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Abstract

Motivation: In single-cell RNA-sequencing (scRNA-seq) analysis, a number of statistical tools in
multivariate data analysis (MDA) have been developed to help analyze the gene expression data.
This MDA approach is typically focused on examining discrete genomic units of genes that ignores
the dependency between the data components. In this paper, we propose a functional data analysis
(FDA) approach on scRNA-seq data whereby we consider each cell as a single function that does
not allow permutation of the data components. To avoid a large number of dropouts (zero or zero-
closed values) and reduce the high dimensionality of the data, we first perform a principal component
analysis (PCA) and assign PCs to be the amplitude of the function. For the phase components, we
propose two criteria: we use the PCs directly from PCA, and we sort the PCs by the genetic spatial
information. For the latter, we embed the spatial information of genes by aligning the genomic gene
locations to be the phase of the function. These two approaches allow us to apply FDA clustering
methods to scRNA-seq analysis.
Results: To demonstrate the robustness of our method, we apply several existing FDA clustering
algorithms to the gene expression data to improve the accuracy of the classification of the cell types
against the conventional clustering methods in MDA. As a result, the FDA clustering algorithms
achieve superior accuracy on simulated data as well as real data such as human and mouse scRNA-
seq data.
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) analysis has been widely used to explore and measure the
genome-wide expression profile of individual cells. Since the number of bioinformatics tools for scRNA-
seq analysis is growing dramatically, there are many studies comparing several statistical methods for
scRNA-seq analysis. Menon [34] reviewed three statistical clustering algorithms for scRNA-seq data
to explicitly demonstrate their different behaviors in low- and high-read-depth data. Recently, Andrews
and Hemberg [2] compared 12 clustering techniques on scRNA-seq data sets, therein illustrating that the
different methods generally produced clustering with minimal overlap. Duò et al. [11] extended these
initial studies to 14 clustering algorithms on a total of 12 different simulated and real data sets, therein
showing the large differences in performance across data sets and clustering methods.

These statistical methods and algorithms for scRNA-seq analysis belong to the general framework of
multivariate data analysis (MDA), which helps analyze the gene expression data to understand stochastic
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biological processes. However, several shortcomings have arisen when the data are treated as vectors of
discrete samples instead of continuous samples. One of the great advantages of applying this framework,
i.e., functional data analysis (FDA) [46], is that we consider the dependency or connectivity between
the samples. This FDA approach can also incorporate other important variables such as time and space.
Several works are performed on gene expression data by applying FDA to incorporate information that is
inherent in the time and space orders and the smoothness of the process over time and space, respectively
[29, 10, 38, 28, 31, 3, 54, 53].

Based on these ideas, we propose the FDA technique for scRNA-seq analysis to improve the accuracy
of the classification of the cell types. An important aspect of this study is that we view the multivariate
gene expression data as functional gene expression data. This different point of view from standard mul-
tivariate data analysis underlies the structure of raw observations being functional. This approach allows
us to detect the functional nature of the scRNA-seq data and uncover the functional characteristics of cell
populations. This eventually classifies the subpopulations of the cell types that cannot be detected by
standard multivariate statistical methods. Given that a function does not allow the permutations of phase
components of a function, we consider two approaches to the alignment of the phase components. One
way is to directly use principal components in general, which are sorted by eigenvalues in descending or-
der. The other way is to embed the spatial information of genes by sorting the gene locations (according
to chromosome and position number) in ascending order. We applied these approaches using functional
clustering methods on simulated data and real data to demonstrate the robustness of the efficiency and
accuracy of the classification against the MDA clustering algorithms.

