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Abstract
Bayesian networks (BNs) provide a probabilistic, graphical framework for modeling high-
dimensional joint distributions with complex dependence structures. BNs can be used to infer 
complex biological networks using heterogeneous data from different sources with missing 
values. Despite extensive studies in the past, network structure learning from data is still a 
challenging open question in BN research. In this study, we present a sequential Monte Carlo 
(SMC) based three-stage approach, GRowth-based Approach with Staged Pruning (GRASP). A 
double filtering strategy was first used for discovering the overall skeleton of the target BN. To 
search for the optimal network structures we designed an adaptive SMC (adSMC) algorithm to 
increase the diversity of sampled networks which were further improved by a new stage to 
reclaim edges missed in the skeleton discovery step. GRASP gave very satisfactory results when 
tested on benchmark networks. Finally, BN structure learning using multiple types of genomics 
data illustrates GRASP’s potential in discovering novel biological relationships in integrative 
genomic studies.

Keywords:  Bayesian Network structure learning, sequential Monte Carlo, adaptive sequential 
Monte Carlo, GRASP for BN structure learning, biological network inference, gene regulatory 
network inference.

1.  Introduction
A Bayesian network (BN) is a graphical representation of the joint probability distribution of a 

set of variables (called nodes in the graph). BNs have been widely used in various fields, such as 
computational biology (Friedman, Linial, Nachman and Pe'er 2000, Raval, Ghahramani and Wild 
2002, Vignes, et al. 2011), document classification (Denoyer and Gallinari 2004), and decision 
support system (Kristensen and Rasmussen 2002). The availability of large volumes of genomics 
data have made it possible to learn the complex biological networks governing the interactions 
of various biomolecules. BNs are powerful tools for learning biological networks (Yu, Smith, 
Wang, Hartemink and Jarvis 2004) and it offers several advantages compared to other methods. 
First, BNs learn causal relationships, which will help researchers understand the regulatory 
relationships among different bio-entities; Second, BNs provide a probabilistic framework, 
which can be easily interpreted and integrated with other analysis; Third, BNs can easily 
integrate heterogeneous data of different types or from different sources; Fourth, BNs can 
conveniently deal with missing values in the data. 

BN encodes conditional dependencies and independencies (CDIs) among variables into a 
directed acyclic graph (DAG). And this DAG is called the structure of a BN. When the structure 
of a BN is given, the parameters that quantify the conditional dependencies can be estimated 
from the observed data. If neither the parameters nor structures are given, they can be inferred 
from observed data. In this study, we will be focusing on the structure estimation (or learning) 
of a BN.
    The technical difficulties of structure learning lie on the fact that the DAG space is of super-
exponential cardinality and is quite rugged for most commonly used score functions. Estimating 
the global optimal structure given an observed dataset exactly is an NP-hard problem (Cooper 
1990, Koller and Friedman 2009). There have been many inexact and heuristic methods 
proposed in the past two decades. The strategy of these methods can be classified mainly into 
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three categories: constraint based, score based, and hybrid, which combines both constraint 
and score based approaches. 
    A constraint based method utilizes a suitable conditional dependency test to identify the 
conditional dependencies and independencies among all nodes (Campos 1998, de Campos and 
Huete 2000, Margaritis 2003, Tsamardinos, Aliferis and Statnikov 2003, Yaramakala and 
Margaritis 2005, Aliferis, Statnikov, Tsamardinos, Mani and Koutsoukos 2010). A major 
disadvantage of such a method is that a large number of tests have to be conducted; therefore, 
an appropriate method to adjust the p-values obtained from all the tests is desired, which 
reduces the statistical power of detecting conditional dependencies. The fact that not all the tests are 
mutually independent makes the p-values adjustment even more difficult. Another issue is that 
the goodness-of-fit of the obtained network has not been considered; therefore, the estimated 
BN may not fit the observed data well.
    A score based method uses a score function to evaluate the structures of BNs on training 
data (Larrañaga, Poza, Yurramendi, Murga and Kuijpers 1996, Friedman, Nachman and Peér 
1999, Gámez, Mateo and Puerta 2011). A searching algorithm is employed to search the best 
BN (with the optimal score) with respect to certain score function. Various Bayesian and non-
Bayesian score functions have been proposed in the past. As exact search is not feasible, over 
the past two decades, various heuristic searching methods, such as Hill climbing, tabu search, 
and simulated annealing were proposed to search for the optimal BN structures. The problem 
with score based method is that the search space is often very large and complicated; therefore, 
the searching algorithm either will take too much time to find the optimum or be trapped in 
local optima. Many efforts have been made to overcome this challenging issue, such as 
searching using an ordered DAG space to reduce the search space (Teyssier and Koller 2012). In 
the ordered DAG space, the nodes are given an order such that edges will only be searched 
from higher order to lower order. The practical issue is that determining the order and finding 
the optimal structure is equally difficult. More recently, various penalty based methods were 
proposed to estimate the structures for Gaussian BN (GBN) (Fu and Zhou 2013, Huang, et al. 
2013, Xiang and Kim 2013). These methods have been shown to be quite efficient for GBN 
structure learning and are able to handle structure learning and parameter estimation 
simultaneously; however, these methods are quite restrictive: the joint distributions must 
approximately follow a multivariate Gaussian distribution and dependencies among nodes are 
assumed to be linear.
    Hybrid methods which combine a constraint method and a score based method were 
proposed to combine the advantages of both methods (Tsamardinos, Brown and Aliferis 2006). 
Such methods often contain two stages: first pruning the search space by constraint based 
methods, then searching using a score function over the much smaller pruned space. In the 
pruning stage, the goal is to identify the so-called skeleton of the network, which is the 
undirected graph of the target DAG. Later in the second stage, the direction of each edge will 
be determined by optimizing the score function. In a hybrid method, it is important that the 
first stage identifies as many true undirected edges as possible, since only the identified 
undirected edges will be considered in the second stage. 

