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Abstract 17 

Background: Electrocardiogram (ECG) is widely used to detect cardiac arrhythmia (CA) and 18 

heart diseases. The development of deep learning modeling tools and publicly available large 19 

ECG data in recent years has made accurate machine diagnosis of CA an attractive task to 20 

showcase the power of artificial intelligence (AI) in clinical applications. 21 

Methods and Findings: We have developed a convolution neural network (CNN)-based model 22 

to detect and classify nine types of heart rhythms using a large 12-lead ECG dataset (6877 23 
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recordings) provided by the China Physiological Signal Challenge (CPSC) 2018. Our model 24 

achieved a median overall F1-score of 0.84 for the 9-type classification on CPSC2018’s hidden 25 

test set (2954 ECG recordings), which ranked first in this latest AI competition of ECG-based 26 

CA diagnosis challenge. Further analysis showed that concurrent CAs observed in the same 27 

patient were adequately predicted for the 476 patients diagnosed with multiple CA types in the 28 

dataset. Analysis also showed that the performances of using only single lead data were only 29 

slightly worse than using the full 12 lead data, with leads aVR and V1 being the most prominent. 30 

These results are extensively discussed in the context of their agreement with and relevance to 31 

clinical observations. 32 

Conclusions: An AI model for automatic CA diagnosis achieving state-of-the-art accuracy was 33 

developed as the result of a community-based AI challenge advocating open-source research. In-34 

depth analysis further reveals the model’s ability for concurrent CA diagnosis and potential use 35 

of certain single leads such as aVR in clinical applications.  36 

  37 

Abbreviations: CA, cardiac arrhythmia; AF, Atrial fibrillation; I-AVB, first-degree 38 

atrioventricular block; LBBB, left bundle branch block; RBBB, right bundle branch block; PAC, 39 

premature atrial contraction; PVC, premature ventricular contraction; STD, ST-segment 40 

depression; STE, ST-segment elevation. 41 

 42 

Introduction  43 

Cardiac arrhythmias (CAs) are harbingers of cardiovascular diseases and could cause 44 

deaths [1]. CAs are diagnosed by electrocardiogram (ECG), a non-invasive, inexpensive and 45 

widely applied clinical method to monitor heart activities. To diagnose CAs, the wave-like 46 
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features known as P wave, QRS wave, T wave, etc. of ECG are examined. A complete ECG 47 

usually contains recordings from six limb leads (I, II, III, aVR, aVL, aVF) and six chest leads 48 

(V1, V2, V3, V4, V5, V6), with each lead measuring electrical activity from a different angle of 49 

the heart on both the vertical plane (for limb leads) and the horizontal plane (for chest leads) [2, 50 

3]. 51 

These different leads exhibit distinct features of ECG signals associated with specific types 52 

of CA. The following are some examples. Atrial fibrillation (AF) is characterized by the 53 

fibrillatory atrial waves and irregular conduction of QRS [4, 5]. Left bundle branch block (LBBB) 54 

is diagnosed by the distinct QRS morphology at leads I, aVL, V1, V2, V5, and V6, while right 55 

bundle branch block (RBBB) is diagnosed by the rsR’ pattern at V1 and V2 [6]. First-degree 56 

atrioventricular block (I-AVB) is defined as constant PR intervals longer than 0.2 second [7]. 57 

The premature atrial contraction (PAC) and  premature ventricular contraction (PVC) indicate 58 

the electrical impulse from an abnormal site: Namely, the P wave or QRS morphology of PAC 59 

and PVC is different from those in normal heart beats [8, 9]. ST segment is abnormal if ST-60 

segment elevation (STE) is greater than 0.1 mV or ST-segment depression (STD) is greater than 61 

0.1 mV [10].  62 

To reliably recognize these complex CA-associated ECG characteristics, considerable 63 

training is required. Indeed, studies have shown that internists or cardiologists sometimes 64 

misdiagnosed CA types [11, 12]. The significant growth of ECG examination which increases 65 

physician's workload and burnout aggravates the problem. This problem can be alleviated by 66 

developing computer algorithms to assist the physician with accurate and automatic diagnosis. 67 
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Although such a task is difficult owing to the large variance in the geometrical and physiological 68 

features of ECG signals [13], significant progress has been made, especially in recent years [14].  69 