2 Methods

2.1 Pre-processing Steps

One of the crucial steps in biological experiments, such as scRNA-seq analysis, is to remove biological
or technical errors in the gene expression data [26]. scrRNA-seq analysis is used to explore complex
mixtures of cell types in an unsupervised manner. A standard scRNA-seq analysis involves several tasks
that can be performed by various bioinformatics or biostatistics techniques. Zappia et al. [55] categorized
these tasks into four broad phases of analysis: data acquisition, data cleaning, cell assignment, and gene
identification. The first two phases are generally referred to as the pre-processing steps, and the last
two phases are referred to as the statistical analysis steps. Data acquisition can be re-categorized as
alignment, de-duplication, and quantification. Data cleaning involves quality control, normalization,
and imputation. This work can be done by several existing R packages such as SC3 [27], Monocle
[52, 39, 40], and Seurat [51]. We implemented these pre-processing steps for scRNA-seq analysis using
the Seurat 2.3.4 R packages for the downstream analysis. In particular, we normalize, find variable
genes, and scale the data using Seurat for the analysis. Then, we use scaled data, which are the z-scored
residuals of linear models, to predict gene expression for PCA and clustering.

2.2 Framework of building functional data

Functional data analysis was pioneered by Ramsay [41] and then expanded by Ramsay, Silverman,
Dalzell, Ferraty and Vieu [46, 43, 45, 15]. A function in functional data analysis is defined in the
Hilbert spaceH, in particular, the L2 space for real square-integrable functions defined on [a, b] with the
inner product 〈a, b〉 =

∫ b
a fg. In general, we define a function from the observed multivariate data or

functional data with time points for the downstream analysis. Then, we apply a smoothing method using
a known basis for parametric methods or a kernel function for nonparametric methods. In this paper,
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using FDA on scRNA-seq analysis, we no longer consider time as a phase of the functions; however, we
use the index of the principal components from PCA on the gene expression data.

One of the challenging problems in applying FDA to scRNA-seq analysis is the presence of high
dropouts, i.e., zero-inflated counts of gene expression data. This also induces the fitting problem of
constructing the function from raw multivariate gene expression data, which gives a tremendous number
of spikes when constructing the functional objectives. To solve this issue, we implemented PCA to
drastically lower the number of features (dimensions or genes). In this way, we can reduce not only
the dimensionality but also the number of dropout values from the scRNA-seq data, which eventually
smooth the original data by itself. This is also a common and general step in conventional scRNA-seq
analysis for reducing the dimensionality of the gene expression data. Then, each single cell can now be
considered as a single function with PC scores and the index of principal components. The important
feature of this analysis is that we treat the index of the principal components as “time points”, i.e., each
PC acts like discrete time points in the functional gene expression data.

Sorting PCs Another problem in functional scRNA-seq analysis is the order of the principal compo-
nents, i.e., the phase of the functions, when we build a function from scRNA-seq data. In MDA, data
are considered discrete vectors; thus, the permutation of the data components is allowed in any statis-
tical analysis. In FDA, however, the permutation of phase components will affect the statistical results
in that it should be sorted in order of some characteristics of the data. Traditionally, the most general
way of sorting the phase components in FDA is in time order, e.g., in seconds, months, or years. For
functional scRNA-seq data analysis, we view the principal component scores of gene expression profiles
as independent realizations of a smooth stochastic process. Therefore, we sort the order of the principal
components with two criteria: 1) sort by eigenvalues, which is also the same framework as using the
order of the PCs from PCA directly, and 2) sort by genetic spatial information.

Sort by eigenvalues After PCA, the PCs are sorted in descending order according to their variance.
Without loss of generality, we discard the number of PCs according to the eigenvalues from the smallest
to the largest to reduce the dimensionality of the data. One advantage of using from the largest to
smallest eigenvalues here is being able to capture as much of the variance as possible without losing
much information from the original data. We consider this framework, i.e., the PCs in descending order,
as one criterion based on the order of the “magnitude” of the corresponding eigenvectors; thus, we treat
this strength of variance as the time order to be the functional data. Hence, based on this framework,
we build functional data from scRNA-seq data, which is exactly the same as using principal components
directly from the results of PCA.

