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Abstract  

Currently there are no effective antifibrotic therapies for liver cirrhosis, a major killer 

worldwide. To obtain a cellular resolution of directly-relevant pathogenesis and to 

inform therapeutic design, we profile the transcriptomes of over 100,000 primary 

human single cells, yielding molecular definitions for the major non-parenchymal cell 

types present in healthy and cirrhotic human liver. We uncover a novel scar-associated 

TREM2+CD9+ macrophage subpopulation with a fibrogenic phenotype, that has a 

distinct differentiation trajectory from circulating monocytes.  In the endothelial 

compartment, we show that newly-defined ACKR1+ and PLVAP+ endothelial cells 

expand in cirrhosis and are topographically located in the fibrotic septae. Multi-lineage 

ligand-receptor modelling of specific interactions between the novel scar-associated 

macrophages, endothelial cells and collagen-producing myofibroblasts in the fibrotic 

niche, reveals intra-scar activity of several major pathways which promote hepatic 

fibrosis. Our work dissects unanticipated aspects of the cellular and molecular basis of 

human organ fibrosis at a single-cell level, and provides the conceptual framework 

required to discover rational therapeutic targets in liver cirrhosis.  
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Main 

Liver cirrhosis is a major global healthcare burden. Recent estimates suggest that 844 

million people worldwide have chronic liver disease, with a mortality rate of two 

million deaths per year and a rising incidence1. In health, the liver serves a myriad of 

functions including detoxification, metabolism, bile production and immune 

surveillance. Chronic liver disease, the result of iterative liver injury secondary to any 

cause, results in progressive fibrosis, disrupted hepatic architecture, vascular changes 

and aberrant regeneration, defining characteristics of liver cirrhosis2. Importantly, the 

degree of liver fibrosis predicts adverse patient outcomes, including the development 

of cirrhosis-related complications, hepatocellular carcinoma and death3. Hence, there is 

a clear therapeutic imperative to develop effective anti-fibrotic approaches for patients 

with chronic liver disease4–7. 

Liver fibrosis involves a complex, orchestrated interplay between multiple non-

parenchymal cell (NPC) lineages including immune, endothelial and mesenchymal 

cells spatially located within areas of scarring, termed the fibrotic niche. Despite rapid 

progress in our understanding of the cellular interactions underlying liver fibrogenesis 

accrued using rodent models, there remains a significant 'translational gap' between 

putative targets and effective patient therapies4,5. This is in part due to the very limited 

definition of the functional heterogeneity and interactome of cell lineages that 

contribute to the fibrotic niche of human liver cirrhosis, which is imperfectly 

recapitulated by rodent models4,6. 

Single-cell RNA sequencing (scRNA-seq) has the potential to deliver a step change in 

both our understanding of healthy tissue homeostasis as well as disease pathogenesis, 

allowing the interrogation of individual cell populations at unprecedented resolution8–

10. Here, we have studied the mechanisms regulating human liver cirrhosis, using 

scRNA-seq to analyse the transcriptomes of 106,616 single cells obtained from ten 

healthy and cirrhotic human livers and peripheral blood. 

Our data define: (1) a single-cell atlas of non-parenchymal cells in healthy and cirrhotic 

human liver; (2) a new subpopulation of scar-associated TREM2+CD9+ pro-fibrotic 

macrophages; (3) new subpopulations of scar-associated ACKR1+ and PLVAP+ 
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endothelial cells; and (4) key ligand-receptor interactions between novel scar-

associated macrophages, endothelial subpopulations and collagen-producing 

myofibroblasts in the fibrotic niche. Thus, we have simultaneously identified a series 

of intra-scar fibrogenic pathways which represent hitherto unsuspected therapeutic 

targets for the treatment of liver fibrosis, whilst demonstrating the applicability of 

scRNA-seq to define pathogenic mechanisms for other human fibrotic disorders. 

Results 

Single cell atlas of human liver non-parenchymal cells  

Hepatic NPC were isolated from fresh healthy and cirrhotic human liver tissue spanning 

a range of aetiologies of cirrhosis (Fig. 1a, Extended Data Fig. 1a). Importantly, to 

minimise artefacts11, we developed a rapid tissue processing pipeline, obtaining fresh 

non-ischaemic liver tissue taken by wedge biopsy prior to the interruption of the hepatic 

vascular inflow during liver surgery or transplantation, and immediately processing this 

for FACS. This enabled a workflow time of under three hours from patient to single-

cell droplet encapsulation (Methods).  

We used an unbiased approach, FACS sorting viable single cells from liver tissue into 

broad leucocyte (CD45+) or other NPC (CD45-) fractions (Extended Data Fig. 1b), prior 

to scRNA-seq. To facilitate discrimination between liver-resident and circulating 

leucocytes, we also performed scRNA-seq on CD45+CD66b- peripheral blood 

mononuclear cells (PBMCs) (Extended Data Fig. 1c, f). In total, we analysed 67,494 

human cells from healthy (n=5) and cirrhotic (n=5) livers, 30,741 PBMCs from 

cirrhotic patients (n=4) and compared our data with a publicly-available reference 

dataset of 8,381 PBMCs from a healthy donor. 

Tissue cells and PBMCs could be partitioned into 21 distinct clusters, which we 

visualized using t-distributed stochastic neighbourhood embedding (t-SNE) (Extended 

Data Fig. 1d). Clusters were annotated using signatures and integrating with known 

lineage markers (Extended Data Fig. 1e; signature gene lists available in Supplementary 

Table 1). All PBMC datasets contained the major blood lineages, with excellent 

reproducibility between samples (Extended Data Fig. 1g, h). To generate an atlas of 
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liver-resident cells, contaminating circulating cells were removed from the liver tissue 

datasets, by excluding individual cells from the tissue samples which mapped 

transcriptionally to blood-derived clusters 1 and 13 (Extended Data Fig. 1d).  

Re-clustering the 66,135 liver-resident cells revealed 21 clusters (Fig. 1b), each 

containing cells from both healthy and cirrhotic livers (Fig. 1c). Gene signature analysis 

enabled annotation of each cluster by major cell lineage (Fig. 1d, Extended Data Fig. 

2a, b). We noted heterogeneity in the post-normalised detected number of genes and 

unique molecular identifiers (UMIs) per cell dependent on cell lineage, with 

mononuclear phagocytes (MP) demonstrating increased transcriptional diversity 

(nGene; Healthy=1,513±10.5, Cirrhotic=1,912±10.8) and activity (nUMI; 

Healthy=5,499±58.4, Cirrhotic=7,386±66) in diseased livers (Extended Data Fig. 2c, 

d). All samples contained the expected cell lineages (Extended Data Fig. 2e, g) and 

reproducibility between livers was excellent for the main NPC populations (Extended 

Data Fig. 2f). 

We used an area-under-curve classifier to identify cell subpopulation markers across 

all 21 clusters and 11 lineages (Fig. 1e; Supplementary Tables 2 and 3). Expression of 

collagens type I and type III, the main extracellular matrix components of the fibrotic 

niche, was restricted to cells of the mesenchymal lineage (Fig. 1e). To gain further 

resolution on NPC heterogeneity, we then iterated clustering and marker gene 

identification on each lineage in turn, for example defining 11 clusters of T cells and 

innate lymphoid cells (ILCs) (Extended Data Fig. 3a) and four clusters of B cells and 

plasma cells (Extended Data Fig. 3f, g, Supplementary Table 6). No major differences 

in B cell or plasma cell composition between healthy and cirrhotic livers were observed 

(Extended Data Fig. 3h), and plasmacytoid dendritic cells (pDC) showed no additional 

heterogeneity. 

To further annotate the 11 T cell and ILC clusters (36,900 cells from 10 livers) we 

assessed expression of known markers (Extended Data Fig. 3c) and computationally 

identified differential marker genes (Extended Data Fig. 3d, Supplementary Table 4). 

We also performed imputation of gene dropouts, which enhanced detection of 

discriminatory marker genes for each cluster but did not yield additional T cell or ILC 

subpopulations (Extended Data Fig. 3e, Supplementary Table 5). All T cell and ILC 
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clusters expressed tissue residency markers CD69 and CXCR4. Clusters 1 and 2 were 

CD4+ T cells, with CD4+ T cell(2) expanding significantly in cirrhotic livers (Extended 

Data Fig. 3a, b, e) and expressing SELL and CCR7, indicating an expansion of memory 

CD4+ T cells in liver cirrhosis. Sparse expression of FOXP3, RORC, IL17A and IFNG 

in both CD4+ T cell subpopulations suggested the presence of Tregs, Th17 and Th1 

cells in these clusters. Clusters 3, 4 and 5 were CD8+ T cells, with features of effector 

T cells expressing GZMA, GZMH and IFNG. Two resident CD56bright IL7R- NK cell 

clusters were defined (NK cell(1) and NK cell(2)), as well as a distinct cytotoxic 

CD56dim NK cell population (cNK), with specific expression of FCGR3A and GZMB. 

No expansion of these populations was observed in cirrhotic livers. 

We provide an interactive gene browser freely-available online 

((http://www.livercellatlas.mvm.ed.ac.uk), to allow assessment of individual gene 

expression both in all human liver NPC and in specific lineages, comparing healthy 

versus cirrhotic livers. 

Distinct macrophage subpopulations inhabit the fibrotic niche  

Macrophages are critical to tissue homeostasis and wound-healing12. Previous studies 

have highlighted phenotypically-distinct macrophage populations orchestrating both 

liver fibrosis progression and regression in rodent models13,14, with preliminary 

evidence of heterogeneity in fibrotic human livers15. Here, we define unique 

subpopulations of macrophages which populate the fibrotic niche of cirrhotic human 

livers. Unsupervised clustering of all 10,737 mononuclear phagocytes (1,074±153 cells 

from each liver), isolated from the combined liver-resident cell dataset, identified nine 

MP clusters and one cluster of proliferating MP cells (Fig. 2a). We annotated these nine 

clusters as subpopulations of scar-associated macrophages (SAM), Kupffer cells (KC), 

tissue monocytes (TMo), and conventional dendritic cells (cDC) (Fig. 2a; see below). 