In this study, we developed a novel BN structure learning method, named GRASP (GRowth-
based Approach with Staged Pruning). It is a three-stage method: in stage one, we used a 
double filtering method to discover a cover of the true skeleton. Unlike the traditional 
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constraint methods, which try to obtain the true skeleton exactly, our method only estimates a 
super set of the undirected edges and it only conditions on at most one node other than the 
pair of nodes being tested, which dramatically reduces the number of observations needed to 
make the test results robust. In stage two, we designed an adaptive sequential Monte Carlo 
(adSMC) approach to search for the optimal BN structure based on the constructed skeleton by 
optimizing a score function. SMC has been successfully adopted to solve optimization problems 
in the past (Grassberger 1997, Liu and Chen 1998, Zhang and Liu 2002, Zhang, Lin, Chen, Liang 
and Liu 2007, Liu 2008, Zhang, et al. 2009). Compared to other search methods, SMC is less 
likely to be trapped in local optima (Liu, et al. 1998, Liu 2008). Since in most SMC simulation, 
multiple independent instances (in our study, one instance is a fully grown BN starting from a 
single node) need to be generated, another advantage of SMC is that it can be run in parallel for 
each independent SMC instance, making it suitable for distributed or GPU-based 
implementations. After these two stages, we enhanced the traditional two-stage approach by 
adding a third stage which adds possible missed edges (not necessarily true edges) back into 
the network using Random Order Hill Climbing (ROHC). 

Using several datasets, including simulated data, benchmark BN networks and real biological 
data, we show that GRASP out performed other BN structure learning methods on all these 
datasets. Specifically, using a heterogeneous genomic dataset containing RNA-seq, protein 
expressions, DNA methylations and miRNA-seq data, we applied GRASP to learn an integrated 
network to shed light on the function of an interesting long non-coding RNA discovered in a 
previous study. It demonstrated the power of GRASP in discovering novel biological 
relationships in integrative genomics studies. 

2. Method
2.1. Preliminary
    Let us denote the set of  variables (nodes) as , and the set of edges as 𝑝 𝑿 = {𝑋1,…,𝑋𝑝} 𝐸 = {𝑋𝑖

 where  are directed edges in the graph.  is called a parent of  and  a child of →𝑋𝑗} 𝑋𝑖→𝑋𝑗 𝑋𝑖 𝑋𝑗 𝑋𝑗
. Thus a graph can be represented as  (Darwiche 2009).𝑋𝑖 𝐺(𝑿,𝑬)

Definition 1: For a set of nodes  if the edges  , then we 𝑋𝑖1,…,𝑋𝑖𝑘 ∈ 𝑿 𝑋𝑖1→𝑋𝑖2→…→ 𝑋𝑖𝑘 ‒ 1→𝑋𝑖𝑘 ∈ 𝑬
say  forms a directed path between  and . If , then this directed path 𝑋𝑖1,…,𝑋𝑖𝑘 ∈ 𝑿 𝑋𝑖1 𝑋𝑖𝑘 𝑋𝑖1 = 𝑋𝑖𝑘

is called a cycle. 
Definition 2: A directed acyclic graph (DAG) is a graph  such that all edges in E are 𝐺(𝑋,𝐸)
directed and there is no cycles in G. 
    We denote P(X) as a joint probability distribution of the random variables in X, and  𝑃𝑎𝐺(𝑋𝑖)
as the set of parents of  given DAG G(X,E). 𝑋𝑖 ∈ 𝑿
Property 1: P(X) can be factorized over some G as 

(1)𝑃(𝑿) = ∏𝑝
𝑖 = 1𝑃(𝑋𝑖|𝑃𝑎𝐺(𝑋𝑖))

    Now, we can define Bayesian network (BN) as follows:
Definition 3: The pair (G,P) is defined as a Bayesian network where the joint probability 
distribution P factorizes over G. 
Remark 1: The factorization allowed the network to be locally learned, e.g. each  𝑃(𝑋𝑖|𝑃𝑎𝐺(𝑋𝑖))
can be learned independently, which saves a lot of computational time. 
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    The factorization can usually be done in multiple different ways, that is, for some joint 
probability function, P, there exists at least two DAGs  and  that P factorizes over both  𝐺1 𝐺2 𝐺1
and . 𝐺2
Definition 4: Q(P) defines an equivalent class of P, containing all possible DAGs, which P can 
factorize over.
    In this work, we focus on estimating any  instead of estimating every DAGs in . 𝐺 ∈ 𝑸 𝑸
    Now let us define the conditional dependencies and independencies. We denote 𝐼𝑛𝑑𝑃(𝑋𝑖;𝑋𝑗|

 as  and  are conditionally independent given  with respect to P(X), and 𝒁) 𝑋𝑖 𝑋𝑗 𝒁 ⊂ 𝑿 𝐷𝑒𝑝𝑃(𝑋𝑖;𝑋𝑗
 as  and  are conditionally dependent given  with respect to . Here  is a subset of |𝒁) 𝑋𝑖 𝑋𝑗 𝒁 𝑃(𝑿) 𝒁

variables in X. 
Definition 5:

(2)𝐼𝑛𝑑𝑃(𝑋𝑖;𝑋𝑗|𝒁)⇔𝑃(𝑋𝑖;𝑋𝑗│𝒁) = 𝑃(𝑋𝑖│𝒁)𝑃(𝑋𝑗|𝒁)
(3)𝐷𝑒𝑝𝑃(𝑋𝑖;𝑋𝑗|𝒁)⇔𝑃(𝑋𝑖;𝑋𝑗│𝒁) ≠ 𝑃(𝑋𝑖│𝒁)𝑃(𝑋𝑗|𝒁)

    One of the most important assumptions we need to include is the faithfulness (Darwiche 
2009). To define the faithfulness, let us first define trail:  
Definition 6: A set of nodes  forms a trail in the graph  if for every  and 𝑋𝑖1,…,𝑋𝑖𝑘 ∈ 𝑿 𝐺(𝑿,𝑬) 𝑋𝑖𝑗

, either  or .𝑋𝑖𝑗 + 1 𝑋𝑖𝑗→𝑋𝑖𝑗 + 1 ∈ 𝑬 𝑋𝑖𝑗←𝑋𝑖𝑗 + 1 ∈ 𝑬
    Before we can define an active trail, let us first define descendant. If  is a descendant of  𝑋𝑗 𝑋𝑖
then there is a directed path from  and . 𝑋𝑖 𝑋𝑗
Definition 7: Let  be a BN structure, forms a trail in  and . The trail 𝐺(𝑿,𝑬) 𝑋𝑖1,…,𝑋𝑖𝑘 𝐺 𝒁 ⊂ 𝑿 𝑋𝑖1

 is active given  if ,…,𝑋𝑖𝑘 𝒁
    • whenever there is a v-structure: , then  or a descendant of  𝑋𝑖𝑗→𝑋𝑖𝑗 + 1←𝑋𝑖𝑗 + 2 𝑋𝑖𝑗 + 1 ∈ 𝒁 𝑋𝑖𝑗 + 1

in  𝒁
    • other nodes are not in  𝒁

    We need one last definition, d-separation, before we can define faithfulness. 
Definition 8: In graph , for  and , we say  and  are d-separated by , 𝐺(𝑿,𝑬) 𝑋𝑖, 𝑋𝑗 ∈ 𝑿 𝒁 ⊂ 𝑿 𝑋𝑖 𝑋𝑗 𝒁
denoted as , if none of the trails between  and  is active given .  𝐷𝑠𝑒𝑝𝐺(𝑋𝑖;𝑋𝑗|𝒁) 𝑋𝑖 𝑋𝑗 𝒁
    Now let us give the definition on the faithfulness, 
Definition 9:  is faithful to  if for any :𝑃(𝑿) 𝐺(𝑿,𝑬) 𝒁 ∈ 𝑿

(4)𝐼𝑛𝑑𝑃(𝑋𝑖;𝑋𝑗│𝒁)⇔𝐷𝑠𝑒𝑝𝐺(𝑋𝑖;𝑋𝑗|𝒁)
    Under the faithfulness assumption, the terms conditionally independence and d-separation 
are equivalent; thus, they will be used interchangeably through the rest of this article.

2.2. The GRASP method
    GRASP (GRowth-based Approach with Staged Pruning) is a three-stage algorithm for learning 
the structure of a BN. In the pruning stage, we designed a Double Filtering (DF) method to find 
the cover of the skeleton of the BN, where the skeleton of a BN is defined as the BN structure 
after removing the direction of all the edges, and the cover is defined as a superset of 
undirected edges containing all the edges of the skeleton. In the structure discovering stage, we 
developed an adaptive sequential Monte Carlo (adSMC) method to search the BN structure 
with optimal BIC score based on the undirected network found in the first stage. To reclaim the 
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potentially missed edges, we designed a Random Ordered Hill Climbing (ROHC) method as the 
third stage.

2.2.1. First stage: a Double Filtering (DF) method to infer the skeleton
    At the beginning, for any given node, X, any other nodes can be its neighbors (parents or 
children). This first stage is to reduce the sets of neighbors for all the nodes to much smaller 
sets. The first filtering of the double filtering method was done by unconditioned dependency 
tests, filtering out the nodes that were not ancestors or descendants of a given node . The 𝑋𝑖
second filtering was built on dependency tests conditioning on neighboring nodes, further 
filtering out additional nodes as the neighbors (parents or children) of . 𝑋𝑖
    Let  be the set of nodes that have an undirected edge with  (we can use  𝑛𝑏𝑟𝐺(𝑋𝑖) 𝑋𝑖 𝑛𝑏𝑟(𝑋𝑖)
for convenience, if it does not cause ambiguity); the formulation of the DF method follows: 