There are generally two approaches to develop an automatic CA diagnostic tool. The first 70 

one would split ECG signals into the units of the heartbeat, or cycles of the characteristic ECG 71 

waveforms. Thus, even with a small number of subjects, this beat-based approach can generate a 72 

large amount of beat data for machine learning to train predictive classification models. However, 73 

extracting ECG morphological features to delineate ECG signals proves challenging, as it is 74 

often an imprecise undertaking [14]. And while prediction accuracies as high as >99% have been 75 

reported in beat-based studies, they could be masked by the fact that both training and test beats 76 

can come from the same individual. As a result in one study, when test beats were taken from 77 

patients not included in the training set, the cross validation accuracy of a six types CA 78 

classification decreased from 99.7% to 81.5% [15].  79 

The MIT-BIH Arrhythmia Database (MIT-BIH AD) [16, 17] and the UCI Machine 80 

Learning Repository: Arrhythmia Data Set (UCIAD) [18], which respectively contain only 48 81 

and 452 subjects, have been the source of publicly available ECG data for most of previous CA 82 

prediction studies. However, databases of a small number of subjects such as these two would 83 

tend to cause over-fitting problems for classification, especially for neural network algorithms 84 

[19]. Data over-fitting would also arise from significantly unbalanced data, i.e., data being 85 

unproportionally concentrated in one or few CA types. These are problems that can produce 86 

biased results when analyzing MIT-BIH AD and UCIAD [20, 21]. For instance, in a study 87 

analyzing UCIAD, a high accuracy (92%) of CA classification was achieved when data were 88 

split into 80% in the training set and 20% in the test set, but the accuracy dropped to only 60% 89 
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when the training-test splitting was 50-50 [20]. Additional drawbacks of using the two databases 90 

are that ECG data only included two leads (e.g. leads II and V1, II and V5, II and V4, and V2 91 

and V4) in MIT-BIH AD, and only extracted features (average width of Q, amplitude of Q, etc.) 92 

but not the raw data of 12-lead ECG are available in UCIAD.  93 

The second approach provides an end-to-end solution, avoiding the main difficulty of the 94 

beat-based approach. This requires a very large ECG database as well as the construction of a 95 

suitable deep learning artificial neural network to take advantage of the large database. 96 

Developments on both aspects in recent years have made the second approach increasingly 97 

attractive. For example, to promote open-source research, the PhysioNet/Computing in 98 

Cardiology Challenge 2017 (CinC2017) released single-lead (lead I) ECG data of 8,528 subjects 99 

with four labeled CA types (AF, normal, other rhythms, noise) to the public [22]. Using 100 

convolutional neural network (CNN) plus 3 layers of long short-term memory (LSTM, one kind 101 

of recurrent neural network (RNN)), Xiong et al. produced the top performance of CinC2017 102 

with an F1 score (the harmonic mean of the precision and recall) of 0.82 on its hidden test set 103 

(3,658 subjects) [23]. 104 

As CinC2017, The China Physiological Signal Challenge 2018 (CPSC2018) hosted by the 105 

7th International Conference on Biomedical Engineering and Biotechnology [24] released a large 106 

ECG database for free download and set aside a hidden test set to assess models submitted by 107 

challenge participants from around the world. Different from CinC2017, the ECG data of 108 

CPSC2018 were 12–lead and subjects were grouped into normal and eight types of CA: AF, I-109 

AVB, LBBB, RBBB, PAC, PVC, STD, and STE. This represents the biggest 12–lead ECG 110 

database with the most labeled CA types in the public domain to date. Here, we report a deep 111 
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learning artificial neural network modeling of the CPSC2018 ECG data, and the results that won 112 

the first place in the competition. 113 

 114 

Methods 115 

The CPSC2018 ECG database has been described in detail by Liu and coworkers [24]. 116 