Strikingly, clusters MP(4) and MP(5), named SAM(1) and SAM(2) respectively, were 

expanded in cirrhotic  livers (Fig. 2b), a finding that was confirmed by quantification 

of the MP cell composition of each liver individually (Fig. 2c), and reproduced in all 

cirrhotic livers irrespective of liver disease aetiology. 
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To enable MP cell annotation, we initially assessed expression of known MP marker 

genes (Extended Data Fig. 4a), classifying clusters MP(8) and MP(9) as conventional 

dendritic cells, cDC2 and cDC1 respectively, based on CD1C and CLEC9A specificity. 

However, the remaining markers did not demarcate the other monocyte and 

macrophage subpopulations. Instead, these were identified using differential expression 

analysis across all MP clusters (Fig. 2d, Supplementary Table 7).  Clusters MP(1), 

MP(2) and MP(3) were distinguished by expression of S100 genes, FCN1, MNDA and 

LYZ, in keeping with a tissue monocyte (TMo) phenotype and informing annotation as 

TMo(1), TMo(2) and TMo(3) respectively (Fig. 2d, e, Extended Data Fig. 4a, 

Supplementary Table 7).  

Clusters MP(6) and MP(7) were enriched in CD163, MARCO, TIMD4 and CD5L 

(Extended Data Fig. 4b); multiplex immunofluorescence staining confirmed these as 

Kupffer cells (KC; resident liver macrophages), facilitating annotation of these clusters 

as KC(1) and KC(2) respectively (Extended Data Fig. 4c). Application of these markers 

enabled the definitive distinction between KCs and other MP cells for the first time in 

human liver tissue. KCs displayed characteristic morphology and sinusoidal 

topography in healthy livers but were absent from areas of scarring in cirrhotic livers 

(Extended Data Fig. 4c). A lack of TIMD4 expression distinguished KC(2) from KC(1) 

(Extended Data Fig. 4b); CD163+MARCO+TIMD4- cells were identifiable in healthy 

livers but rare in cirrhotic livers (Extended Data Fig. 4c), concordant with a significant 

reduction of KC(2) cells in cirrhosis (Fig. 2c). Automated histological cell counting 

demonstrated TIMD4+ cell numbers to be equivalent between healthy and cirrhotic 

livers, but showed a loss of MARCO+ cells, consistent with selective reduction in 

MARCO+TIMD4- KCs in liver fibrosis (Extended Data Fig. 4d, e).  

Scar-associated clusters SAM(1) and SAM(2), expanded in diseased livers and 

expressed the unique markers TREM2 and CD9 (Fig. 2d, e). These newly-defined 

macrophages displayed a hybrid phenotype, with features of both tissue monocytes and 

KCs (Fig. 2d, e), analogous to monocyte-derived macrophages in murine liver injury 

models14,16. Multi-colour flow cytometry confirmed expansion of these TREM2+CD9+ 

macrophages in human fibrotic livers (Fig. 2f, Extended Data Fig. 4f). Tissue 

immunofluorescence staining and single-molecule fluorescent in situ hybridization 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/766113doi: bioRxiv preprint 

https://doi.org/10.1101/766113
http://creativecommons.org/licenses/by/4.0/


 

 
 

(smFISH) demonstrated the presence of TREM2+MNDA+ and CD9+MNDA+ 

macrophages in fibrotic livers (Extended Data Fig. 4g-i). Multiplex 

immunofluorescence further confirmed the presence of TREM2+CD9+ cells localised 

in collagen-positive scar regions in cirrhotic livers (Fig. 2g), and automated cell 

counting of stained sections confirmed expansion of TREM2+ and CD9+ cells in 

cirrhotic  livers (Fig. 2h, i).  

Strikingly, TREM2+ and CD9+ cells were rarely identified in the parenchyma of healthy 

livers, but were consistently located within areas of scar in cirrhotic livers. To confirm 

this, automated cell counting was applied to immunohistochemically-stained cirrhotic 

livers morphologically segmented into regions of fibrotic septae and parenchymal 

nodules (Fig. 2j). This demonstrated a significant accumulation of TREM2+ and CD9+ 

cells in fibrotic regions, whilst negligible numbers of KCs populated the fibrotic septae 

(Fig. 2j). Hence, we annotated TREM2+CD9+ MP cells as scar-associated 

macrophages. 

Local proliferation has been shown to play a significant role in the expansion of 

macrophage subpopulations at sites of inflammation and fibrosis in experimental rodent 

models14,17,18, but has not been extensively characterised in human inflammatory 

disorders. To investigate MP proliferation in human liver fibrosis, we isolated the 

cycling MP cluster (Fig. 2a; cluster 10), which was enriched for multiple cell cycle-

related genes (Supplementary Table 7). Cycling MP cells subclustered into four, 

yielding cDC1, cDC2, KCs and scar-associated macrophage subpopulations (Extended 

Data Fig. 4j). We observed a significant expansion of cycling SAMs in cirrhosis, 

representing 1.70±0.52% of total TREM2+ MP cells in cirrhotic livers (Extended Data 

Fig. 4k). In contrast 0.99±0.63% of KCs were proliferating in healthy livers, with none 

detected in cirrhotic livers (Extended Data Fig. 4k). These data highlight the potential 

role of local macrophage proliferation in driving the accumulation of SAMs in the 

fibrotic niche of human chronic liver disease. 

Fibrogenic phenotype of scar-associated macrophages  

To delineate the functional profile of SAMs we generated self-organising maps using 

the SCRAT package, visualising co-ordinately expressed gene groups across the MP 
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subpopulations. This created a landscape of 3600 metagenes on a 60x60 grid and 

highlighted 44 metagene signatures overexpressed in the MP lineage (Fig. 3a). 

Mapping the nine MP cell clusters to this landscape (Extended Data Fig. 5a) identified 

six optimally-differentiating metagene signatures, denoted as A-F (Fig. 3a, 

Supplementary Table 8). Signatures A and B defined the scar-associated macrophages, 

and were enriched for ontology terms relevant to tissue fibrosis and associated 

processes such as angiogenesis, in addition to known macrophage-functions such as 

phagocytosis and antigen processing (Fig. 3b). These SAM-defining signatures 

included genes such as TREM2, IL1B, SPP1, LGALS3, CXCR4, CCR2, and TNFSF12; 

a number of which are known to regulate the function of scar-producing myofibroblasts 

in fibrotic liver diseases19–24. The remaining MP subpopulations were defined by 

signature C (Kupffer cells), signatures D, E (tissue monocytes) and signature F (cDC1); 

ontology terms matched known functions for the associated cell type (Fig. 3b, Extended 

Data Fig. 5b, Supplementary Table 8). In particular, the Kupffer cell clusters showed 

significant enrichment for ontology terms involving endocytosis, lipid and iron 

homeostasis, known functions of KCs in mice25. Importantly, macrophage populations 

did not conform to either an M1 or M2 phenotype, again highlighting the limitation of 

this classification. 

In mice, there are two main origins of hepatic macrophages, either embryologically-

derived or monocyte-derived26. Under homeostatic conditions, tissue-resident KCs 

predominate and are embryologically-derived self-renewing cells27–31. However, 

following liver injury, macrophages derived from the recruitment and differentiation of 

circulating monocytes accumulate in the liver and regulate hepatic fibrosis14,32. The 

ontogeny of human hepatic macrophage subpopulations has never previously been 

investigated. Scar-associated TREM2+CD9+ macrophages demonstrated a monocyte-

like morphology (Fig. 2g, Extended Data Fig. 4g-i) and a distinct topographical 

distribution from KCs (Fig. 2j), suggesting they may represent monocyte-derived cells. 

To computationally assess the origin of these scar-associated macrophages, we 

performed in silico trajectory analysis on a combined dataset of peripheral blood 

monocytes and liver-resident MPs. We visualised the transcriptional profile of these 

cells using a diffusion map, mapped them along a pseudotemporal trajectory (using the 

monocle R package) and interrogated their directionality via spliced and unspliced 
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mRNA ratios (RNA velocity33,34) (Fig. 3c). These analyses suggested a branching 

differentiation trajectory from peripheral blood monocytes into either scar-associated 

macrophages or cDCs (Fig. 3c). Additionally, applying RNA velocity indicated a lack 

of differentiation from KCs to scar-associated macrophages, and no progression from 

scar-associated macrophages to KCs (Fig. 3c).  

To further investigate the pseudotemporal relationship between SAMs and KCs, we 

visualised the combined blood monocyte and liver-resident MP dataset using a UMAP, 

and performed additional RNA velocity analyses33,34 (Fig. 3d).  Evaluation of spliced 

and unspliced mRNAs showed expected downregulation (negative velocity) of 

monocyte gene MNDA in SAMs, expected upregulation (positive velocity) of SAM 

marker gene CD9 in tissue monocytes, and a lack of KC gene TIMD4 velocity in SAMs 

(Fig. 3e). This infers an absence of pseudotemporal dynamics between KCs and SAMs. 

Furthermore, assessment of the probabilities of cells in this dataset transitioning into 

SAMs, indicated a higher likelihood of tissue monocytes than KCs differentiating into 

SAMs (Fig. 3f). Overall, these data suggest that scar-associated macrophages in human 

fibrotic liver are monocyte-derived, and imply that SAMs represent a terminally-

differentiated cell state within the fibrotic niche. 