1. First filtering: conduct an unconditioned dependency test for each pair of nodes (  𝑋𝑖
and , ). We used mutual information test (Campos 2006) in our study, but other 𝑋𝑗 𝑖 ≠ 𝑗
similar tests could be applied as well. Record the resulting p-value as . If , 𝑝𝑖𝑗 𝑝𝑖𝑗 < 𝛼
update  as .  is the predefined significance level for the test. Sort 𝑛𝑏𝑟(𝑋𝑖) 𝑛𝑏𝑟(𝑋𝑖) ∪ {𝑋𝑗} 𝛼
each , where  to obtain 𝑛𝑏𝑟(𝑋𝑖) = {𝑋𝑖1, ..., 𝑋𝑖𝑘} 𝑖1, …, 𝑖𝑘 ∈ {1,2, …, 𝑝} 𝑛𝑏𝑟𝑆(𝑋𝑖) = {𝑋(𝑖1),…, 

, so that  and  is a permutation of . 𝑋(𝑖𝑘)} 𝑝𝑖(𝑖1) ≤ 𝑝𝑖(𝑖2) ≤ ,…, 𝑝𝑖(𝑖𝑘) (𝑖1),…,(𝑖𝑘) 𝑖1,…,𝑖𝑘
2. Second filtering: update  for each  as follows: 𝑛𝑏𝑟𝑆(𝑋𝑖) 𝑖 ∈ {1,2,…, 𝑝}

(a). For node  not marked as removed (starting from the one with the 𝑋(𝑖𝑚) ∈ 𝑛𝑏𝑟𝑆(𝑋𝑖)
smallest p-value), let . For simplicity, define 𝐼𝑛𝑡(𝑋𝑖,𝑋(𝑖𝑚)) = 𝑛𝑏𝑟𝑆(𝑋𝑖) ∩ 𝑛𝑏𝑟𝑆(𝑋(𝑖𝑚)) 𝐼𝑛𝑡

, where .(𝑋𝑖,𝑋(𝑖𝑚))≔{𝑋𝑗1,…, 𝑋𝑗𝐾} 𝑗1,…𝑗𝐾 ∈ {𝑖1,…,𝑖𝑘} ∖ {(𝑖𝑚)}
(b). If , perform conditional dependency test for  and each  given 𝐼𝑛𝑡(𝑋𝑖,𝑋(𝑖𝑚)) ≠ ∅ 𝑋𝑖 𝑋𝑗𝑘

 using mutual information test (Campos 2006). If the p-value , mark 𝑋(𝑖𝑚) > 𝛼 𝑋𝑗𝑘 ∈ 𝑛𝑏𝑟𝑆(
as removed. 𝑋𝑖) 

(c).  If , then move on to  and start over from (a) until every  𝐼𝑛𝑡(𝑋𝑖,𝑋(𝑖𝑚)) = ∅ 𝑋(𝑖𝑚 + 1)
node in  is consumed. 𝑛𝑏𝑟𝑆(𝑋𝑖)
3. Result:  is the final result 𝑛𝑏𝑟𝐶(𝑋𝑖) = { 𝑋𝑗|𝑋𝑗 ∈ 𝑛𝑏𝑟(𝑋𝑖) and 𝑋𝑗 not marked removed} 
of the Double Filtering. This is done for all the node in G. 

Remark 2:  can be written as 𝑛𝑏𝑟𝐶(𝑋𝑖)
𝑛𝑏𝑟𝐶(𝑋𝑖) = { 𝑋𝑗|𝑑𝑒𝑝(𝑋𝑖;𝑋𝑗) and 𝑑𝑒𝑝(𝑋𝑖;𝑋𝑗│𝑋𝑘) for any 𝑘 ≠ 𝑖,𝑗}

     In practice, a symmetric correction may be used, where if but  𝑋𝑗 ∈ 𝑛𝑏𝑟𝐶(𝑋𝑖), 𝑋𝑖 ∉ 𝑛𝑏𝑟𝐶(𝑋𝑗),
then 𝑛𝑏𝑟𝐶(𝑋𝑖) = 𝑛𝑏𝑟𝐶(𝑋𝑖) ∖ {𝑋𝑗}.

Theorem 1: If the statistical power of both the marginal and conditional tests converges to 100% 
as the sample size , the resulted , contains all true neighbors (e.g. 𝑛→∞ 𝑛𝑏𝑟𝐶(𝑋𝑖) 𝑖 ∈ {1,2,…,𝑝} 
true parents and children) of .𝑋𝑖

The proof of this theorem is provided in Supplementary File.
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2.2.2. Second stage: structure searching
On the pruned space, where the sets of possible neighbors for each node have been greatly 

reduced, we designed an adaptive sequential Monte Carlo (adSMC) method to search the 
structure of the Bayesian network ( ). In a traditional sequential Monte Carlo, random 𝐺(𝑿,𝑬)
variable  is decomposed into  where  and , and the X ∈ R𝑑 (x1, x2, …, x𝑲) xi ∈ R

𝑑𝑖 ∑𝐾
𝑖 = 1𝑑𝑖 = 𝑑

order of the variables to be sampled is predefined and fixed throughout the SMC sampling 
process. One usually samples  first, then samples , and so on. However, the sequence from 𝒙𝟏 𝒙𝟐
which each variable is sampled (called sampling sequence in this study) based on any prior 
decomposition may not be the most efficient one. Efficiency may be gained by determining the 
sampling sequence dynamically. For example, when  have been sampled, where x1, x2,…, xm

, the conditional distribution  may have a small set of 0 < 𝑚 < 𝑑 𝑓( x𝑚 + 1| x1, x2,…, xm)
candidate decompositions (to satisfy the acyclic condition) which limits the diversity of the SMC 
samples. Therefore, we designed our sampling block  conditioning on the partially sampled 𝒙𝑖
structure  to increase the diversity and quality of generated samples (see x1, x2,…, x𝑖 ‒ 1
Figure S1 in Supplementary File for an example in BN).