Sort by genetic spatial information Another way of sorting the PCs in the scRNA-seq analysis is
to sort the PCs by genetic spatial information. Genes are spatially located in a genome, and this genetic
spatial information can be applied to each principal component to sort the PCs on the functional gene
expression data. scRNA-seq analysis is typically focused on examining discrete genomic units of genes,
and this approach ignores spatial information. While this simplifies the complex data, it also loses in-
formation that may elucidate the hidden nature of the gene expression characteristics that are associated
with the shape of the gene expression data [53]. This application of FDA on scRNA-seq data interprets
the gene expression data as functional data that will capture the undiscovered characteristics of cell pop-
ulations and will eventually help to understand stochastic biological processes such as identifying cell
states and cell types. The previous sorting criterion is that we directly use the PCs from the PCA of
scRNA-seq data. Here, we embed genes into the principal components. In particular, we find the first-
most-variable (weighted) gene for each principal component and assign it to be the representative of the

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/760413doi: bioRxiv preprint 

https://doi.org/10.1101/760413


components. To sort the genes according to the genetic spatial information, we found the gene infor-
mation using ensembl and Genome Browser to extract the chromosome number and molecular position
number for each gene. Since there are two pieces of spatial information, the chromosome number and
the molecular gene position, we first sort by chromosome number and then sort by molecular position
from the smallest to the largest.

Smoothing After building functional gene expression data from discretized multivariate gene expres-
sion data, the functional data can be smoothed, leading to the Karhunen-Loéve representation of the
observed sample paths as a sum of a smooth mean trend. To recover the nature of the functional statistics
setting, smoothing must be performed on the discretized data, especially where observations are very
noisy. A truncated version of the random part of this representation serves as a statistical approximation
of the random process [48]. We first assume that the function g(s) is observed through the model.

gi(sl) = fi(sl) + εi(sl), i = 1, 2, · · · , n, l = 1, 2, · · · ,m

where εi(sl) is the residual error, and sl is the l-th principal component, l = 1, . . . ,m. Then, we can
reconstruct the original function f(s) from the observed function g(s) using a linear smoother,

f̂ =
m∑
l=1

ξlrgl

where ξlr is the weight that the point sr gives to the point sl and gl = g(sl). Then, the function can be
smoothed in two ways: using parametric or non-parametric methods.

Parametric smoothing method: B-spline basis A parametric method is also known as a basis repre-
sentation since we use a known basis to smooth the data. There is no universal basis to use; however, we
generally use a B-spline basis and a Fourier basis. A basis is a set of known functions {bj}∞1 with which
any function can be arbitrarily approximated using a linear combination of a sufficiently large number J
of these functions.

f(s) =
∞∑
j=1

cjbj(s) ≈
J∑
j=1

cjbj(s)

where cj is the coefficient of the basis function bj .

Non-parametric smoothing method: Nadaraya-Watson estimator Non-parametric smoothing meth-
ods, also known as a kernel smoothing method, can be used to represent functional data. In this analysis,
we use the Nadaraya-Watson estimator [37] with Gaussian kernel:

ξlr =
K( sr−slh )∑J
j=1K( sr−slh )

where K(·) is the kernel function and h is the bandwidth.

Generalized Cross-Validation For parametric and non-parametric smoothing methods, smoothing pe-
nalization is crucial for estimating the coefficient of the basis and kernel parameter, respectively. The
choice of smoothing parameter is important; however, there is no universal criterion that would ensure
an optimal choice. In general, we select the parameter η using generalized cross-validation (GCV).
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GCV (η) =
1

n

n∑
i=1

(gi − ĝηi )2ωiΞ(η)

where Ξ(η) denotes the type of penalizing function [23] and ωi is the weight at point sl.

2.3 Clustering Methods

Clustering algorithms are statistical tools used to identify the sub-population of subjects, such as cell
types, in scRNA-seq analysis. We evaluate three MDA clustering algorithms and three FDA clustering
algorithms on gene expression data in this paper. All methods are implemented and publicly available as
R packages or scripts. See the references for each method and further details in Table 1.