To further characterise the phenotype of scar-associated macrophages, we identified 

differentially expressed genes along the branching monocyte differentiation trajectories 

(Fig. 3g). We defined three gene co-expression modules by hierarchical clustering, with 

module 1 representing genes that are upregulated during blood monocyte-to-SAM 

differentiation (Fig. 3g). Module 1 was over-expressed in scar-associated macrophages, 

and contained multiple fibrogenic genes including SPP1, LGALS3, CCL2, CXCL8, 

PDGFB and VEGFA19–22,35–37(Fig. 3h). Analogous to signatures A and B (Fig. 3b), 

module 1 displayed ontology terms consistent with promoting tissue fibrosis and 

angiogenesis, including the regulation of other relevant cell types such as fibroblasts 

and endothelial cells (Fig. 3h). We confirmed that SAMs show enhanced protein 

secretion of several of the fibrogenic mediators identified by transcriptional analysis 

(Extended Data Fig 5c). Co-expression module 2 contained genes that were 

downregulated during monocyte-to-SAM differentiation, confirming a loss of 

characteristic monocyte genes (Extended Data Fig. 5d). Module 3 encompassed a 
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distinct group of genes that were upregulated during monocyte-to-cDC differentiation 

(Extended Data Fig. 5e). Full lists of genes and ontology terms for all three modules 

are available (Supplementary Table 9). These data highlight that SAMs acquire a 

specific fibrogenic phenotype during differentiation from circulating monocytes. 

To identify potential transcriptional regulators of SAMs we used the SCENIC package 

to define sets of genes co-expressed with known transcription factors, termed regulons. 

We assessed the cell activity score for differentially-expressed regulons along the tissue 

monocyte-macrophage pseudotemporal trajectory and in KCs, allowing visualisation 

of regulon activity across liver-resident macrophage subpopulations (Extended Data 

Fig. 5f, g, Supplementary Table 10). This identified regulons and corresponding 

transcription factors associated with distinct macrophage phenotypes, highlighting 

NR1H3 and SPIC activity in human KCs (Extended Data Fig. 5f, g), which are known 

to regulate Kupffer cell function in mice38,39. Scar-associated macrophages are enriched 

for regulons containing the transcription factors HES1 and EGR2 (Extended Data Fig. 

5f, g), both of which have been associated with modulation of macrophage phenotype 

and tissue fibrosis40–43. 

In summary, multimodal computational analysis suggests that TREM2+CD9+ scar-

associated macrophages derive from the recruitment and differentiation of circulating 

monocytes and display a fibrogenic phenotype. 

Distinct endothelial subpopulations inhabit the fibrotic niche  

In rodent models, hepatic endothelial cells are known to regulate both fibrogenesis44,45 

and macrophage recruitment to the fibrotic niche36. Unsupervised clustering of human 

liver endothelial cells identified seven subpopulations (Fig. 4a). Clusters Endo(6) and 

Endo(7) significantly expanded in cirrhotic compared to healthy livers, whilst Endo(1) 

contracted (Fig. 4a, b). Classical endothelial cell markers did not discriminate between 

the seven clusters, although Endo(1) was distinct in lacking CD34 expression 

(Extended Data Fig. 6a).  In order to fully annotate endothelial subpopulations 

(Extended Data Fig. 6f), we identified differentially expressed markers (Fig. 4c, 

Supplementary Table 11), determined functional expression profiles (Extended Data 

Fig. 6c-e, Supplementary Table 12), performed transcription factor regulon analysis 
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(Fig. 4g, Supplementary Table 13) and assessed spatial distribution via multiplex 

immunofluorescence staining (Fig. 4d, e). 

Disease-specific endothelial cells Endo(6) and Endo(7), CD34+PLVAP+ and 

ACKR1+CD34+PLVAP+ respectively (Fig. 4c, Extended Data Fig. 6b), were spatially 

restricted to the fibrotic niche in cirrhotic livers (Fig. 4d, e), allowing their annotation 

as scar-associated endothelia SAEndo(1) and SAEndo(2) respectively. 

Immunohistochemical quantification of ACKR1 and PLVAP confirmed expansion of 

these populations in cirrhotic livers, with clear localization within fibrotic septae (Fig. 

4f). Scar-associated endothelial cells displayed enhanced expression of the ELK3 

regulon (Fig. 4g), a transcription factor known to modulate angiogenesis46. Metagene 

signature analysis found that Endo(6) (SAEndo(1)) cells expressed fibrogenic genes 

including PDGFD, PDGFB, LOX, LOXL2 and several basement membrane 

components47–49; associated significant ontology terms included extracellular matrix 

organization and wound healing (signature A; Extended Data Fig. 6c-e). Endo(7) 

(SAEndo(2)) cells displayed an immunomodulatory phenotype (signature B; Extended 

Data Fig. 6c-e). Furthermore, the most discriminatory marker for this cluster, ACKR1, 

is restricted to venules in mice50 and has a role in regulating leucocyte recruitment via 

transcytosis of chemokines from the abluminal to luminal side of blood vessels51. 

Using CLEC4M as a discriminatory marker of cluster Endo(1) (Fig. 4c, Extended Data 

Fig. 6b), immunofluorescence confirmed these CLEC4M+CD34- cells as liver 

sinusoidal endothelial cells (LSECs), restricted to perisinusoidal cells within the liver 

parenchyma (Fig. 4d). Cluster Endo(1) demonstrated known features of LSECs, 

including GATA4 transcription factor regulon expression52 (Fig. 4g), and a metagene 

signature enriched for ontology terms including endocytosis and immune response53 

(signature D, Extended Data Fig. 6c-e). There was a reduction in CLEC4M staining in 

cirrhotic livers with an absence in fibrotic septae (Fig. 4d, f), indicating that LSECs do 

not inhabit the fibrotic niche in chronic liver disease. This was further supported by 

trajectory analysis, suggesting a lack of clear pseudotemporal dynamics between the 

LSECs and clusters SAEndo(1) and SAEndo(2) (Extended Data Fig. 6g). 

We annotated cluster Endo(2) (PDPN+CD34+PLVAP-) as lymphatic endothelial cells 

based on marker gene expression, relevant ontology terms (signature E; Extended Data 
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Fig. 6c-e) and FOXC2 and HOXD8 regulon activity (Fig. 4g)54,55. Lymphatics 

populated the portal region of healthy livers (Fig. 4e). Hierarchical clustering of the 

endothelial subpopulations demonstrated that clusters Endo(3) and Endo(4) were 

closely related to LSECs (dendrogram not shown), co-expressing markers including 

CLEC4G (Extended Data Fig. 6b). Endo(4), defined as RSPO3+CD34+PLVAP+ (Fig. 

4c, Extended Data Fig. 6b), expressed a metagene signature overlapping with LSECs 

(signature D, Extended Data Fig. 6c-e), and were identified as central vein endothelial 

cells (Fig. 4e). This mirrors murine liver zonation data indicating RSPO3 as a marker 

of pericentral endothelial cells56. Similar to LSECs, central vein endothelial cells did 

not inhabit the fibrotic niche in cirrhosis (Fig. 4e). 

Cluster Endo(5), AIF1L+CD34+PLVAP+ cells, were mapped to periportal thick-walled 

vessels, consistent with hepatic arterial endothelial cells (Fig. 4e). Of note, these cells 

were also topographically associated with fibrotic septae in cirrhotic livers (Fig. 4e). 

The arterial identity of this cluster was further indicated by SOX17 regulon expression57 

(Fig. 4g), and it displayed a metagene signature enriched for Notch pathway ligands 

JAG1, JAG2 and DLL4; ontology terms included animal organ development, 

angiogenesis and Notch signalling (signature C; Extended Data Fig. 6c-e) in keeping 

with the known requirement of the Notch pathway in the development and maintenance 

of hepatic vasculature58. Endo(5) was annotated as HAEndo for subsequent analysis of 

cellular interactions within the fibrotic niche. 

Resolving the multi-lineage interactome in the fibrotic niche 

To investigate how the newly-defined scar-associated macrophage and endothelial cell 

subpopulations regulate fibrosis, we assessed interactions between these cells and the 

myofibroblasts, the key scar-producing cells within the fibrotic niche59,60. 

Myofibroblasts were identified as a distinct subpopulation following clustering of the 

mesenchymal lineage (Fig. 5a), expressing fibrogenic genes including COL1A1, 

COL1A2, COL3A1 and TIMP1 in addition to specific markers such as PDGFRA (Fig. 

5b, Extended Data Fig. 7a, Supplementary Table 14). This myofibroblast cluster was 

significantly expanded in cirrhotic livers (Fig. 5c), confirmed histologically using 

PDGFRα immunohistochemistry (Fig. 5d). Multiplex immunofluorescent staining 

demonstrated the close topographical association of these PDGFRα+ myofibroblasts 
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with TREM2+ SAMs and both PLVAP+ and ACKR+ scar-associated endothelial cells 

within the fibrotic niche (Fig. 5e, f). 

To interrogate potential ligand-receptor interactions between these scar-associated 

macrophage, endothelial and mesenchymal cells, we used CellPhoneDB, a new 

repository of curated ligand-receptor interactions integrated with a statistical 

framework. We calculated statistically significant ligand-receptor pairs, based on 

expression of receptors by one lineage and ligands by another, using empirical 

shuffling61. We focussed further analysis on differentially expressed interactions 

between pairs of lineages spatially located in the fibrotic niche. 

Numerous statistically significant potential interactions were detected between ligands 

and cognate receptors expressed by scar-associated macrophages, scar-associated 

endothelial cells and myofibroblasts within the fibrotic niche (Fig. 5g, h, Extended Data 

Fig. 7b).  Selected ligand-receptor pairings between lineages are summarised (Fig. 5i, 

Extended Data Fig. 7c) and a full list provided (Supplementary Table 15).  

The fibrogenic expression profile of SAMs (Fig. 3b, h, Extended Data Fig. 5c), predicts 

that scar-associated macrophages modulate myofibroblast phenotype within the fibrotic 

niche. Ligand-receptor analysis provided a molecular framework for these interactions: 

scar-associated macrophages expressed ligands for Platelet-derived growth factor 

receptors (PDGFRs), IL-1 receptor, Epidermal growth factor receptor (EGFR), and 

TNFRSF12A on myofibroblasts (Fig. 5i), all known to regulate myofibroblast 

activation, proliferation, survival and promote liver fibrosis in rodent  

models19,24,47,62,63. Immunofluorescence staining confirmed the close topographical 

association of PDGFB-PDGFRα, IL1β-IL1R1 and TNFSF12-TNFRSF12A within the 

fibrotic niche (Fig. 5j, k, l).  