Briefly, a total of 9831 12–lead ECG recordings from 9458 individuals were collected from 117 

eleven hospitals in China. The ECG was sampled by a frequency of 500 Hertz for a few seconds 118 

to a minute, with a few exceptions including one lasting as long as 144 seconds. Each recording 119 

was also labeled as the normal type or eight abnormal CA types as mentioned above. The 120 

database was divided by a random 70-30 training-test split, and only the training set was made 121 

available to the public. Gender and age distribution between the training set and the test set were 122 

fairly balanced, so were the distributions of the subjects from the eleven hospitals and the CA 123 

types [25]. Of the 6877 training-set recordings, 470 received two CA-type labels and 6 received 124 

three.  125 

Our model was built on a combined architecture of five CNN blocks, followed by a 126 

bidirectional gated recurrent unit (GRU), an attention layer [26, 27], and finally a dense, i.e. fully 127 

connected, layer (Fig 1). Within each CNN block there were two convolution layers and they 128 

were followed by a pooling layer to reduce the amount of parameters and computation in the 129 

network and control over-fitting [28]. Furthermore, between these CNN blocks or between other 130 

independent layers, including the one between the last CNN block and the bidirectional GRU 131 

layer, we randomly dropped 20% of their connections. We chose to use CNN and RNN because 132 

of their demonstrated ability to handle noisy signals and time series data in studies which 133 
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included ECG classification [29, 30]. GRU is a new form of RNN proposed recently that can 134 

require less training time and less number of iterations than LSTM [31, 32]. We used batch 135 

normalization to adjust and scale the input from the attention layer, which determines a vector of 136 

importance weights, to the dense layer [33]. LeakyReLU activation function, a leaky version of 137 

Rectified Linear Unit, was used for each layer, except for the dense layer, where Sigmoid 138 

activation function was used [34].  139 

 140 

Fig 1. The architecture of deep learning artificial neural network for 12-lead ECG CA 141 

detection and classification.  142 

Layers and blocks are specified in rectangle boxes; “X5” indicates that five  convolution neural network 143 

(CNN) blocks are tandem-connected before connecting to the bidirectional recurrent neural network 144 

(RNN) layer, which is a GRU layer. The output layer at bottom contains the probabilities predicted by the 145 

model for each of the nine types of the CA classification. The type with the highest probability is the type 146 

predicted by the model for the input ECG recording. 147 
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 148 

In our implementation, the CPSC2018 ECG data were processed into a matrix of three 149 

elements: the first is the subject ID, the second identifies which of the ECG’s 12 leads being 150 

considered, and the third contains its 72,000 ECG values, which correspond to the recordings 151 

taken by the maximum recording time (144 seconds) and on a frequency of 500 Hertz. We 152 

padded zeroes up front for any recording that was less than the maximum time. The 476 multi-153 

labeled subjects were extracted when the rest of 6,401 subjects were randomly divided into 10 154 

equal parts to set up an 8-1-1 train, validation and test scheme of machine learning. The extracted 155 

multi-labeled subjects were then added back to be included for the training. Our classification 156 

training was carried out using categorical-cross-entropy loss function and ADAM optimizer in 157 

the GPU version of TensorFlow from the Keras package [35-37]. Models were evaluated on their 158 

performance on the validation set for 100 training epochs (an epoch refers to one cycle through 159 

the full training dataset in artificial neural network learning). The best model, the one with the 160 

smallest loss on the validation set, was further evaluated by computing its F1-score on the test set. 161 

The procedure was repeated 10 times to complete the 10-fold training and validation plus test to 162 

produce 10 best validation models. The median F1-score for each CA label, including the normal 163 

type, for the 10 test sets was calculated using the F1-score package from Scikit-learn [38].  164 

We further investigated the performance of using only single lead data. To do that, for a 165 

given lead we simply assigned zero to all the ECG values of the other 11 leads and derived the 166 

model using the same network architecture and the same 10-fold cross validation plus test 167 

procedure described above. This resulted in 120 best single-lead validation models and a median 168 

F1-score for each of the 12 single leads on each of the nine CA labels.  169 
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To compete for CPSC2018, the 130 best validation models (10 from full-lead training and 170 

120 from single-lead training) were combined into one ensemble model by which the average of 171 

the output probabilities from the 130 models for each CA type was adjusted by a weight vector 172 

to produce the final probability for that CA type. The weights of the vector were optimized by 173 

genetic algorithm [39] to produce the best overall median F1-score on the 10 test sets. Given an 174 

input of an ECG recording, the CA type receiving the largest probability from the ensemble 175 

model would then be the type of CA predicted for that ECG recording. The ensemble model was 176 

our model submitted to CPSC2018, its performances on the hidden test set (2954 recordings) as 177 

computed and reported by CPSC2018 organizers are presented in Table 1. 178 

Results 179 

 180 

(1) Best validation models on 10-fold tests and ensemble model on hidden test 181 

