughters would not be expected. With C- 258 

section rates of ~30% in the United States (study site for (37)) and ~36% in South 259 

Korea (study site for (36)) this is a possibility (39, 40). Additionally, our study focused on 260 

adolescent daughters (age 15-21) while the other studies focused on either younger or 261 

older daughters. Since reproductive stage seems to influence the structure of the 262 

vaginal microbiota (41), differences in reproductive stage may contribute to differences 263 
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in vaginal community composition between mothers and daughters. Finally, we used a 264 

different method of comparing the vaginal microbiotas of mothers and daughters. We 265 

calculated distances between mothers and daughter using θYC, a metric that accounts 266 

for the relative abundances of shared and non-shared OTUs, while the other studies 267 

were based on community types (37) and Unifrac (36). Although an overall community 268 

similarity was not observed in these studies, specific community members 269 

(Lactobacillus and Prevotella) were identified as most heritable in one study (36). 270 

Based on the number of SNPs observed between the mother and daughter L. 271 

crispatus isolates and published mutations rates for L. casei Zhang (35), we estimated 272 

that L. crispatus would have an in vivo doubling time of 13.2-20.6 hours, depending on 273 

the specific isolates compared. The doubling time estimates of 13.2 hours and 274 

20.6 hours for L. crispatus in vivo are within the range estimated for other bacteria in 275 

their natural environments, including Escherichia coli (15 hours) and Salmonella 276 

enterica (25 hours) (42). These doubling times are faster than the 4.1-5.6 days doubling 277 

times measured for L. casei Shirota in mouse intestines, where its growth rate was 278 

insufficient to maintain colonization (43). Although the actual growth and mutation rates 279 

of L. crispatus in the human vagina have not been measured, we estimated reasonable 280 

in vivo doubling times for vaginal L. crispatus based on the observed number of SNPs 281 

between L. crispatus isolates from mother/daughter pair I, the age of daughter I and L. 282 

casei Zhang mutation rates. Considering the uncertainty in the estimates, transmission 283 

of L. crispatus from mother to daughter at birth followed by the accumulation of 284 

independent mutations during 20 years of persistence in the mother and daughter is a 285 

plausible explanation for the observed recombination-filtered SNPs. Future studies 286 
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comparing genomes of L. crispatus isolates from more mother/daughter pairs with a 287 

variety of daughter ages are needed.  288 

The 2 L. crispatus isolates from the mother had highly similar genomes, differing 289 

by only 11 recombination-filtered SNPs. A previous study also observed high similarity 290 

between the genomes of multiple vaginal L. crispatus isolates from one individual, 291 

noting that they were indistinguishable (44). Future investigations of L. crispatus 292 

genomic variation within an individual may yield further insight on colonization and 293 

dynamics of the vaginal microbiota. 294 

Consistent with a previous study, L. crispatus isolates from the human vagina 295 

were phylogenetically intermixed with isolates from the human urinary tract, including 296 

highly similar vaginal (ERS1867668 (SAMEA104208650)) and bladder (ERS1867667 297 

(SAMEA104208649)) isolates from the same subject (Figure 3) (45). 298 

The health implications of vertical transmission of the vaginal microbiota are 299 

unknown and were not addressed in this study. However, because vertical transmission 300 

seems to be an important factor in determining the composition of the vaginal 301 

microbiota there may be important consequences. Vertical transmission of the vaginal 302 

microbiota may be one mechanism for maintaining human microbiota over generations 303 

via a consistent and specific seeding of the newborn microbiota. Delivery mode is an 304 

important factor in determining the early composition of the gut microbiota (46, 47) and 305 

is a risk factor for development of immune-related disorders later in life (48). This 306 

suggests an important role for the mother’s vaginal microbiota in seeding the infant and 307 

setting the stage for development of the gut microbiota. Therefore, maintenance of the 308 

vaginal microbiota between generations may be critical for gut microbiota development 309 
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in each generation.  310 