Myofibroblasts display a potent immunoregulatory profile, producing cytokines and 

chemokines such as CCL2, which regulates monocyte-macrophage recruitment and 

phenotype (Fig. 5i, m). We detected highly significant interactions between CXCL12 

produced by myofibroblasts and CXCR4 expressed by both scar-associated 

macrophages and endothelial cells (Fig. 5i), confirmed at protein level within the 

fibrotic septae (Extended Data Fig. 7d). CXCR4 signaling in both macrophages and 
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endothelia have been associated with promoting tissue fibrosis in mice44,64. IL-34, CSF-

1 and CX3CL1 interactions with relevant macrophage receptors are known to modulate 

macrophage function and survival65,66; IL-34 and CSF-1 are potent macrophage 

mitogens65, potentially explaining the increased proliferation observed in SAMs 

(Extended Data Fig. 4j, k). 

Intrahepatic angiogenesis is associated with both degree of liver fibrosis and portal 

hypertension, a major clinical consequence of liver cirrhosis67. Our ligand-receptor 

analysis confirmed pro-angiogenic interactions within the fibrotic niche, with both scar-

associated macrophages and myofibroblasts producing VEGFs, signalling via receptors 

on scar-associated endothelia (Fig. 5i, Extended Data Fig. 7c). VEGFA expression by 

SAMs was confirmed histologically (Extended Data Fig. 7e). Myofibroblasts also 

express angiopoietins (Fig. 5i, Extended Data Fig. 7f), which modulate angiogenic 

responses in endothelial cells and promote liver fibrosis68. Furthermore, SAMs 

expressed chemokines such as CCL2 and CXCL8 (Extended Data Fig. 5c), interacting 

with ACKR1 on scar-associated endothelial cells (Extended Data Fig. 7c) and 

indicative of an additional immunomodulatory role for SAMs. 

Scar-associated endothelial cells regulate neighbouring myofibroblasts and 

macrophages by expressing PDGFR ligands, chemokines, CSF1 and CD200 (Fig. 5i, 

Extended Data Fig. 7c, g). Additionally, endothelial cell interactions showed a 

pronounced enrichment for Notch signalling, with non-canonical Notch ligands DLL4, 

JAG1 and JAG2 interacting with notch receptors NOTCH2 and NOTCH3 on 

myofibroblasts and NOTCH2 on macrophages (Fig. 5i, Extended Data Fig. 7c). We 

confirmed the close apposition of DLL4+ cells, NOTCH3+ myofibroblasts and 

NOTCH2+ SAMs within the fibrotic niche (Fig. 5n, Extended Data Fig. 7h). Notch 

signalling regulates myofibroblast phenotype and tissue fibrosis43, whilst arterial Notch 

ligand expression regulates monocyte-derived macrophage differentiation and 

macrophage function in tissue repair69. In keeping with active Notch signalling in 

SAMs, we demonstrate upregulation of the transcription factor regulon HES1, a key 

downstream target of Notch (Fig. 3h, Extended Data Fig. 5f, g), during differentiation 

from monocytes. 
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In summary, our unbiased dissection of the key ligand-receptor interactions between 

novel scar-associated macrophages, endothelial subpopulations and collagen-

producing myofibroblasts in the fibrotic niche reveals several major pathways which 

promote hepatic fibrosis (Fig. 6). Therapeutic targeting of these intra-scar pathways, 

represents a rational approach for the discovery of novel anti-fibrotic treatments for 

patients with chronic liver disease. 

Discussion  

The fibrotic niche has not previously been defined in human liver. Here, using scRNA-

seq and spatial mapping, we resolve the fibrotic niche of human liver cirrhosis, 

identifying novel pathogenic subpopulations of TREM2+CD9+ fibrogenic 

macrophages, ACKR1+ and PLVAP+ endothelial cells and PDGFRα+ collagen-

producing myofibroblasts. We dissect a complex, pro-fibrotic interactome between 

multiple novel scar-associated cells, and identify highly relevant intra-scar pathways 

that are potentially druggable. This multi-lineage single cell dataset of human liver 

cirrhosis should serve as a useful resource for the scientific community, and is freely 

available for interactive browsing at http://www.livercellatlas.mvm.ed.ac.uk. 

Despite significant progress in our understanding of the molecular pathways driving 

liver fibrosis in rodent models, a lack of corollary studies in diseased human liver tissue 

has hindered translation into effective therapies, with currently no FDA or EMA-

approved anti-fibrotic treatments available. Our multi-lineage ligand-receptor analysis  

demonstrates the complexity of interactions within the fibrotic niche, highlighting why 

current approaches to treat human liver fibrosis have proven so intractable, and provides 

a conceptual framework for more rational studies of anti-fibrotic therapies in both pre-

clinical animal models and translational systems such as human liver organoid 

cultures5,70,71. Further, this unbiased multi-lineage approach should inform the design 

of combination therapies which will very likely be necessary to achieve effective anti-

fibrotic potency5,6. 

Macrophages and endothelial cells are known to regulate liver fibrosis in rodent 

models13,19,23,44,45. However, little is known regarding the heterogeneity and precise 

molecular definitions of these cell types in human liver disease. Our data demonstrates 
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both the accumulation of discrete monocyte-derived macrophage and endothelial cell 

populations in the fibrotic niche of cirrhotic livers, but also the persistence of spatially 

distinct, non-scar associated resident Kupffer cells and liver sinusoidal endothelial 

cells. This single-cell approach has important implications for therapy development; 

facilitating specific targeting of pathogenic cells without perturbing homeostatic 

function.  

In this era of precision medicine, where molecular profiling guides the development of 

highly targeted therapies, we used scRNA-seq to resolve the key non-parenchymal cell 

subclasses inhabiting the fibrotic niche of human liver cirrhosis. Application of our 

novel scar-associated cell markers could potentially inform molecular pathology-based 

patient stratification, which is fundamental to the prosecution of successful anti-fibrotic 

clinical trials. Our work illustrates the power of single-cell transcriptomics to decode 

the cellular and molecular basis of human organ fibrosis, providing a conceptual 

framework for the discovery of relevant and rational therapeutic targets to treat patients 

with a broad range of fibrotic diseases.  
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Methods  

Study subjects 

Local approval for procuring human liver tissue and blood samples for scRNA-seq, 

flow cytometry and histological analysis was obtained from the NRS BioResource and 

Tissue Governance Unit (Study Number SR574), following review at the East of 

Scotland Research Ethics Service (Reference 15/ES/0094). All subjects provided 

written informed consent. Healthy background non-lesional liver tissue was obtained 

intraoperatively from patients undergoing surgical liver resection for solitary colorectal 

metastasis at the Hepatobiliary and Pancreatic Unit, Department of Clinical Surgery, 

Royal Infirmary of Edinburgh. Patients with a known history of chronic liver disease, 

abnormal liver function tests or those who had received systemic chemotherapy within 

the last four months were excluded from this cohort. Cirrhotic liver tissue was obtained 

intraoperatively from patients undergoing orthotopic liver transplantation at the 

Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh. Blood from patients with 

a confirmed diagnosis of liver cirrhosis were obtained from patients attending the 

Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh. Patients with liver 

cirrhosis due to viral hepatitis were excluded from the study. Patient demographics are 

summarised in Extended Data Fig. 1a. Sorting of macrophage subpopulations from 

cirrhotic livers for analysis of secreted mediators was performed at the University of 

Birmingham, UK. Local ethical approval was obtained (Reference  06/Q2708/11) and 

all patients provided written, informed consent. Liver tissue was acquired from 

explanted diseased livers from patients undergoing orthotopic liver transplantation at 

the Queen Elizabeth Hospital, Birmingham. 

Tissue processing 

For liver scRNA-seq and flow cytometry analysis, a wedge biopsy of non-ischaemic 

fresh liver tissue (2-3 grams) was obtained by the operating surgeon, prior to 

interruption of the hepatic vascular inflow. This was immediately placed in HBSS 

(Gibco) on ice. The tissue was then transported directly to the laboratory and 

dissociation routinely commenced within 20 minutes of the liver biopsy. To enable 

paired histological assessment, a segment of each liver specimen was also fixed in 4% 
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neutral-buffered formalin for 24 hours followed by paraffin-embedding. Additional 

liver samples, obtained via the same method, were fixed in an identical manner and 

used for further histological analysis. For cell sorting to assess secreted mediator 

production, explanted diseased liver tissue (40 grams) was used from patients 

undergoing orthotopic liver transplantation. 

Immunohistochemistry, immunofluorescence and smFISH 

Formalin-fixed paraffin-embedded human liver tissue was cut into 4 μm sections, 

dewaxed, rehydrated, then incubated in 4% neutral-buffered formalin for 20 minutes. 

Following heat-mediated antigen retrieval in pH6 sodium citrate (microwave; 15 

minutes), slides were washed in PBS and incubated in 4% hydrogen peroxide for 10 

minutes. Slides were then washed in PBS, blocked using protein block (GeneTex, 

GTX30963) for 1 hour at room temperature before incubation with primary antibodies 

for 1 hour at room temperature. A full list of primary antibodies and conditions are 

shown in Supplementary Table 16.  Slides were washed in PBST (PBS plus 0.1% 

Tween20; Sigma-Aldrich, P1379) then incubated with ImmPress HRP Polymer 

Detection Reagents (depending on species of primary; rabbit, MP-7401; mouse, MP-

6402-15; goat, MP-7405; all Vector Laboratories) for 30 minutes at room temperature. 