Each SMC sample starts with all possible fully and partially connected triplets (three nodes 
connected by three and two undirected edges, respectively) discovered earlier in the edge 
screening stage, by sampling one such triplet having the least outside connection, e.g. the one 
having least undirected edges connected to its nodes (Figure 1A). These triplets are likely to be 
restricted to certain configuration by the sampled structure; therefore, sampling them in the 
early stage allows more diversity in their configurations. 

When all the fully connected triplets were sampled, the partially connected triplets (two 
undirected edges among three nodes) were considered (Figure 1B). At last, we considered the 
pairs (the remaining undirected edges, Figure 1C). For partially connected triplets and pairs, the 
configurations of the least outside connected ones were sampled first. 

The probabilities of possible configurations of triplets and pairs are proportional to their BIC 
(Bayesian Information Criterion) score defined as , where n is the sample )ˆln(2)ln( LknBIC 

size, k is the number of parameters of the partial BN model, and  is the )ˆ,ˆ|(ˆ GDpL 
maximized value of the likelihood function of the BN structure, , with estimated parameters, Ĝ

, from observed data . The details of the likelihood function are given in Supplementary File. ̂ D
The probability is set to be 0 if certain configuration fails to satisfy the acyclicity condition. 
The main algorithm of this stage is summarized as follows. 

1. First we consider the triplets . Find the set of nodes S such that, (𝑋𝐼,𝑋𝐽,𝑋𝐾)
(5)𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑖 ∈ 𝑋{ max {2,│𝑛𝑏𝑟𝐶(𝑋𝑖)| } }

where |⋅| denotes the cardinality of a set. If  then skip to step (6). Otherwise 𝑆 = ∅
sample one node from  uniformly, say  is sampled. 𝑆 𝑋𝐼
2. Sample one node from  with probabilities 𝑛𝑏𝑟𝐶(𝑋𝐼) = {𝑋𝑖1, …, 𝑋𝑖𝐾}

(6)𝑃(𝑋𝑖𝑘 is sampled) ∝ (1 ‒ 𝑝𝐼𝑖𝑘)
Where  is the p-value from the first filtering. Suppose  is the sampled node, then 𝑝𝐼𝑖𝑘 𝑋𝐽
remove  from  and  from . 𝑋𝐽 𝑛𝑏𝑟𝐶(𝑋𝐼) 𝑋𝐼 𝑛𝑏𝑟𝐶(𝑋𝐽)
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3. Sample  by the following, let  be the set of nodes being neighbor with both  𝑋𝐾 𝐼𝑁𝑇 𝑋𝐼
and ,  :𝑋𝐽 𝐼𝑁𝑇 = 𝑛𝑏𝑟𝐶(𝑋𝐼) ∩ 𝑛𝑏𝑟𝐶(𝑋𝐽)
(a). if , sample  from , with probability:𝐼𝑁𝑇 = ∅ 𝑋𝐾 𝑛𝑏𝑟𝐶(𝑋𝐼)

𝑃(𝑋𝐾) ∝ 1 ‒ 𝑝𝐼𝐾
(b). if , sample  uniformly from .𝐼𝑁𝑇 ≠ ∅ 𝑋𝐾 𝐼𝑁𝑇
(c). remove  from  and  (if applicable), and  from . 𝑋𝐾 𝑛𝑏𝑟𝐶(𝑋𝐼) 𝑛𝑏𝑟𝐶(𝑋𝐽) 𝑋𝐼,𝑋𝐽 𝑛𝑏𝑟𝐶(𝑋𝐾)

4. Calculate the BIC for all possible configurations of the triplet . Sample one {𝑋𝐼,𝑋𝐽,𝑋𝐾}
configuration with probability: 

                (7)𝑃(configuration 𝑖) ∝ {exp (𝐵𝐼𝐶𝑖

𝑇 ),  if the action does not result in a loop
0, if the action result in a loop                 

Where  is temperature, controlling how greedy we want the searching to be. Lower 𝑇
temperature will favor the configurations with larger BIC more.
5.    Repeat (1)−(4) until . 𝑆 = ∅
6.    Now we handle the pairs. Find the set of node , such that , 𝐴 ∀𝑋𝑖 ∈ 𝐴

(8)|𝑛𝑏𝑟𝐶(𝑋𝑖)| = 1
if  we say this chain has converged. While , sample one node uniformly from 𝐴 = ∅ 𝐴 ≠ ∅

, say  is sampled and is the corresponding neighbor. Remove  and  from . 𝐴 𝑋𝐼 𝑋𝐽 𝑋𝐼 𝑋𝐽 𝐴
7.    Compute BIC score for any possible direction: (1). , (2). , and (3). no edge. 𝑋𝐼→𝑋𝐽 𝑋𝐼←𝑋𝐽
Sample one direction with probabilities 

 (9)𝑃(direction 𝑖) ∝ {exp (𝐵𝐼𝐶𝑖

𝑇 ),  if the action does not result in a loop
0, if the action result in a loop                 

where T is the same as in step (4). 
8.    Repeat (6) and (7) until convergence ( ). 𝐴 = ∅

    Since each SMC sample (one BN structure sampled starting from a single node) is generated 
independently, we can run our algorithm in parallel on multiple CPUs/GPU cores to speed up 
the sampling process. 