Type Methods Description Reference

MDA

k-means
The data given by x are clustered by the k-means method, which aims to partition

the points into k groups such that the sum of squares from points to the assigned cluster centres is minimized
[25, 16, 30, 32]

hierarchical A hierarchical cluster analysis using a set of dissimilarities for the n objects being clustered. [4, 36, 24, 22, 1]

mclust Model-based clustering based on parameterized finite Gaussian mixture models. [49, 17, 19, 18]

FDA

k-means The method searches the locations around which are grouped data (for a predetermined number of groups) on functional data. [14, 25]

funHDDC
The funHDDC (High-Dimensional Data Clustering) algorithm allows one to cluster functional univariate or multivariate data

by modeling each group within a specific functional subspace.
[6]

funFEM
The funFEM algorithm allows to cluster functional data by modeling the curves within a common

and discriminative functional subspace.
[5]

Table 1: Clustering Methods on MDA and FDA

For MDA analysis, we perform k-means and hierarchical algorithms, which are the most popular cluster-
ing algorithms that have been used recently for single cell RNA sequencing analysis. Many Bioconduc-
tors, such as Seurat, Monocle, and SC3, perform these clustering techniques to classify the subpopula-
tions to identify and characterize cell populations. In addition to these algorithms, we also apply a recent
clustering algorithm, mclust, which is a model-based clustering method based on parameterized finite
Gaussian mixture models. These models are estimated by the expectation-maximization (EM) algorithm
initialized by the hierarchical model-based agglomerative clustering method. Then, we select the optimal
model using the Bayesian information criterion (BIC). For clustering methods in FDA, the functional k-
means method is the same as the one in MDA; however, we define the observations in the Hilbert space,
H. funHDDC is a model-based algorithm that is based on a functional latent mixture model that fits
the functional data in group-specific functional subspaces. funFEM is also a model-based method but is
based on a functional mixture model that allows the clustering of the data in a discriminative functional
subspace.

3 Results

To evaluate the robustness of our approach, we perform the clustering methods that we have described
in section 2.3 on both simulated data and real data. For comparison, we calculate the success rate (%) to
evaluate the accuracy of the classification for each dataset and for each method. For the calculation of
the success rate, we implement the classification algorithm and then compare the predicted label and true
label for each cell. Then, we count the number of correctly matched labels for each cell and calculate the
average out of the total number of cells.
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3.1 Simulated Data

We generated the simulated data using a Gaussian process to observe the improvement in performance of
the classification for FDA clustering algorithms. In this simulated experiment, we focused on comparing
MDA classification and FDA classification. Therefore, we assume that all the pre-processing steps on
the scRNA-seq data, such as normalization, scaling, and PCA, are performed. Then, we can only focus
on how the FDA approach improves the success rate for classification against MDA classification using
PC scores and PCs based on PCA.

We first consider two samples of i.i.d. curves, Xi(s) and Yi(s), generated by independent stochastic
processes with different means such that Xi(s), Yi(s) ∈ L2(I), where I is a compact interval of R. We
use Karhunen-Loéve decomposition to generate the sample curves [21, 20, 33]:

Xi(s) = m0(s) +
∞∑
j=1

Zji,1
√
λkθj(s) i = 1, . . . , n1,

Yi(s) = m1(s) +
∞∑
j=1

Zji,2
√
λkθj(s) i = 1, . . . , n2,

(1)

where s is the index of principal components (sl, l is the l-th principal component); m0 and m1 are the
mean of each sample for Xi and Yi, respectively; (Zki,1)

∞
k=1, (Zki,2)

∞
k=1 are two sequences of indepen-

dent standard normal variables; θj is the J/2 harmonic Fourier basis; and λk is the coefficient variance;
n1 and n2 are the number of cells in groups 1 and 2, respectively. Because of the infinity of the basis
functions, we truncate it into the finite case in terms of J known basis functions θj .