Slides were washed in PBS followed by detection. For DAB staining, sections were 

incubated with DAB (DAKO, K3468) for 5 minutes and washed in PBS before a 

haematoxylin (Vector Laboratories, H3404) counterstain. For multiplex 

immunofluorescence staining, following the incubation with ImmPress and PBS wash, 

initial staining was detected using either Cy3, Cy5, or Fluorescein tyramide (Perkin-

Elmer, NEL741B001KT) at a 1:1000 dilution. Slides were then washed in PBST 

followed by further heat treatment with pH6 sodium citrate (15 minutes), washes in 

PBS, protein block, incubation with the second primary antibody (incubated overnight 

at 4oC), ImmPress Polymer and tyramide as before. This sequence was repeated for the 

third primary antibody (incubated at room temperature for 1 hour) and a DAPI-

containing mountant was then applied (ThermoFisher Scientific, P36931). 

For AMEC Staining (only CLEC4M immunohistochemistry), all washes were carried 

out with TBST (dH2O, 2oomM Tris, 1.5M NaCl, 1% Tween20 (all Sigma-Aldrich) 

pH7.5) and peroxidase blocking was carried out for 30mins in 0.6% hydrogen peroxide 
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in Methanol. Sections were incubated with AMEC (Vector Laboratories, SK-4285) for 

20 minutes and washed in TBST (dH2O, 200mM Tris, 1.5M NaCl, 1% Tween20 (all 

Sigma-Aldrich)) before a haematoxylin (Vector Laboratories, SK-4285) counterstain. 

For combined single-molecule fluorescent in situ hybridization (smFISH) and 

immunofluorescence, detection of TREM2 was performed using the RNAscope® 2.5 

LS Reagent Kit - BrownAssay (Advanced Cell Diagnostics (ACD)) in accordance with 

the manufacturer’s instructions. Briefly, 5 μm tissue sections were dewaxed, incubated 

with endogenous enzyme block, boiled in pretreatment buffer and treated with protease, 

followed by target probe hybridization using the RNAscope® LS 2.5 Hs-TREM2 

(420498, ACD) probe. Target RNA was then detected with Cy3 tyramide (Perkin-

Elmer, NEL744B001KT) at 1:1000 dilution. The sections were then processed through 

a pH6 sodium citrate heat-mediated antigen retrieval, hydrogen peroxidase treatment 

and protein block (all as for multiplex immunofluorescence staining as above). MNDA 

antibody was applied overnight at 4oC, completed using a secondary ImmPress HRP 

Anti-Rabbit Peroxidase IgG (Vector Laboratories, MP7401), visualised using a 

Flourescein tyramide (Perkin-Elmer, NEL741B001KT) at a 1:1000 dilution and stained 

with DAPI. 

Brightfield and fluorescently-stained sections were imaged using the slide scanner 

AxioScan.Z1 (Zeiss) at 20X magnification (40X magnification for smFISH). Images 

were processed and scale bars added using Zen Blue (Zeiss) and Fiji software72. 

Cell counting and image analysis  

Automated cell counting was performed using QuPath software73. Briefly, DAB-

stained whole tissue section slide-scanned images (CZI files) were imported into 

QuPath. Cell counts were carried out using the positive cell detection tool, detecting 

haematoxylin-stained nuclei and then thresholding for positively-stained DAB cells, 

generating DAB-positive cell counts/mm2 tissue. Identical settings and thresholds were 

applied to all slides for a given stain and experiment. For cell counts of fibrotic septae 

vs parenchymal nodules, the QuPath segmentation tool was used to segment the DAB-

stained whole tissue section into fibrotic septae or non-fibrotic parenchymal nodule 

regions using tissue morphological characteristics (Fig. 2j). Positive cell detection was 
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then applied to the fibrotic and non-fibrotic regions in turn, providing cell DAB-positive 

cell counts/mm2 in fibrotic septae and non-fibrotic parenchymal nodules for each tissue 

section. 

Digital morphometric pixel analysis was performed using the Trainable Weka 

Segmentation (TWS) plugin74 in Fiji software72. Briefly, each stained whole tissue 

section slide-scanned image was converted into multiple TIFF files in Zen Blue 

software (Zeiss). TIFF files were imported into Fiji and TWS plugin trained to produce 

a classifier which segments images into areas of positive staining, tissue background 

and white space74. The same trained classifier was then applied to all TIFF images from 

every tissue section for a particular stain, providing a percentage area of positive 

staining for each tissue section.  

Preparation of single-cell suspensions 

For liver scRNA-seq, human liver tissue was minced with scissors and digested in 

5mg/ml pronase (Sigma-Aldrich, P5147-5G), 2.93mg/ml collagenase B (Roche, 

11088815001) and 1.9mg/ml DNase (Roche, 10104159001) at 37°C for 30 minutes 

with agitation (200–250 r.p.m.), then strained through a 120μm nybolt mesh along with 

PEB buffer (PBS, 0.1% BSA, and 2mM EDTA) including DNase (0.02mg/ml). 

Thereafter all processing was done at 4oC. The cell suspension was centrifuged at 400g 

for 7 minutes, supernatant removed, cell pellet resuspended in PEB buffer and DNase 

added (0.02mg/ml), followed by additional centrifugation (400g, 7 minutes). Red blood 

cell lysis was performed (BioLegend, 420301), followed by centrifugation (400g, 7 

minutes), resuspension in PEB buffer and straining through a 35μm filter. Following 

another centrifugation at 400g for 7 minutes, cells were blocked in 10% human serum 

(Sigma-Aldrich, H4522) for 10 minutes at 4oC prior to antibody staining.        

For both liver flow cytometry analysis and cell sorting to assess secreted mediator 

production, single-cell suspensions were prepared as previously described, with minor 

modifications75. In brief, liver tissue was minced and digested in an enzyme cocktail 

0.625 mg/ml collagenase D (Roche, 11088882001), 0.85 mg/ml collagenase V (Sigma-

Aldrich, C9263-1G), 1 mg/ml dispase (Gibco, Invitrogen, 17105-041), and 30 U/ml 

DNase (Roche, 10104159001) in RPMI-1640 at 37°C for 45 minutes with agitation 
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(200–250 r.p.m.), before being passed through a 100μm filter. Following red blood cell 

lysis (BioLegend, 420301), cells were passed through a 35μm filter. Before the addition 

of antibodies, cells were blocked in 10% human serum (Sigma-Aldrich, H4522) for 10 

minutes at 4 °C. 

For  PBMC scRNA-seq, 4.9ml peripheral venous blood samples were collected in 

EDTA-coated tubes (Sarstedt, S-MonovetteÒ 4.9ml K3E)  and placed on ice. Blood 

samples were transferred into a 50ml Falcon tube. Following red cell lysis (Biolegend, 

420301), blood samples were then centrifuged at 500g for 5 minutes and supernatant 

was removed. Pelleted samples were then resuspended in staining buffer (PBS plus 2% 

BSA; Sigma-Aldrich) and centrifugation was repeated. Samples were then blocked in 

10% human serum (Sigma-Aldrich, H4522) in staining buffer on ice for 30 minutes. 

Cells were then resuspended in staining buffer and passed through a 35μm filter prior 

to antibody staining.   

Flow cytometry and cell sorting 

Incubation with primary antibodies was performed for 20 minutes at 4°C. All 

antibodies, conjugates,  lot numbers and dilutions used in this study are presented in 

Supplementary Table 16.  Following antibody staining, cells were washed with PEB 

buffer. For both flow cytometry analysis and cell sorting to assess secreted mediator 

production, cells were then incubated with streptavidin-BV711 for 20 minutes at 4°C 

(Biolegend 405241; Dilution 1:200). 

For cell sorting (FACS), cell viability staining (DAPI; 1:1000 dilution) was then 

performed, immediately prior to acquiring the samples. Cell sorting for scRNA-seq was 

performed on a BD Influx (Becton Dickinson, Basel, Switzerland). Cell sorting to 

assess secreted mediator production  was performed on a BD FACSAriaTM Fusion 

(Becton Dickinson, Basel, Switzerland). 

For flow cytometry analysis, cells were then stained with Zombie NIR fixable viability 

dye (Biolegend, 423105) according to manufacturers’ instructions. Cells were washed 

in PEB then fixed in IC fixation buffer (Thermo-Fisher, 00-8222-49) for 20 minutes at 

4°C. Fixed samples were stored in PEB at 4°C until acquisition. Flow cytometry 
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acquistion was performed on 6-laser Fortessa flow cytometer (Becton Dickinson, Basel, 

Switzerland) and data analyzed using Flowjo software (Treestar, Ashland, TN). 

Analysis of secreted mediators 

To assess secreted mediators produced by macrophage subpopulations from cirrhotic 

livers, FACS-sorted SAMs (Viable CD45+Lin-HLA-DR+CD14+CD16+CD163-

TREM2+CD9+), TMo (Viable CD45+Lin- HLA-DR+CD14+CD16+CD163-) and KCs 

(Viable CD45+Lin- HLA-DR+CD14+CD16+CD163+CD9-) were cultured in 12-well 

plates (Corning, 3513) in DMEM (Gibco, 41965039) containing 2% FBS (Gibco, 

10500056) at 1x106 cells/ml for 24 hours at 37°C. Control wells contained media alone. 

Conditioned media was collected, centrifuged at 400g for 10 minutes and stored at -

80°C. Detection of CCL2, CD163, Galectin-3, IL-1 beta, CXCL8 and Osteopontin 

(SPP1) proteins in conditioned media was performed using a custom human luminex 

assay (R&D systems), according to the manufacturers protocol. Data was acquired 

using a Bio-PlexÒ 200 (Bio-Rad, UK) and is presented a median fluorescence intensity 

(MFI) for each analyte. 

Droplet-based scRNA-seq 

Single cells were processed through the Chromiumä Single Cell Platform using the 

Chromiumä Single Cell 3’ Library and Gel Bead Kit v2 (10X Genomics, PN-120237) 

and the Chromiumä Single Cell A Chip Kit (10X Genomics, PN-120236) as per the 

manufacturer’s protocol. In brief, single cells were sorted into PBS + 0.1% BSA, 

washed twice and counted using a Bio-Rad TC20. 10,769 cells were added to each lane 

of the 10X chip. The cells were then partitioned into Gel Beads in Emulsion in the 

Chromiumä instrument, where cell lysis and barcoded reverse transcription of RNA 

occurred, followed by amplification, fragmentation and 5′ adaptor and sample index 

attachment. Libraries were sequenced on an Illumina HiSeq 4000. 