Additionally, the vaginal microbiota plays an important if not well understood role 311 

in reproductive health, with associations between vaginal microbiota composition and 312 

infection susceptibility, BV and preterm birth (1-6). Evidence from this study suggests 313 

that transmission of microbes from mother to daughter at birth may influence the 314 

composition of the daughter’s microbiota later in life and may contribute to the 315 

maintenance of specific members of the human vaginal microbiota over generations.  316 

This study provides tantalizing evidence of vertical transmission of the vaginal 317 

microbiota. However, this was a small study with only 13 mother/daughter pairs (92% 318 

white) and 3/13 daughters born by C-section. Mothers with daughters born by C-section 319 

were on average older than mothers with daughters born by vaginal delivery (Table 1, 320 

Supplemental Table 1) and two of the three mothers with daughters born by C-section 321 

were post-menopausal which could also contribute to a greater difference in 322 

mother/daughter vaginal microbiotas (41). Beyond birth mode and reproductive status, 323 

other factors including genetics and shared environment could contribute to 324 

mother/daughter vaginal microbiota similarity. Of the eleven pairs asked about 325 

cohabitation, only one pair (IV) reported that they didn’t currently live together full or 326 

part-time (Supplemental Table 1).  Therefore, the influence of cohabitation on vaginal 327 

microbiota similarity could not be addressed in our study. Genomic analysis of isolates 328 

was limited to one member of the vaginal microbiota from 1 mother/daughter pair. 329 

Future studies in larger populations, including more racially diverse subjects, more 330 

daughters born by C-section and analysis of more isolate genome sequences or 331 

metagenomes are required to validate these findings.  332 
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Figures 333 

Figure 1. Vaginal bacterial community compositions of mother/daughter pairs. 334 

Relative abundances of OTUs in weekly vaginal swab samples from 13 335 

mother/daughter pairs. Mother/daughter pairs were ordered by average within pair θYC 336 

distances, with the most similar pair (I) on top and the least similar pair (XIII) on the 337 

bottom. OTUs with a minimum of 200 sequences in the dataset overall and present at a 338 

relative abundance greater than 2% in at least 1 sample were included in the heat map. 339 

Figure 2. Average distances between vaginal bacterial communities. A. Average 340 

θYC distances between subjects from different mother/daughter pairs (between pairs), 341 

between subjects within a mother/daughter pair (within pair) and between samples from 342 

the same subject (within subject). P-values for comparisons that were significantly 343 

different by Dunn’s posttest are shown (Kruskal-Wallis p-value= 8.154e-10). B. Average 344 

θYC distances between subjects within a mother/daughter pair for daughters born by 345 

vaginal birth and by C-section. Wilcoxon (Mann-Whitney) test p-value is shown. In the 346 

box and whiskers plots, the median θYC distance is indicated by a line, values within the 347 

first to the third quartiles are inside the box and the whiskers extend to the smallest and 348 

largest values within 1.5x the interquartile range.  349 

Figure 3. Phylogenetic relationships between L. crispatus strains. Maximum 350 

likelihood tree based on recombination-filtered SNP distances between L. crispatus 351 

genome sequences of isolates from mother/daughter pair I and other L. crispatus 352 

strains with publicly available genomes. Tip labels indicate L. crispatus strain names 353 

and NCBI BioSample identifiers. Bootstrap values were greater than or equal to 0.65.  354 

Supplemental Figure 1. Principal coordinates analysis (PCoA) of vaginal 355 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 26, 2022. ; https://doi.org/10.1101/768598doi: bioRxiv preprint 

https://doi.org/10.1101/768598


microbiota from 13 mother/daughter pairs. The θYC distances between 101 vaginal 356 

microbiota samples are represented by PCoA. Samples from daughters are represented 357 

by triangles and samples from mothers by circles. Each mother/daughter pair is 358 

represented by a unique color. Biplot arrows represent the 3 OTUs most correlated with 359 

position on the PCoA plot. 360 

List of abbreviations 361 

C-section: Cesarean section 362 

rRNA: ribosomal RNA 363 

OTU: operational taxonomic unit  364 

SNPs: single nucleotide polymorphisms  365 

PCoA: principal coordinates analysis 366 
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