2.2.3. Reclaiming Missed Edges
    As mentioned earlier, one disadvantage of the traditional two-stage method was that the 
edges missed in the first stage will never be reclaimed. Therefore, in the third stage we 
designed a Random Order Hill Climbing (ROHC) method to identify the possibly missed edges 
and refine the network. The general idea is described as following: 

1. Generate a permutation of  for each network generated by SMC, suppose 1,2,…, 𝑝 𝐵 =
 is such a permutation. 𝑚1,…, 𝑚𝑝

2.  For every , iterate j from  through . If  does not create loop and 𝑋𝑖 ∈ 𝑋 𝑚1 𝑚𝑝 𝑋𝑖←𝑋𝑗
results in an increasing in BIC, then we add edge . 𝑋𝑖←𝑋𝑗
3.  Repeat (2) until there is no possible edge to add or the searching limit is reached. 

One could also view this stage as a further ascent to the local optima to ensure we have the 
best possible BN structures. 
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3. Results
3.1. Benchmark networks
    The networks used to generate simulated data are from actual decision making process of a 
wide range of real applications including risk management, tech support, and disease diagnosis 
(Table 1). All networks are obtained from Bayesian Network Repository maintained by M. 
Scutari http://www.bnlearn.com/bnrepository/. 

3.2. Simulated data
    We randomly generated data with 1000, 2000, and 5000 observations, and we generated 10 
datasets for each size of observations. All results reported in this section are based on averages 
of the 10 datasets. Observation size in this article refers to the number of data points, and shall 
not be confused with number of sequential Monte Carlo samples. The datasets were generated 
using R package bnlearn using default parameters (Scutari 2009, Nagarajan, Scutari and Lèbre 
2013). 

3.3. Performance evaluation
    To measure the effectiveness of edge screening methods, we employed the precision, recall 
and f-score measurements. Precision is defined as TP/(TP+FP), recall is defined as TP/(TP+FN), 
and f-score is the harmonic mean of precision and recall, 2(precision recall)/(precision+recall), ×
where TP means true positive (number of true undirected edges identified), FP false positive 
(number of non-edges identified as undirected edges), and FN false negative (number of 
undirected edges not identified).
    In our study, recall measures the percentage of true edges (irrespective of their directions) 
identified; therefore, it is the most important measurement in edge screening stage, since as 
we discussed earlier, any missed edges in stage one may never be reclaimed in a traditional two 
stage approach. Besides the recall, f-score is also important since it measures a balanced 
performance in terms of both precision and recall. It is obvious that if we propose all possible 
edges, we will always identify all true edges, but that will not do any pruning to the search 
space. Thus, a high f-score is desired for a decent edge screening strategy.
    We used Bayesian Information Criterion (BIC) as the score function in both second stage and 
third stage. BIC has the score-equivalent property (Darwiche 2009) (Definition 10, see below), 
which can reduce the search space, since if we could find one network in the equivalent class, 
we found the true network. And the consistency property of BIC score guarantees that the true 
network has the highest score asymptotically. 
Definition 10 A score function  is said to have score-equivalent property if  do not 𝑆(𝐺) 𝑆(𝐺)
distinguish among equivalent networks. That is, two Bayesian networks,  and , are G1 𝐺2
equivalent if and only if . 𝑆(𝐺1) = 𝑆(𝐺2)

3.4. Edge Screening
    The principle of the edge screening stage is pruning the search space as much as possible 
while the remaining edges in the pruned space still possess as many true edges as possible. We 
compare our method to five other methods including max-min parent-child (mmpc) 
(Tsamardinos, et al. 2006), grow-shrink (gs) (Margaritis 2003), incremental association (iamb) 
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(Tsamardinos, et al. 2003), fast iamb, and inter iamb (Yaramakala, et al. 2005). For all methods, 
we fixed the significant level (α) to 0.01.
    The simulation study results (Figure S2 and S3 in Supplementary File) showed that our double 
filtering (DF) method was able to identify the most edges (highest recall) for each of the 
observation size we tested. In some cases we observed that with even 1000 observations, our 
method achieved a higher recall than the other methods using 5000 observations and the f-
scores are still comparable (e.g. Alarm, Hepar2 and etc.). For some networks (Child, Insurance), 
not only the recalls were higher but also the f-scores were higher for DF. The results confirmed 
that DF identifies true edges more accurately than other methods and it often requires fewer 
observations. Higher recall is desired in the first stage (the edge screening stage) since any 
missed edges will not be recovered in the second stage. 
    
3.5. Network structure sampling
    There are three major factors that may affect the performance of the optimization stages 
(structure searching and edge reclaiming): temperature, number of SMC samples, and rounds 
of ROHC. Here we will discuss the effect of each of the factors, and give a general guide on how 
to tune these parameters.