Pre-processing scRNA-seq data  

We aligned to the GRCh38 reference genome, and estimated cell-containing partitions 

and associated UMIs, using the Cell Ranger v2.1.0 Single-Cell Software Suite from 
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10X Genomics. Genes expressed in fewer than three cells in a sample were excluded, 

as were cells that expressed fewer than 300 genes or mitochondrial gene content >30% 

of the total UMI count. We normalised by dividing the UMI count per gene by the total 

UMI count in the corresponding cell and log-transforming. Variation in UMI counts 

between cells was regressed according to a negative binomial model, before the 

resulting value was scaled and centred by subtracting the mean expression of each gene 

and dividing by its standard deviation (En), then calculating ln(104*En+1). 

Dimensionality reduction, clustering, and DE analysis 

We performed unsupervised clustering and differential gene expression analyses in the 

Seurat R package v2.3.076. In particular we used SNN graph-based clustering, where 

the SNN graph was constructed using between 2 and 11 principal components as 

determined by dataset variability shown in principal components analysis (PCA); the 

resolution parameter to determine the resulting number of clusters was also tuned 

accordingly. To assess cluster similarity we used the BuildClusterTree function from 

Seurat. 

In total, we present scRNA-seq data from ten human liver samples (named Healthy 1-

5 and Cirrhotic 1-5) and five human blood samples (n=4 cirrhotic named Blood 1-4 and 

n=1 healthy named PBMC8K; pbmc8k dataset sourced from single-cell gene 

expression datasets hosted by 10X Genomics). For seven liver samples (Healthy 1-4 

and Cirrhotic 1-3) we performed scRNA-seq on both leucocytes (CD45+) and other 

non-parenchymal cells (CD45-); for the remaining three livers (Healthy 5, Cirrhotic 4-

5) we performed scRNA-seq on leucocytes only (Extended Data Fig. 2e, g).  

Initially, we combined all scRNA-seq datasets (liver and blood) and performed 

clustering analysis with the aim of isolating a population of liver-resident cells, by 

identifying contaminating circulatory cells within datasets generated from liver digests 

and removing them from downstream analysis. Specifically, we removed from our liver 

datasets cells that fell into clusters 1 and 13 of the initial dataset in Extended Data Fig. 

1d. 
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Using further clustering followed by signature analysis, we interrogated this post-

processed liver-resident cell dataset for robust cell lineages. These lineages were 

isolated into individual datasets, and the process was iterated to identify robust lineage 

subpopulations. At each stage of this process we removed clusters expressing more than 

one unique lineage signature in more than 25% of their cells from the dataset as 

probable doublets. Where the cell proliferation signature identified distinct cycling 

subpopulations, we re-clustered these again to ascertain the identity of their constituent 

cells. 

All heatmaps, t-SNE and UMAP visualisations, violin plots, and dot plots were 

produced using Seurat functions in conjunction with the ggplot2, pheatmap, and grid 

R packages. t-SNE and UMAP visualisations were constructed using the same number 

of principal components as the associated clustering, with perplexity ranging from 30 

to 300 according to the number of cells in the dataset or lineage. We conducted 

differential gene expression analysis in Seurat using the standard AUC classifier to 

assess significance. We retained only those genes with a log-fold change of at least 0.25 

and expression in at least 25% of cells in the cluster under comparison. 

Defining cell lineage signatures 

For each cell we obtained a signature score across a curated list of known marker genes 

per cell lineage in the liver (Supplementary Table 1). This signature score was defined 

as the geometric mean of the expression of the associated signature genes in that cell. 

Lineage signature scores were scaled from 0 to 1 across the dataset, and the score for 

each cell with signature less than a given threshold (the mean of said signature score 

across the entire dataset) was set as 0. 

Batch effect and quality control 

To investigate agreement between samples we extracted the average expression profile 

for a given cell lineage in each sample, and calculated the Pearson correlation 

coefficients between all possible pairwise comparisons of samples per lineage77.  

Imputing dropout in T cell and ILC clusters 
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To impute dropout of low-abundance transcripts in our T cell and ILC clusters so that 

we might associate them with known subpopulations, we down-sampled to 7,380 cells 

from 36,900 and applied the scImpute R package v0.0.878, using as input both our 

previous annotation labels and k-means spectral clustering (k=5), but otherwise default 

parameters. 

Analysing functional phenotypes of scar-associated cells 

For further analysis of function we adopted the self-organising maps (SOM) approach 

as implemented in the SCRAT R package v1.0.079. For each lineage of interest we 

constructed a SOM in SCRAT using default input parameters and according to its 

clusters. We defined the signatures expressed in a cell by applying a threshold criterion 

(ethresh = 0.95 × emax) selecting the highest-expressed metagenes in each cell, and 

identified for further analysis those metagene signatures defining at least 30% of cells 

in at least one cluster within the lineage. We smoothed these SOMs using the 

disaggregate function from the raster R package for visualisation purposes, and scaled 

radar plots to maximum proportional expression of the signature. Gene ontology 

enrichment analysis on the genes in these spots was performed using PANTHER 13.1 

(pantherdb.org). 

Inferring injury dynamics and transcriptional regulation 

To generate cellular trajectories (pseudotemporal dynamics) we used the monocle R 

package v2.6.180. We ordered cells in a semi-supervised manner based on their Seurat 

clustering, scaled the resulting pseudotime values from 0 to 1, and mapped them onto 

either the t-SNE or UMAP visualisations generated by Seurat or diffusion maps as 

implemented in the scater R package v1.4.081 using the top 500 variable genes as input. 

We removed mitochondrial and ribosomal genes from the geneset for the purposes of 

trajectory analysis. Differentially-expressed genes along this trajectory were identified 

using generalised linear models via the differentialGeneTest function in monocle. 

When determining significance for differential gene expression along the trajectory, we 

set a q-value threshold of 1e-20. We clustered these genes using hierarchical clustering 

in pheatmap, cutting the tree at k=3 to obtain gene modules with correlated gene 
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expression across pseudotime. Cubic smoothing spline curves were fitted to scaled gene 

expression along this trajectory using the smooth.spline command from the stats R 

package, and gene ontology enrichment analysis again performed using PANTHER 

13.1. 

We verified the trajectory and its directionality using the velocyto R package v0.6.033, 

estimating cell velocities from their spliced and unspliced mRNA content. We 

generated annotated spliced and unspliced reads from the 10X BAM files via the 

dropEst pipeline, before calculating gene-relative velocity using kNN pooling with 

k=25, determining slope gamma with the entire range of cellular expression, and fitting 

gene offsets using spanning reads. Aggregate velocity fields (using Gaussian smoothing 

on a regular grid) and transition probabilities per lineage subpopulations were 

visualised on t-SNE, UMAP, or diffusion map visualisations as generated previously. 

Gene-specific phase portraits were plotted by calculating spliced and unspliced mRNA 

levels against steady-state inferred by a linear model; levels of unspliced mRNA above 

and below this steady-state indicate increasing and decreasing expression of said gene, 

respectively. Similarly we plotted unspliced count signal residual per gene, based on 

the estimated gamma fit, with positive and negative residuals indicating expected 

upregulation and downregulation respectively. 

For transcription factor analysis, we obtained a list of all genes identified as acting as 

transcription factors in humans from AnimalTFDB82. To further analyse transcription 

factor regulons, we adopted the SCENIC v0.1.7 workflow in R83, using default 

parameters and the normalised data matrices from Seurat as input. For visualisation, we 

mapped the regulon activity (AUC) scores thus generated to the pseudotemporal 

trajectories from monocle and the clustering subpopulations from Seurat. 

Analysing inter-lineage interactions within the fibrotic niche 

For comprehensive systematic analysis of inter-lineage interactions within the fibrotic 

niche we used CellPhoneDB61. CellPhoneDB is a manually curated repository of 

ligands, receptors, and their interactions, integrated with a statistical framework for 

inferring cell-cell communication networks from single-cell transcriptomic data. In 

brief, we derived potential ligand-receptor interactions based on expression of a 
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receptor by one lineage subpopulation and a ligand by another; as input to this algorithm 

we used cells from the fibrotic niche as well as liver sinusoidal endothelial cells and 

Kupffer cells as control, and we considered only ligands and receptors expressed in 

greater than 5% of the cells in any given subpopulation. Subpopulation-specific 

interactions were identified as follows: 1) randomly permuting the cluster labels of all 

cells 1000 times and determining the mean of the average receptor expression of a 

subpopulation and the average ligand expression of the interacting subpopulation, thus 

generating a null distribution for each ligand-receptor pair in each pairwise comparison 

between subpopulations, 2) calculating the proportion of these means that were "as or 

more extreme" than the actual mean, thus obtaining a p-value for the likelihood of 

subpopulation specificity for a given ligand-receptor pair, 3) prioritising interactions 

that displayed specificity to subpopulations interacting within the fibrotic niche. 

Statistical Analysis 

To assess whether our identified subpopulations were significantly overexpressed in 

injury, we posited the proportion of injured cells in each cluster as a random count 

variable using a Poisson process, as previously described77. We modelled the rate of 

detection using the total number of cells in the lineage profiled in a given sample as an 

offset, with the condition of each sample (healthy vs cirrhotic) provided as a covariate 

factor. The model was fitted using the R command glm from the stats package. The p-

value for the significance of the proportion of injured cells was assessed using a Wald 

test on the regression coefficient. This methodology was also applied to assess 

significant changes in proportions of mononuclear phagocytes between healthy and 

cirrhotic liver tissue by flow cytometry. 