For the initial settings, we generated 150 cell functions for each sample, X and Y . Hence, we
have a total of 300 cells in this simulated data set. Then, we fixed the number of principal components
to 40 (l = 1, 2, · · · , 40) assuming that 40 principal components are retained based on some statistical
criteria. We set J = 40 to have sufficient peaks of the functions for the Fourier basis functions and assign
m0(s) = s(1− s) for the mean of the sample Xi(s). For the coefficient variances λk, we set

λk =

{
1

k+1 if k ∈ {1, 2, 3}
1

(k+1)2
if k ≥ 0

For the mean sample for Yi(s), we use three different cases to generate three different data sets to
compare the classification efficiency depending on the shape and scale of the functions.

m1(s) = m0(s) +
√
λ1θ1 (a)

= m0(s) +
√
λ5θ5 (b)

= m0(s) +

∞∑
k=10

√
λkθk (c)

We assigned samples of Xi(s) and Yi(s) as group 1 and group 2, respectively, to group into two different
“true” groups. Based on the arguments above, we simulated three different samples of Yi(s) for the
different means (a), (b), and (c). Figure 1 shows simulated data using Equation 1. The solid red and
blue curves are m0(s) and m1(s), which are the means of each sample, respectively. Each panel shows
different means of Yi(s) for (a), (b), and (c). The difference between the samples in the first panel (case
a) is simply the amplitude of the functions. It is easy to see that the shape is very similar and that only the
height (y-axis) is different. For the second case (case b), we generated a sample of Y whereby the mean
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of its sample lies on the same horizontal line as the mean of sampleX; however, the shape of the function
is different. From the second panel of Figure 1, the shape of the mean of sample X is smoother than the
shape of the mean of sample Y and is a flat curve rather than several distinct peaks in Y . The last panel
(case c) shows a similar generated function from the second case; however, this time, the sample Y has
high peaks (spikes) at both the beginning and end of the curve, which give the sample Y a very different
shape compared to sampleX . Based on these three different data sets, our goal is to evaluate whether the
classification algorithms can cluster into the correct group using the MDA and FDA clustering methods.

(a) Case (a) (b) Case (b) (c) Case (c)

Figure 1: Three simulated data examples with means of Xi(s) and Yi(s) for cases (a), (b), and (c). The gray solid
curves are observations. The red curve shows the mean of Xi(s), and the blue curve shows the mean of Yi(s) for
each sample. Upon first glance at the observations (gray), the difference between the two samples is not clear due
to the noise; however, it is clear that the means for the two samples are different.

Figure 2 shows the observed multivariate data based on generated simulated data, functional data,
smoothed functional data using a B-spline basis and a non-parametric method with the Nadaraya-Watson
estimator for cases (a), (b), and (c), respectively. Here, we use the R packages fda [44, 42, 47] and
fda.usc [14] in the R statistical software to convert functional data from the observed multivariate
data. Since the observed data have no prominent spikes or outliers, it is difficult to intuitively distinguish
between functional data and smoothed functions in these simulated data. However, the number of peaks
on both parametric and non-parametric smoothed data is less than functional data without smoothing.

Type Smoothing Clustering
(a) (b) (c)

Aligned Unaligned Aligned Unaligned Aligned Unaligned

MDA
k-means 83.0 54.3 56.0

hierarchical 78.0 53.3 50.7
Mclust 83.0 54.3 50.0

FDA

No Particular Smoothing
k-means 81.0 82.0 52.6 53.0 50.3 51.0

funHDDC 84.7 63.0 57.3 51.3 62.0 50.7
funFEM 83.3 82.3 55.0 50.3 62.0 51.0

Parametric (b-spline)
k-means 77.0 81.3 54.3 51.3 59.0 55.3

funHDDC 85.0 83.0 59.7 54.6 98.3 52.3
funFEM 84.7 83.0 59.3 54.3 97.0 54.7

Non-Parametric (NW)
k-means 82.0 82.3 52.0 51.0 52.0 50.3

funHDDC 85.0 84.0 59.7 55.3 72.7 57.7
funFEM 84.7 83.0 59.3 55.7 72.3 56.0

Table 2: Success rate (%) for classification. Dark gray shows the highest accuracy for the aligned dataset, and light gray shows the
highest accuracy for the unaligned dataset.