3.5.1. Temperature
    The temperature parameter in SMC has the same effect as that in MCMC (Markov Chain 
Monte Carlo) simulations. A lower temperature will cause searching to become greedier, and 
higher temperatures make it less greedy. According to formula (7) and (9), when  the 𝑇→0
searching procedure becomes a local greedy search. On the other hand, when  , the T→∞
configuration is sampled uniformly. The optimal temperature is usually a value in between.
    In this simulation study, we fixed SMC sample size to 20,000, and rounds of ROHC to 5. The 
temperature was set to between  and , increased by 10-time each time (Figure S4 in 10 ‒ 7  10 ‒ 1

Supplementary File). The performance is shown in the relative scale (BIC of true network/BIC of 
the learned network), where higher ratio means higher BIC score; thus, better network 
structure. Lower temperatures in most cases gave a lower score, as well as higher temperatures, 
consistent with what we would expect. Most of the optimal scores happened around T = 0.001 
or 0.01. We can also see that the optimal temperature does not depend on the observation 
sizes, since the optimal temperatures are the same across the 3 different observation sizes. 
Another observation we had was that the optimal temperatures did not change much when the 
number of variables (nodes) changes. From Figure S4 we can see that for Andes (with 223 
nodes) and child (20 nodes), the optimal temperature is both around 0.01 and 0.001. 

3.5.2. SMC samples
In general, generating more SMC samples gives a higher chance to reach the optimum. 

However, more samples also require more computation time; therefore, a balance between 
running time and sample sizes must be made. In most of our simulation study and practical 
problems, we found that around 20,000 samples were often good enough for finding a network 
with a relatively high BIC score.

3.5.3. Adaptive SMC
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    To show the improvement of using adaptive SMC, we compared the BICs of 20,000 SMC 
samples between the adSMC and traditional SMC (Figure S5 in Supplementary File). In the 
traditional SMC, we designed the sampling block in the order of fully connected triplets, 
partially connected triplets and pairs, and started from least outside connected ones. Clearly, 
the adSMC generates higher scored networks in general. 

3.6. Necessity of reclaiming
    We discussed earlier that there could be some true edges missed in the first stage due to the 
test power and data quality. Here we will show that Random Order Hill Climbing (ROHC) indeed 
improves the learned BN structure. We used alarm and win95pts networks to illustrate the 
improvement made by ROHC (Figure S6 in Supplementary File). They both had significance level 
cut off of 0.01, temperature 0.001, and 20,000 SMC samples. As we can see, the improvements 
were substantial. The optimum network found by SMC was also improved. Therefore, it is 
necessary to have the third stage to further refine the learned network.
    However, one should notice that the complexity level of ROHC is approximately ; 𝑂(𝑁2)
therefore, in a typical network with hundreds of nodes only 1 or 2 rounds of ROHC are 
affordable. 

3.7. Overall performance
    We evaluated the overall performance of our method and the general two stage methods (5 
edge screening methods, gs, mmpc, iamb, fast.iamb, and inter.iamb combined with 2 
optimization methods, Hill climbing and tabu search) on 7 benchmark networks. The results are 
shown in Figure 2. For 3 different observation sizes, our method out performed all the general 
two-stage methods on almost all benchmark networks except on the hepar2 network where all 
methods achieved similar scores, which are very close to the BIC of the true network.

3.8. Real data study
    Flow cytometry dataset. We applied our method to the flow cytometry dataset (Sachs, Perez, 
Pe'er, Lauffenburger and Nolan 2005). There are 11 proteins and phospholipid components of 
the signaling network. The original data were collected from 7466 cells, containing continuous 
values for the 11 components. Sachs et al suggested to get rid of the potential outliers by 
removing data that are 3 standard deviations away from any attribute. Thus the data we are 
analyzing contains 6814 observations, each with 11 values corresponding to 11 variables (nodes 
in the network). We discretized each variable into 3 categories, for high/medium/low levels, 
with each level containing 33% of the data. We compared our method to the general 2-stage 
methods and the CD method (Fu, et al. 2013). We can see from Figure 3 that our method has 
the highest BIC score, consistent with our observation in simulation study that our method 
could fit the data with better models.