In Table 1, for each CA type the median accuracy, AUC (area under the receiver operating 182 

characteristic curve) and F1-score for the ten 10-fold tests from the best validation models are 183 

compared with those of the ensemble model, as well as with the F1-score of the ensemble model 184 

on the hidden test set of CPSC2018. The comparisons show that the ensemble model performed 185 

somewhat better than the best validation models, which is expected because the former combined 186 

and optimized the latter to produce the best 10-fold test results (see Methods). In addition, the 187 

ensemble model’s performance was quite stable across all CA types going from the publicly 188 

available data to the hidden test data, reflecting the fairly similar compositions of the two sets of 189 

data, as mentioned above.  190 

191 
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Table 1: Comparison of model performances on tests* 192 

 Best Validation Models Ensemble Model 

CA Type 
Median 

Accuracy 
Median AUC 

(95% CI) 
Median 
F1-score 

Median 
Accuracy 

Median AUC 
(95% CI) 

Median 
F1-score 

Hidden Set 
F1-score 

Normal 0.940 
0.890 

(0.810-0. 942) 
0.795 0.949 

0.867 
(0. 832-973) 

0.808 0.801 

AF 0.969 
0.928 

(0.902-0.985) 
0.897 0.983 

0.963 
(0.914-0.993) 

0.944 0.933 

I-AVB 0.972 
0.899 

(0.864-0.988) 
0.865 0.977 

0.950 
(0.875-0.990) 

0.899 0.875 

LBBB 0.990 
0.914 

(0.748-1.000) 
0.821 0.995 

0.942 
(0.763-1.000) 

0.899 0.884 

RBBB 0.955 
0.956 

(0.887-0.988) 
0.911 0.952 

0.946 
(0.871-0.976) 

0.903 0.910 

PAC 0.957 
0.867 

(0.749-0.955) 
0.734 0.963 

0.920 
(0.779-0.981) 

0.797 0.826 

PVC 0.970 
0.928 

(0.841-0.988) 
0.852 0.977 

0.932 
(0.864-0.996) 

0.874 0.869 

STD 0.951 
0.878 

(0.797-0.972) 
0.788 0.959 

0.906 
(0.815-0.970) 

0.834 0.811 

STE 0.976 
0.707 

(0.558-0.995) 
0.509 0.977 

0.773 
(0.603-0.993) 

0.600 0.624 

*These are results of the best validation models and the ensemble model on the ten 10-fold tests, except for those in the last column 193 

(boldfaced), which are the ensemble model’s median F1-scores for the hidden test set of CPSC2018 reported at its website 194 

http://2018.icbeb.org/Challenge.html, which did not provide accuracy and AUC results.195 

.
C

C
-B

Y
 4.0 International license

available under a
w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade 
T

he copyright holder for this preprint (w
hich

this version posted S
eptem

ber 19, 2019. 
; 

https://doi.org/10.1101/766022
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/766022
http://creativecommons.org/licenses/by/4.0/


11 

 196 

Table 1 also reveals differential difficulties in predicting these CA types. Namely, the 197 

prediction accuracy decreased from AF, bundle branch blocks, premature contractions to ST 198 

abnormalities, with the normal type being one of the more difficult-to-predict types. The model’s 199 

prediction for STE had the lowest F1-score (0.5~0.6), which may due in part to physician’s 200 

variable opinions on how to diagnose STE [40]. The same trend, including the prediction of the 201 

normal type, was observed in all other top-performing models of CPSC2018 (S1 Table). Indeed, 202 

almost all the top models produced very high F1-scores (> 0.9) for AF and bundle branch blocks. 203 

Our model had significantly better predictions than the other models on several CA types, 204 

especially PAC, PVC, STD, and STE. This explained how we outperformed others (S1 Table). It 205 

should be noted that all top models performed well (overall F1-score > 0.8) and the difference 206 

between our model and the second-place model was minimal (S1 Table).   207 

(2) Concurrent CA types 208 

 One reason for models to perform less accurately on certain CA types is that for some 209 

patients multiple CA types are predicted with almost equal probabilities. Fig 2 displays the 210 

probabilities output by the best validation models for ECG subjects when they were in the test 211 

fold of the10-fold tests. As may be seen, Normal, STD and STE are three types lacking a 212 

probability score that can make them stand out from the other eight types, in consistence with the 213 

model’s performance results presented in Table 1. Further analysis on model probabilities 214 

showed that for many AF patients, a common concurrent CA was RBBB, while many RBBB 215 

patients were often concurrent with PAC and PVC, in addition to AF (Fig 2). These probability 216 

results of concurrent CAs agreed well with the statistics of the 476 multi-labeled subjects: 217 