Remaining statistical analyses were performed using GraphPad Prism (GraphPad 

Software, USA). Comparison of changes in histological cell counts or morphometric 

pixel analysis between healthy and cirrhotic livers were performed using a Mann-

Whitney test (unpaired; two-tailed). Comparison of topographical localisation of 

counted cells (fibrotic septae vs parenchymal nodule) was performed using a Wilcoxon 

matched-pairs signed rank test (paired; two-tailed). P-values<0.05 were considered 

statistically significant. 
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Data and materials availability 

Our expression data will be freely available for user-friendly interactive browsing 

online http://www.livercellatlas.mvm.ed.ac.uk. CellPhoneDB61 is available at 

www.CellPhoneDB.org, along with lists of membrane proteins, ligands and receptors, 

and heteromeric complexes. All raw sequencing data is available in the Gene 

Expression Omnibus (GEO accession GSE136103). 

Code availability 

R scripts enabling the main steps of the analysis are available from the corresponding 

authors on reasonable request. 
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Figure 1: Single cell atlas of human liver non-parenchymal cells. 

a, Overview: extraction of non-parenchymal cells (NPC) from healthy or cirrhotic 

human liver, followed by fluorescence-activated cell sorting (FACS) into leucocyte 

(CD45+) and other NPC fractions (CD45-) for droplet-based 3' single-cell RNA-seq. b, 

t-SNE visualisation: clustering (colour) 66,135 non-parenchymal cells (points; n=5 

healthy and n=5 cirrhotic human livers). c, t-SNE visualisation: injury condition 

(colour; healthy versus cirrhotic). d, t-SNE visualisation: cell lineage (colour) inferred 

from expression of known marker gene signatures. Endo, endothelial cell; ILC, innate 

lymphoid cell; Mast, mast cell; Mes, mesenchymal cell; MP, mononuclear phagocyte; 

pDC, plasmacytoid dendritic cell. e, Scaled heatmap (red, high; blue, low): cluster 

marker genes (top, colour coded and numbered by cluster and colour coded by 

condition) and exemplar genes and lineage annotation labelled (right). Cells columns, 

genes rows.  
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Figure 2: Identifying scar-associated macrophage subpopulations. 

a, t-SNE visualisation: clustering 10,737 mononuclear phagocytes (MP) into 10 clusters 

(colour and number). Annotation of clusters (identity). TMo, tissue monocyte; SAM, 

scar-associated macrophage; KC, Kupffer cell; cDC, conventional dendritic cell. b, t-

SNE visualisation: annotating MP cells by injury condition (colour). c, Fractions of MP 

subpopulations in healthy (n=5) versus cirrhotic (n=5) livers, Wald. d, Scaled heatmap 

(red, high; blue, low): MP cluster marker genes (top, colour coded by cluster and 

condition), exemplar genes labelled (right). Cells columns, genes rows. e, Violin plots: 

scar-associated macrophage and tissue monocyte cluster markers. f, Representative 

flow cytometry plots: quantifying TREM2+CD9+ MP fraction by flow cytometry in 

healthy (n=2) versus cirrhotic (n=3) liver, Wald. g, Representative 

immunofluorescence micrograph, cirrhotic liver: TREM2 (red), CD9 (white), collagen 

1 (green), DAPI (blue). Scale bar, 50μm. h, Automated cell counting: TREM2 staining, 

healthy (n=10) versus cirrhotic (n=9) liver, Mann-Whitney. i, Automated cell counting: 

CD9 staining, healthy (n=12) versus cirrhotic (n=10) liver, Mann-Whitney. j, 

Topographically assessing scar-associated macrophages: exemplar tissue segmentation 

(left), stained section morphologically segmented into fibrotic septae (orange) and 

parenchymal nodules (purple)). TREM2+, CD9+, TIMD4+ and MARCO+ automated 

cell counts (right) in parenchymal nodules versus fibrotic septae, Wilcoxon. Error bars, 

s.e.m.; * p-value<0.05; ** p-value < 0.01; *** p-value < 0.001.  
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Figure 3: Fibrogenic phenotype of scar-associated macrophages. 

a, Self-Organising Map (SOM; 60x60 grid): smoothed scaled metagene expression of 

mononuclear phagocyte (MP) lineage. 20,952 genes, 3,600 metagenes, 44 signatures. 

A-F label metagene signatures overexpressed in one or more MP subpopulations. b, 

Radar plots (left): metagene signatures A-C showing distribution of signature 

expression across MP subpopulations, exemplar genes (middle) and gene ontology 

(GO) enrichment (right). c, Diffusion map visualisation, blood monocytes and liver-

resident MP lineages (23,075 cells), annotating monocle pseudotemporal dynamics 

(purple to yellow). RNA velocity field (red arrows) visualised using Gaussian 

smoothing on regular grid. Below: Annotation of MP subpopulation, injury condition. 

d, UMAP visualisation, blood monocytes and liver-resident MP lineages, annotating 

monocle pseudotemporal dynamics (purple to yellow). RNA velocity field (red arrows) 

visualised using Gaussian smoothing on regular grid. Below: Annotation of MP 

subpopulation, injury condition. e, Unspliced-spliced phase portraits (top row), cells 

coloured as in d, for monocyte (MNDA), SAM (CD9) and KC marker genes (TIMD4). 

Cells plotted above or below the steady-state (black dashed line) indicate increasing or 

decreasing expression of gene, respectively. Spliced expression profile for genes 

(middle row; red high, blue low). Unspliced residuals (bottom row), positive (red) 

indicating expected upregulation, negative (blue) indicating expected downregulation 

for genes. MNDA displays negative velocity in SAMs, CD9 displays positive velocity 

in monocytes and SAMs, TIMD4 velocity is restricted to KCs. f, UMAP visualisation, 

transition probabilities per SAM subpopulation, indicating for each cell the likelihood 

of transition into either SAM(1) or SAM(2), calculated using RNA velocity (yellow 

high; purple low; grey below threshold of 2x10-4). g, Scaled heatmap (red, high; blue 

low): cubic smoothing spline curves fitted to genes differentially expressed across 

blood monocyte-to-SAM (right arrow) and blood monocyte-to-cDC (left arrow) 

pseudotemporal trajectories, grouped by hierarchical clustering (k=3). Gene co-

expression modules (colour) labelled right. h, Cubic smoothing spline curve fitted to 

averaged expression of all genes in module 1, along monocyte-SAM pseudotemporal 

trajectory, selected GO enrichment (right) and curves fit to exemplar genes (below).  
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Figure 4: Identifying scar-associated endothelial subpopulations. 

a, t-SNE visualisation: clustering 8,020 endothelial cells, annotating injury condition. 

b, Fractions of endothelial subpopulations in healthy (n=4) versus cirrhotic (n=3) livers, 

Wald. c, Scaled heatmap (red, high; blue, low): endothelial cluster marker genes (colour 

coded top by cluster and condition), exemplar genes labelled right. Cells columns, 

genes rows. d, Representative immunofluorescence micrograph, healthy versus 

cirrhotic liver: CD34 (red), CLEC4M (white), PLVAP (green), DAPI (blue). e, 

Representative immunofluorescence micrographs, healthy versus cirrhotic liver: 

RSPO3, PDPN, AIF1L or ACKR1 (red), CD34 (white), PLVAP (green), DAPI (blue).  

f, Digital morphometric pixel quantification: CLEC4M staining healthy (n=5) versus 

cirrhotic (n=8), PLVAP staining healthy (n=11) versus cirrhotic (n=11), ACKR1 

staining healthy (n=10) versus cirrhotic (n=10), Mann-Whitney. g, Scaled heatmap 

(red, high; blue, low): endothelial cluster marker transcription factor regulons (colour 

coded top by cluster and condition), exemplar regulons labelled right. Cells in columns, 

regulons in rows. Scale bars, 50μm. Error bars, s.e.m.; * p-value < 0.05, ** p-value < 

0.01, *** p-value < 0.001.  
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Figure 5: Multi-lineage interactions in the fibrotic niche. 

a, t-SNE visualisation: clustering 2,210 mesenchymal cells, annotating injury 

condition. b, Violin plots: mesenchymal and myofibroblast cluster markers. c, Fractions 

of mesenchymal subpopulations in healthy (n=4) versus cirrhotic (n=3) livers, Wald. d, 

Digital morphometric pixel quantification: PDGFRα staining, healthy (n=11) versus 

cirrhotic (n=11) liver, Mann-Whitney. e, Representative immunofluorescence 

micrograph, fibrotic niche in cirrhotic liver: TREM2 (red), PLVAP (white), PDGFRα 

(green), DAPI (blue). f, Representative immunofluorescence micrograph, fibrotic niche 

in cirrhotic liver: TREM2 (red), ACKR1 (white), PDGFRα (green), DAPI (blue). g, 

Circle plot: potential interaction magnitude from ligands expressed by scar-associated 

macrophages and endothelial cells to receptors expressed on myofibroblasts. h, Circle 

plot: potential interaction magnitude from ligands expressed by myofibroblasts to 

receptors expressed on scar-associated macrophages and endothelial cells. i, Dotplot: 

selected ligand-receptor interactions between myofibroblasts and scar-associated 

macrophages and endothelial cells in fibrotic niche. x-axis, ligand (red) and cognate 

receptor (blue); y-axis, ligand-expressing cell population (red) and receptor-expressing 

cell population (blue). Circle size indicates p-value, colour (red, high; yellow, low) 

indicates means of average ligand and receptor expression levels in interacting 

subpopulations. j to n, Representative immunofluorescence micrographs, fibrotic niche 

in cirrhotic liver.  j, TREM2 (red), PDGFB (white), PDGFRα (green), DAPI (blue), 

arrows TREM2+PDGFB+ cells. k, IL1R1 (red), IL-1b (white), PDGFRα (green), DAPI 

(blue), arrows IL1R1+PDGFRα+ cells. l, TNFRSF12A (red), TNFSF12 (white), 

PDGFRα (green), DAPI (blue), arrows TNFRSF12A+PDGFRα+ cells. m, CCL2 (red), 

CCR2 (white), PDGFRα (green), DAPI (blue), arrows CCL2+PDGFRα+ cells. n, 

NOTCH3 (red), DLL4 (white), PDGFRα (green), DAPI (blue), arrows 

NOTCH3+PDGFRα+ cells. Scale bars, 50μm. Error bars, s.e.m.; *** p-value < 0.001.  
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Figure 6: Schematic diagram of cellular interactions in the fibrotic niche of 

cirrhotic human liver.  
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Extended Data Figure 1: Strategy for isolation of human liver non-parenchymal 

cells. 