We perform the clustering algorithms on these simulated data, and the classification results are shown
in Table 2. For MDA, we use three clustering algorithms: the k-means, hierarchical, and mclust methods.
The functional k-means, funFEM, and funHDDC clustering algorithms are applied to the functional
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(a) Case (a) (b) Case (b)

(c) Case (c)

Figure 2: Visualization of each cell with reduced dimensions of simulated gene expression data for cases (a), (b),
and (c), respectively. Each color and curve (for functional data) shows the individual cell, where the x-axis shows
the index of the principal components and the y-axis represents the principal component scores. Each panel of the
subfigures shows the four observed data sets. The first panel shows the original data, which are considered discrete
multivariate data. The second panel is the function data converted from the original discrete data. The third and
fourth panels show the smoothed data with B-spline smoothing and kernel smoothing using the Nadaraya-Watson
estimator, respectively.

data. To evaluate the consistency of the classification analysis by switching the phase components of
the functions, we randomly sort the order of the components (unaligned). Table 2 shows the results
of the classification in percentage for each method and each data. In Table 2, the success rates (%) of
applying the functional clustering algorithms outperforms the results of other MDA clustering methods.
In particular, the clustering results of both smoothed functions show the highest accuracy rate in each
data set. This is because the smoothing methods remove some unimportant additive noise from each
function.

In the comparison of the three cases (a), (b), and (c), case (c) shows the highest classification rate
(98.3%) since the shape and spikes on both sides affect the differences between the samples X and Y .
Case (a) shows the second-highest classification rate (85.0%) among the three data sets. This implies that
the height (or y-axis or vertical difference) also plays a major role in grouping the observations into the
correct group. Case (b) shows the lowest accuracy rate (59.7%) due to the similarity between the samples
X and Y . As expected, the average of the classification rates for the unaligned phase components of the
functions is lower than the results of the aligned functional data. Particularly, case (c) shows the large
difference in the classification rate between aligned and unaligned functional data. This implies that the
order of the phase components of the function is also a major factor in applying functional data analysis
methods to achieve the highest accuracy rate.
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3.2 Real Data

The real scRNA-seq data sets were collected from conquer [51] and used for our classification evalua-
tions: GSE 52529-GPL16791 (here denoted Trapnell) [52], EMTAB 2805 (Buettner) [7], GSE 77847
(Meyer) [35], and GSE 81903 (Shekhar) [50]. These data sets are not expected to be used with the aim
of detecting subpopulations of cell populations. Hence, the cluster labels known as “true” cluster labels
might not represent the strongest signal present in the data [11]. In other words, general classification al-
gorithms cannot detect the transcriptional signal or the characteristics of each cluster, which statistically
derives different cluster labels rather than true cluster labels. Duó et al. [11] noted that these labels can
be biased in favor of current methodologies. Therefore, our goal for this real data analysis is to detect
the true subpopulations. Hence, it is important to validate the performance of functional clustering al-
gorithms considering cells as a functional shape using these datasets to uncover the functional nature of
scRNA-seq gene expression data.

The descriptions of each data set, including the number of cells and subpopulations, are shown in
Table 3. For example, Trapnell, Buettner, Myer, and Shekhar have 3, 3, 2, and 4 subpopulations,
respectively. The selected cell phenotype was used to define the “true” partition of cells when evalu-
ating the clustering methods. The details of the subpopulations and the methods for finding these true
subpopulations for each data are explained and described in [51].