Namely, the three most multi-labeled incidences in these subjects are AF/RBBB, RBBB/PAC 218 
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and RBBB/PVC (Table 2). An ensemble model without these 476 multi-labeled subjects being 219 

added back to the training set (see Materials and Methods) performed well in predicting these 220 

multiple CA labels (S3 Table and S4 Table), indicating the model’s ability to capture ECG 221 

features of concurrent CAs. These results are also generally compatible with clinical 222 

observations that rate-dependent (phase 3) block during ectopic atrial beats or AF could lead to 223 

RBBB [41] [42]. However, a larger dataset of multi-labeled subjects is required to fully evaluate 224 

our model’s performance on concurrent CA diagnosis. 225 

226 
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Table 2: Label count statistics of the 476 multi-labeled subjects in the released CPSC2018 227 

dataset*  228 

 AF I-AVB LBBB RBBB PAC PVC STD STE 

AF 0 0 29 172 4 8 33 2 

I-AVB  0 8 10 3 5 6 4 

LBBB   0 0 10 6 3 4 

RBBB    0 55 51 20 19 

PAC     2 3 6 5 

PVC      0 18 2 

STD       0 2 

STE        0 

* Only the upper triangle portion of the symmetrical concurrent CA label counts is shown. The 229 

three largest counts are boldfaced. 230 
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 231 

Fig 2. Probabilities output by the best validation models in the test fold of the 10-fold test.  232 

On the right is the color-coded probability scale.  233 

 234 

(3) Model performances with single lead 235 

The median F1-scores for models of a single lead on the 10-fold tests are presented in Fig 3. 236 

The performances for the best validation models using the 12-lead data in Table 1 were largely 237 

replicated by those using only single-lead data. In most cases, only minimal changes of F1-scores 238 

for the classification of individual CA types were noted between the analysis of 12-lead and  239 
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single-lead ECGs. The results also indicate aVR was one of the best-performing single leads, as 240 

its performance ranked first in overall average and three individual CA types (Normal, AF and 241 

STD), and also within top 3 in all CA types except STE and PAC. Another well-performing 242 

single lead is lead V1, which ranked first in three types (I-AVB, RBBB and PAC), but did worse 243 

than most other leads in some types. In comparison, lead I, which was used by Apple Watch 244 

[43] , wasn’t as remarkable in our tests. Lead II, the favorite of the 12 leads by physicians to take 245 

a quick look at an ECG recording due to its clearest signal [44], ranked fifth in the overall 246 

average but was statistically no different from the leading leads (p value of paired t-test < 0.05). 247 

These results are largely supported by Bayes factor analysis [45] to rigorously assess statistical 248 

differences between these leads (see S5 Table, S6 Table, S7 Table).  249 
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 250 

Fig 3.  The ranked F1-score results of single lead models.  251 

The F1-scores (on the y axis) are from the single lead models performed on the 10-fold tests (see 252 

Materials and Methods). Lead aVR is shown in red, V1 in green, I in blue, and II in orange.  253 

 254 
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These performance rankings suggest the current model identified the lead-specific 255 

morphology of the CA types. For examples, the deep and broad S-waves in lead V1 and the 256 

broad clumsy R-waves in V6 had been used for the diagnosis of LBBB [46], and V1 and V6 257 

were identified among the single leads with the leading performance. Meanwhile, the diagnosis 258 

criteria of RBBB included the rSR’ pattern in leads V1 and V2 [47], which were also selected as 259 

top–performing single leads.  260 

 261 

Discussion  262 

Recent years have witnessed a number of successful applications using deep learning of 263 

artificial intelligence (AI) to make medical diagnosis [48]. The present work for CA detection 264 

and classification is related to the competition in CinC2017 [22] and studies that had been 265 

published recently [11, 22]. A direct performance comparison for the different studies is difficult 266 

because not all of them used publicly available ECG data and different CA types and type 267 

numbers had been predicted. The complexities of these deep learning models were also different: 268 

e.g., the total number of neural network layers is 18 in our model, comparing to 33 [11] and 5~7 269 