a, Patient demographics and clinical information. b, Representative flow cytometry 

plots: gating strategy for isolating leucocytes (CD45+) and other non-parenchymal cells 

(CD45-) from healthy and cirrhotic liver. c, Representative flow cytometry plots: gating 

strategy for isolating peripheral blood mononuclear cells (PBMC). d, t-SNE 

visualisation: clustering 103,568 cells (n=5 healthy human livers, n=5 cirrhotic human 

livers, n=1 healthy PBMC, n=4 cirrhotic PBMC), annotating source (PBMC versus 

liver) and cell lineage inferred from known marker gene signatures. Endo, endothelial 

cell; ILC, innate lymphoid cell; Mast, mast cell; Mes, mesenchymal cell; MP, 

mononuclear phagocyte; pDC, plasmacytoid dendritic cell. e, Dotplot: annotating 

PBMC and liver dataset clusters by lineage signatures. Circle size indicates cell fraction 

expressing signature greater than mean; colour indicates mean signature expression 

(red, high; blue, low). f, Violin plots: number of unique genes (nGene) and number of 

total Unique Molecular Identifiers (nUMI) expressed in PBMC. g, Pie charts: 

proportion of cell lineage per PBMC sample. h, Box and whisker plot: agreement in 

expression profiles across PBMC samples. Pearson correlation coefficients between 

average expression profiles for cell in each lineage, across all pairs of samples. Black 

bar, median value; box edges, 25th and 75th percentiles; whiskers, full range.  
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Extended Data Figure 2: Quality control and annotation of human liver-resident 

cells.  

a, t-SNE visualisation: lineage signature expression across liver-resident cell dataset 

(red, high; blue, low). b, Dotplot: annotating liver-resident cell clusters by lineage 

signature. Circle size indicates cell fraction expressing signature greater than mean; 

colour indicates mean signature expression (red, high; blue, low). c, Violin plot: number 

of unique genes (nGene) expressed across liver-resident cell lineages in healthy versus 

cirrhotic livers. d, Violin plot: number of total Unique Molecular Identifiers (nUMI) 

expressed across liver-resident cell lineages in healthy versus cirrhotic livers. e, Pie 

charts: proportion of cell lineage per liver sample. f, Box and whisker plot: agreement 

in expression profiles across liver samples. Pearson correlation coefficients between 

average expression profiles for cell in each lineage, across all pairs of samples. Black 

bar, median value; box edges, 25th and 75th percentiles; whiskers, range. g, t-SNE 

visualisation: liver-resident dataset per liver sample.  
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Extended Data Figure 3: Annotating human liver lymphoid cells.  

a, t-SNE visualisation: clustering 36,900 T cells and innate lymphoid cells (ILC), 

annotating injury condition. cNK, cytotoxic NK cell. b, Fractions of T cell and ILC 

subpopulations in healthy (n=5) versus cirrhotic (n=5) livers, Wald. c, t-SNE 

visualisations: selected genes expressed in the T cell and ILC lineage. d, Scaled 

heatmap (red, high; blue, low): T cell and ILC cluster marker genes (colour coded top 

by cluster and condition), exemplar genes labelled right. Cells columns, genes rows. e, 

t-SNE visualisations: downsampled T cell and ILC dataset (7,380 cells) pre- and post-

imputation; annotating data used for visualisation and clustering, inferred lineage, 

injury condition. No additional heterogeneity was observed following imputation. f, t-

SNE visualisation: clustering 2,746 B cells and plasma cells, annotating injury 

condition. g, Scaled heatmap (red, high; blue, low): B cell and plasma cell cluster 

marker genes (colour coded top by cluster and condition), exemplar genes labelled 

right. Cells columns, genes rows. h, Fractions of B cell and plasma cell subpopulations 

in healthy (n=5) versus cirrhotic (n=5) livers, Wald. Error bars, s.e.m.; *** p-value < 

0.001.  
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Extended Data Figure 4: Annotating human liver mononuclear phagocytes. 

a, t-SNE visualisation: clustering and selected genes expressed in mononuclear 

phagocyte (MP) lineage. b, Violin plots: Kupffer cell (KC) cluster markers. c, 

Representative immunofluorescence micrograph, healthy versus cirrhotic liver: TIMD4 

(red), CD163 (white), MARCO (green), DAPI (blue), arrows 

CD163+MARCO+TIMD4- cells. d, Automated cell counting: TIMD4 staining, healthy 

(n=12) versus cirrhotic (n=9) liver, Mann-Whitney. e, Automated cell counting: 

MARCO staining, healthy (n=8) versus cirrhotic (n=8) liver, Mann-Whitney. f, 

Representative flow cytometry plots: gating strategy for identifying KC, TMo and 

SAMs. SAMs are detected as TREM2+CD9+ cells within the TMo and SAM gate (see 

Fig. 2f). g, Representative immunofluorescence micrograph, cirrhotic liver: TREM2 

(red), MNDA (white), collagen 1 (green), DAPI (blue). h, Representative micrograph, 

cirrhotic liver: TREM2 (smFISH; red), MNDA (immunofluorescence; green), DAPI 

(blue). i, Representative immunofluorescence micrograph, cirrhotic liver: CD9 (red), 

MNDA (white), collagen 1 (green), DAPI (blue). j, Violin plots: cycling MP cluster 

markers. k, Fractions of cycling MP subpopulations in healthy (n=5) versus cirrhotic 

(n=5) livers, Wald. Scale bars, 50μm. Error bars, s.e.m.; * p-value < 0.05, *** p-value 

< 0.001.  
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Extended Data Figure 5:  Phenotypic characterisation of mononuclear 

phagocytes in healthy and cirrhotic human livers. 

a, Self-Organising Map (SOM; 60x60 grid): smoothed mean metagene expression 

profile for mononuclear phagocyte (MP) subpopulations. b, Radar plots (left): 

metagene signatures D-F showing distribution of signature expression across MP 

subpopulations, exemplar genes (middle) and gene ontology (GO) enrichment (right). 

c, Luminex assay: quantification of levels of stated proteins in culture medium from 

FACS-isolated SAMs (n=3), KCs (n=2), TMo (n=2) and control (media alone, n=2).  

MFI, median fluorescence intensity. d, Cubic smoothing spline curve fitted to averaged 

expression of all genes in module 2 from blood monocyte-SAM pseudotemporal 

trajectory, selected GO enrichment (right) and curves fit to exemplar genes (below). e, 

Cubic smoothing spline curve fitted to averaged expression of all genes in module 3 

from blood monocyte-cDC pseudotemporal trajectory, GO enrichment (right) and 

curves fit to exemplar genes (below). f, Scaled heatmap (red, high; blue, low): 

transcription factor regulons across MP pseudotemporal trajectory and in KCs. Colour 

coded top by MP cluster, condition and pseudotime, selected regulons labelled right. 

Cells columns, regulons rows. g, Violin plots: selected regulons expressed across MP 

clusters.  
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Extended Data Figure 6: Phenotypic characterisation of endothelial cells in 

healthy and cirrhotic human livers. 

a, t-SNE visualisations: clusters and selected genes expressed in endothelial lineage. b, 

Violin plots: endothelial cluster marker genes. c, Self-Organising Map (SOM; 60 x 60 

grid): smoothed scaled metagene expression of endothelia lineage. 21,237 genes, 3,600 

metagenes, 45 signatures. A-E label metagene signatures overexpressed in one or more 

endothelial subpopulations. d, SOM: smoothed mean metagene expression profile for 

each endothelial subpopulation. e, Radar plots (left): metagene signatures A-E showing 

distribution of signature expression across endothelial subpopulations, exemplar genes 

(middle) and gene ontology (GO) enrichment (right). f, t-SNE visualisation: endothelia 

subpopulation annotation, injury condition. g, t-SNE visualisation: endothelial lineage 

annotated by monocle pseudotemporal dynamics (purple to yellow; grey indicates lack 

of inferred trajectory). RNA velocities (red arrows) visualised using Gaussian 

smoothing on regular grid.  
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Extended Data Figure 7: Scar-associated macrophage and endothelial cell 

interactions in the fibrotic niche. 

a, Scaled heatmap (red, high; blue, low): mesenchymal cluster marker genes (colour 

coded top by cluster and condition), exemplar genes labelled right. Cells columns, 

genes rows. b, Circle plots: potential interaction magnitude between ligands expressed 

by and receptors expressed on scar-associated macrophages and endothelial cells. c, 

Dotplot: selected ligand-receptor interactions between scar-associated macrophages 

and endothelial cells in fibrotic niche. x-axis, ligand (red) and cognate receptor (blue); 

y-axis, ligand-expressing cell population (red) and receptor-expressing cell population 

(blue). P-values indicated by circle size, means of average ligand and receptor 

expression levels in interacting subpopulations indicated by colour (red, high; yellow, 

low). TAM, TAM receptor tyrosine kinases. d to h, Representative 

immunofluorescence micrographs, fibrotic niche in cirrhotic liver. d, TREM2 (red), 

CXCL12 (white), CXCR4 (green), DAPI (blue), arrows TREM2+CXCR4+ cells. e, 

TREM2 (red), FLT1 (white), VEGFA (green), DAPI (blue), arrows TREM2+VEGFA+ 

cells. f, ANGPT1 (red), TEK(white), PDGFRa (green), DAPI (blue), arrows 

ANGPT1+PDGFRa+ cells. g, TREM2 (red), CD200 (white), CD200R (green), DAPI 

(blue), arrows TREM2+CD200R+ cells. h, TREM2 (red), DLL4 (white), NOTCH2 

(green), DAPI (blue), arrows TREM2+NOTCH2+ cells.  Scale bars, 50μm. 
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Extended Data Figure 7
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