An integrative genomic study using the cancer genome atlas (TCGA) data. In a previous 
study of ours (Stewart, Luks, Roycik, Sang and Zhang 2013), we have identified a long non-
coding RNA, LOC90784, which is strongly associated with breast cancer health disparity 
between African American and Caucasian American breast cancer patients. However, literature 
search resulted in no information about it since it had not been studied by any researchers in 
the past. Using several different types of genomics data, we applied GRASP to perform an 
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integrative study to build a Bayesian network with different genomics features to shed some 
light on the function of this transcript. We first used RNA-seq data to identify transcripts highly 
correlated with LOC90784. There are thousands of genes with significant correlation 
coefficients with LOC90784 as measured by adjusted p-values (padj <= 0.05). We chose a 
relatively large correlation coefficient cutoff to give us a small number of genes to control the 
size of resulting networks. Eight transcripts were selected with absolute values of correlation 
coefficients greater than 0.27. We then found other genomic features, including microRNAs, 
DNA methylations and protein expressions that are highly correlated with these transcripts, 
which gave us 13 microRNAs, 5 DNA methylation regions (aggregated around genes) and 5 
proteins. Using the samples with all the above measurements, we inferred the BN structure for 
these genomics features as shown in Figure 4. Before applying GRASP, continuous variables 
were discretized into 2 categories by their medians. As a comparison, bnlearn produced a 
network without LOC90784 (Figure S7 in Supplementary File). Figure 4 shows rather complex 
relationships among all these genomic features. A thorough investigation of this network is 
beyond the scope of this work. However, some literature search on the nodes around 
LOC90784 provided interesting hypotheses, which could be followed up with experiments. 
Specifically, TET3, an upstream gene, was found to inhibit TGF-β1-induced epithelial-
mesenchymal transition in ovarian cancer cells (Ye, et al. 2016). High frequency of PIK3R2 
mutations in endometrial cancer was found to be related to the regulation of protein stability 
of PTEN (Cheung, et al. 2011), which is a well-known cancer related gene. There are not a lot of 
published studies on IRGQ. From the Human Protein Atlas database 
(https://www.proteinatlas.org/ENSG00000167378-IRGQ/pathology) we found that this gene is 
a prognostic biomarker and significant for survival for several cancer types including pancreatic 
cancer, renal cancer, cervical cancer and liver cancer. It would be interesting to see how 
perturbations of TET3, PIK3R2, such as knockdown/knockout experiments, affect LOC90784 and 
how perturbation of LOC90784 affects IRGQ. If we trace upstream of these genes, we will find 
other genomics features such as DNA methylations or miRNAs that regulate either TET3 or 
PIK3R2. These hypotheses demonstrated the potential of GRASP for discovering new biology 
through integrative genomic studies.

4. Conclusion and Discussion
    In this work, we developed a three-stage Bayesian network structure learning method, 
GRASP. The first stage is a new edge screening method, Double Filtering (DF), which recovers a 
super set of true edges with satisfactory recall and f-score. The second stage is an adaptive SMC 
approach to sample BN structures that optimize the score function (BIC in this study). To 
reclaim the possibly missed edges from the first two stages, we developed a random order hill 
climbing (ROHC) method to add additional edges to the BN structure sampled at the second 
stage to further improve the BIC score. The principle of DF is quite different from the well-
known mmpc method or other similar constraint based methods, which aim to identify the 
exact skeleton of the BN (undirected true edges). DF focuses on identifying a set of undirected 
edges that contains all the true edges, while minimizing the number of false positives. The 
advantage of mmpc is that given enough observations it identifies the true network skeleton; 
however, it may not be feasible when the numbers of observations are relatively small since 
mmpc conducts conditional dependency test conditioning on all previously identified 
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dependent (connected) nodes, and it requires substantially more observations when the 
number of conditioned nodes increases. On the other hand, DF only conditions on one node at 
a time, so the required observation size can be much smaller. 
    The adSMC approach in structure sampling stage provided us better chance to find global 
optimal structure than greedy search and other heuristic sampling algorithms. In addition, 
adSMC sampling is completely parallelizable, and multiple CPUs/GPU implementations will 
likely further improve the computational efficiency substantially. 
    Although in this study we focused on categorical variables (nodes) with multinomial 
distribution, one may extend our approach to other types of variables including Gaussian ones, 
as long as all the nodes have the same distribution and the local conditional distribution can be 
estimated. Imposing distributions that are easier to be estimated on the nodes will in general 
make the search more efficient. 
    For mixed type of BNs (where nodes do not necessarily have the same distribution), our 
method could handle them indirectly by discretizing the observations and making each node 
having multinomial distributions. Learning the structures of these BNs will be an interesting 
research topic in a follow-up study.
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Table 1: Bayesian networks used in the simulation study.
 Name # of nodes # of edges # of parameters max in-degree
 Alarm 37 46 509 4
 Andes 223 338 1157 6
 Child 20 25 230 2
 Hailfinder 56 66 2656 4
 Hepar2 70 1236 1453 6
 Insurance 27 52 984 3
 Win95pts 76 112 574 7
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Figure 1: Bayesian network structure sampling procedure. (A). Each SMC sample starts with all 
possible fully and partially connected triplets (three nodes (i.e. X3, X4 and X5) connected by 
three and two undirected edges, respectively) discovered earlier in the edge screening stage, by 
sampling one such triplet having the least outside connection, e.g. the one having least 
undirected edges connected to its nodes. (B). When all the fully connected triplets were 
sampled, the partially connected triplets (two undirected edges among three nodes) were 
considered. (C).  At last, we considered the pairs (the remaining undirected edges). For partially 
connected triplets and pairs, the configurations of the least outside connected ones were 
sampled first.
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Figure 2: BIC scores of all methods on 7 benchmark networks. Observation sizes: (A) 1000, (B) 
2000, (C) 5000. GRASP achieved highest BIC scores on most of the network except hepar2, for 
which all methods performed well.
 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/767327doi: bioRxiv preprint 

https://doi.org/10.1101/767327
http://creativecommons.org/licenses/by/4.0/


17

Figure 3: BIC scores for the flow cytometry data from 12 methods. GRASP has the highest BIC 
score.
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Figure 4. The BN structure learned using multiple different genomic features which are highly correlated 
with the expression of LOC90784. Orange nodes: mRNA transcripts; Red nodes: microRNAs; Blue nodes: 
protein expressions; Green nodes: DNA methylations.
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