[22] in others. Nevertheless, all these studies seemed to achieve an overall F1-score around 270 

0.82~0.84. Although not fully tested in the real-world scenario, AI-based ECG diagnosis has 271 

been shown to significantly improve diagnosis accuracy, compared to general physicians and 272 

cardiologists [11, 12] (also see S2 Table for a very small sampling). Therefore, these AI models 273 

are capable of reducing erroneous diagnoses and medical overload. While this is very 274 

encouraging, it is a sobering reminder that until most of the “ground truth” diagnoses used to 275 
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derive AI models are made by expert cardiologists, there might be a limit to how much model 276 

accuracy can be further improved. 277 

Our analyses suggest that models built on single-lead information could predict CA types 278 

with minimal difference of performance from the 12 leads. The clinical diagnostic criteria of CA 279 

types are often lead-specific. The top-ranking single lead for RBBB or LBBB in our model was 280 

compatible with the leads in the diagnostic criteria of RBBB and LBBB [6], solidifying the 281 

validity of the present AI diagnosis model. The performance of aVR, a frequently clinically-282 

ignored lead, in our AI model is intriguing and deserves attention. The leads I, II, and V1 are 283 

conventionally used as the modified leads in continuous monitoring or mobile device of ECG [43, 284 

49]. In our AI model, aVR could predict a variety of CA types with a better performance than 285 

these conventional leads. The vector of lead aVR is parallel to the anatomical and corresponding 286 

electrical axis from atrial base to ventricular apex, and thus may maximize the electrical signals 287 

of atrial and ventricular depolarization. In comparison, lead I, which is used in Apple Watch for 288 

AF detection [50], did not perform as well in our analysis. Our results suggest the best predictive 289 

single lead for different CA types could be different for clinical applications. Our results may 290 

provide an impetus for future studies to investigate the potential use of lead aVR in different CA 291 

types and ECG devices (wearable or portable).  292 

CAs are complex and concurrent CA types are not uncommon, especially for those that are 293 

related in cardiac electrophysiology. Although ECG-based CA diagnosis models have so far 294 

focused only on single-type predictions, our analysis shows that AI is capable of multi-type CA 295 

diagnosis. Detection and classification of concurrent CAs should be a subject for future studies 296 

and our model is a first step in that direction.  297 
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ECG has been shown capable of disease/health detection beyond CA, including, for 298 

example, the prediction of asymptomatic left ventricular dysfunction [51] and non-invasive 299 

potassium tracking [52]. As methods of AI machine learning continue to be advanced and made 300 

friendlier for non-AI specialists to employ, we can expect ECG to be explored for its diagnostic 301 

power in many more diseases and clinical applications. 302 

 303 

Conclusion 304 

 305 

We developed a deep learning AI model capable of cardiologist-level CA detection and 306 

classification. The model was derived from a very large 12-lead ECG dataset made available for 307 

free access in a challenge competition to promote open-source research. Besides achieving the 308 

first placebest performance in the competition, the model was shown to yield promising results 309 

for two aspects worthy of future investigations in the field: concurrent CA diagnosis and use of 310 

less attended single leads such as aVR in clinical applications.   311 

 312 

 313 

  314 
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S1 Table.  CPSC2018’s top 10 models and results (reported by the conference on 

http://2018.icbeb.org/Challenge.html)*  

Rank Overall F1 Faf Fblock Fpc Fst 

1 0.837 0.933 0.899 0.847 0.779 

2 0.830 0.931 0.912 0.817 0.761 

3 0.806 0.914 0.879 0.801 0.742 

4 0.802 0.918 0.89 0.789 0.718 

5 0.791 0.924 0.882 0.779 0.709 

6 0.783 0.905 0.902 0.722 0.708 

7 0.782 0.911 0.891 0.775 0.670 

8 0.778 0.921 0.858 0.797 0.676 

9 0.776 0.906 0.876 0.773 0.711 

10 0.766 0.894 0.857 0.733 0.683 

*Our team’s results are ranked first (boldfaced), and the highest scores of each sub-

competition are indicated in red color. Overall F1 is the average of the F1 values from each 

classification type. Faf: F1 of AF; Fblock: F1 of I-AVB, LBBB and RBBB; Fpc: F1 of 

PAC and PVC; Fst: F1 of STD and STE. 
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S2 Table. Comparisons on CA diagnosis between conference-assigned label, our model prediction, and consensus from three expert 

cardiologists. 

PatientID Conf.  Model Cardiologist1 Cardiologist2 Cardiologist3 Consensus

6268 STE Normal Normal SR (normal) SR (normal) Normal 

6215 STD AF 

narrow-QRS 

tachycardia, SVT, 

RBBB, RAD 

PSVT PSVT PSVT 

4237 RBBB I-AVB I-AVB I-AVB, SR, TWI (V1-V4), rSR’ (V1) I-AVB,SR I-AVB 

6380 STE LBBB LBBB LBBB,SR,LAE LBBB,SR LBBB 

1452 AF RBBB AF, MVR, RBBB 
AF, RBBB, Q wave, STE with 

reciprocal change, w/o old MI 
AF, RBBB RBBB 

5398 PVC PAC PAC PAC PAC,SR PAC 

5963 STD PVC PVC PVC,SR,STD(V3-V6) PVC,SR PVC 

4278 RBBB STD normal SR, minimal STTC(II, III, aVF) STD-like, SR Normal 

504 Normal STE STE-like SR, early repolarization SR Normal 

Conference assignments (regarded as ‘ground truth’ for model training) or our model predictions in agreement with the consensus of 

the three expert cardiologists are highlighted in red. SVT: Supraventricular tachycardia; RAD: Right Axis Deviation; MVR: mitral valve 
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replacement; SR: sinus rhythm; PSVT: Paroxysmal supraventricular tachycardia; LAE: left atrial enlargement; MI: myocardial 

infarction; STTC: ST-T change 
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S3 Table. The performances of models trained without multi-labeled data* 

 Best Validation Models  Ensemble Model 

CA Type 
Median 

Accuracy 
Median AUC 

(95% CI) 
Median 
F1-score 

 Median 
Accuracy 

Median AUC 
(95% CI) 

Median 
F1-score 

Normal 0.940 
0.908 

(0.791-0. 916) 
0.807 

 
0.937 

0.901 
(0. 808-932) 

0.794 

AF 0.974 
0.949 

(0.885-0.992) 
0.915 

 
0.980 

0.955 
(0.929-0.995) 

0.935 

I-AVB 0.973 
0.918 

(0.852-0.991) 
0.876 

 
0.976 

0.912 
(0.900-0.996) 

0.879 

LBBB 0.993 
0.927 

(0.748-1.000) 
0.870 

 
0.993 

0.913 
(0.770-1.000) 

0.862 

RBBB 0.961 
0.954 

(0.895-0.981) 
0.922 

 
0.944 

0.925 
(0.880-0.972) 

0.885 

PAC 0.957 
0.852 

(0.747-0.961) 
0.747 

 
0.965 

0.889 
(0.798-0.984) 

0.796 

PVC 0.973 
0.926 

(0.832-0.989) 
0.858 

 
0.974 

0.950 
(0.820-0.992) 

0.870 

STD 0.950 
0.869 

(0.800-0.966) 
0.786 

 
0.956 

0.914 
(0.790-0.950) 

0.821 

STE 0.974 
0.667 

(0.491-0.995) 
0.394 

 
0.975 

0.663 
(0.491-0.995) 

0.444 

* In these models, the 476 multi-labeled recordings were not included in the training set. These are results of the best validation models 

and the ensemble model on the ten 10-fold tests. These performances are comparable with those presented in Table 1. 
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S4 Table. Successfully predicted CA types for the 476 multi-labeled subjects in 

the released dataset of CPSC2018* 

 AF I-AVB LBBB RBBB PAC PVC STD STE 

AF 0/0 0/0 17/29 154/172 0/4 6/8 4/33 0/2 

I.AVB  0/0 2/8 8/10 0/3 2/5 0/6 0/4 

LBBB   0/0 0/0 2/10 4/6 0/3 0/4 

RBBB    0/0 34/55 49/51 16/20 5/19 

PAC     0/0 3/3 4/6 2/5 

PVC      0/0 6/18 0/2 

STD       0/0 2/2 

STE        0/0 

* Only the upper triangle portion of the symmetrical concurrent CA label counts is 

shown. The numbers shown are the number of correctly predicted subjects / the total 

multi-labeled subjects for a given CA type. The two CA types with the highest and the 

second highest probabilities are the predicted concurrent CA types. Boldfaced are the 

three most concurrent CA labels in these subjects (see Table 2). 
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S5 Table. The Bayes factors* (in log scale) of each lead’s performance (F1 score) 

relative to that of the best performing lead in each CA type (see Fig. 3) 

    I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

Normal 3.4  0.3  14.1 -0.9 3.1 4.1 7.3 5.3 5.0 0.9  0.4  -0.1 

AF -0.8 -0.8 -0.6 -0.9 -0.3 -0.7 -0.9 0.2 1.1 0.8  -0.3 -0.2 

I-AVB 1.2  0.1  3.7  -0.4 0.1 0.8 -0.9 1.3 -0.5 0.5  1.1  -0.1 

LBBB -0.9 6.1  6.4  -0.8 0.4 6.1 -0.9 0.2 1.0 3.8  1.9  -0.1 

RBBB 18.3 15.5 22.2 11.4 4.1 18.8 -0.9 9.9 12.9 16.0 18.6 1.8 

PAC -0.9 -0.9 -0.6 -0.3 -0.1 -0.9 -0.9 -0.8 -0.7 -0.2 -0.4 -0.2 

PVC -0.8 -0.9 -0.8 -0.8 -0.6 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.6 

STD 6.0  -0.9 15.4 -0.9 10.2 2.4 14.9 11.9 5.6 0.6  -0.8 -0.5 

STE 11.9 1.7  11.3 3.7 23.1 6.7 12.2 7.1 0.3 -0.9 0.4  0.8 

*computed using the ‘BayesFactor’ routine in the R package. 
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S6 Table. Leads in the top-performing group (threshold: Bayes factor<3.0)* 

 I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

Normal 0 1 0 1 0 0 0 0 0 0 1 1 

AF 1 1 1 1 1 1 1 1 0 0 1 1 

I-AVB 0 1 0 1 1 0 1 0 1 0 0 1 

LBBB 1 0 0 1 1 0 1 1 0 0 0 1 

RBBB 0 0 0 0 0 0 1 0 0 0 0 0 

PAC 1 1 1 1 1 1 1 1 1 1 1 1 

PVC 1 1 1 1 1 1 1 1 1 1 1 1 

STD 0 1 0 1 0 0 0 0 0 0 1 1 

STE 0 0 0 0 0 0 0 0 1 1 1 0 

Total 4 6 3 7 5 3 6 4 4 3 6 7 

*The leads in the top-performing group, indicated by 1 (0 for those excluded from this 

group), for a given CA type are considered to perform equally well statistically based 

on the threshold of Bayes factor<3.0, which indicates the null hypothesis of no 

difference from the leading lead holds. Using this threshold, the sum total shows that 

leads aVR and V6 received most top-performing group counts, followed by leads II, 

V1, and V5. 
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S7 Table. Leads in the top-performing group (threshold: Bayes factor<0.33)* 

 I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

Normal 0 0 0 1 0 0 0 0 0 0 0 0 

AF 1 1 1 1 0 1 1 0 0 0 0 0 

I-AVB 0 0 0 0 0 0 1 0 1 0 0 0 

LBBB 1 0 0 1 0 0 1 0 0 0 0 0 

RBBB 0 0 0 0 0 0 1 0 0 0 0 0 

PAC 1 1 1 0 0 1 1 1 1 0 0 0 

PVC 1 1 1 1 1 1 1 1 1 1 1 1 

STD 0 1 0 1 0 0 0 0 0 0 1 1 

STE 0 0 0 0 0 0 0 0 0 1 0 0 

Total 4 4 3 5 1 3 6 2 3 2 2 2 

*The leads in the top-performing group, indicated by 1 (0 for those excluded from this 

group), for a given CA type are considered to perform equally well statistically based 

on the threshold of Bayes factor<0.03, which indicates the null hypothesis of no 

difference from the leading lead holds. Using this threshold, the sum total shows that 

lead V1 received most top-performing group counts, followed by lead aVR. 
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