Dataset Organism Sequencing Protocol Cells Methods Subpopulations Description Reference

Trapnell Homo Sapiens SMARTer C1 288 Monocle 3
Primary myoblasts over a time course

of serum-induced differentiation.
[52]

Buettner Mus musculus SMARTer C1 288 single-cell latent variable model (scLVM) 3 mESC in different cell cycle stages. [7]

Meyer Mus musculus SMARTer C1 96 Two-way ANOVA 2 Dnmt3a loss of function in Flt3-ITD and Dnmt3a-mutant AML . [35]

Shekhar Mus musculus Smart-Seq2 383 Random Forrest Classifier 4
P17 retinal cells from the

Kcng4-cre;stop-YFP X Thy1-stop-YFP Line # 1 mice.
[50]

Table 3: Description of scRNA-seq data

For the pre-processing steps, such as quality control, normalization, the detection of variable genes
across the single cells, and scaling, we use the Seurat R 2.3.4 package [51] to perform the downstream
analysis. Seurat can also perform t-SNE analysis and clustering methods, such as k-means; however, we
did not implement these clustering methods using Seurat and rather used general-purpose R packages or
scripts (Table 1) for clustering the cell subpopulations. More details about these pre-processing steps and
procedures using the Seurat Bioconductor are described in [8].

After applying the pre-processing steps on the scRNA-seq data, we used variable genes [8] to perform
PCA to reduce the dimensionality of the gene expression data. In this analysis, we can visualize the
distribution or pattern of the cell populations by plotting PC1 vs. PC2. Figure 3 shows the PC1 vs. PC2
plot for each scRNA-seq data set after performing PCA. In this figure, it is complicated to group a set of
objects into the “true” groups as given in Table 3 without any statistical clustering analysis. One of the
main reasons for these results is that the “true” cluster labels do not represent the strongest signal present
in the multivariate data. For example, the Trapnell, Buettner, Myer, and Shekhar datasets have 3, 3,
2, and 4 subpopulations, respectively; however, none of the plots in Figure 3 show a clear distinctive
number of clusters for each dataset. In particular, the PC plot for Buettener has only one large group,
although there are four “true” subpopulations. In this sense, we want to see how FDA, which considers
each cell as a functional shape, performs in classification against multivariate data for these phenomena
whereby the signal of the “true” labels is not sufficiently strong. This functional approach will identify
the hidden functional nature of scRNA-seq data.

We visualized the scree plot and performed jackstraw [9] to determine the optimal number of princi-
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Trapnell Buettner

Meyer Shekhar

Figure 3: PC1 vs. PC2 plot for each scRNA-seq data set. All data sets could not be separated into “true” numbers
of subpopulations: 3, 3, 2, and 4. In particular, Buettener shows only one large group, although there are three
“true” subpopulations, which indicates that the conventional methods might not detect the “true” clusters.

pal components to reduce the dimensionality of the original data. A scree plot in PCA is a useful tool that
visualizes saturation in the relationship between the number of principle components and the percentage
of the variance explained. We generally decide the number of principal components that corresponds to
the “elbow” part of the curve to have sufficient information of the original data. We chose PC1-20 for
the first two data sets and PC1-15 for the last two data sets for the downstream analysis.

One of the important features of the function in the Hilbert space, H, is that unlike the vectors in
MDA, it does not allow the permutations of the components, i.e., the phase components. Based on this
characteristic of the function, we performed two analyses depending on the sorting criterion: eigenvalues
and genetic spatial information.

Sort by eigenvalues We first perform and build the function where phase components are sorted ac-
cording to the eigenvalues. It is the simplest way that we directly use principal components from PCA
results. For example, we use PC1 to PC 20 for Trapnell and Buettner and PC1 to PC15 for Meyer
and Shekhar in descending order of eigenvalues. Then, the scRNA-seq gene expression data are recon-
structed after PCA, where the x-axis represents the principal components, which have 20 grid points for
the first two data sets and 15 grid points for the last two data sets, while the y-axis represents the PC
scores for each cell.

Sort by genetic spatial information Genetic spatial information is also an important factor to consider
in scRNA-seq analysis. After PCA, we find the first top variable gene for each principal component, and
then, we embed these genes into the components. Then, we extract the gene information using biomaRt
[13, 12] from Bioconductor. Each ensembl gene ID has various types of information such as ensembl
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transcript ID, chromosome name, start and end positions of the molecule, and external gene name. Based
on this information, we extract the chromosome name, start position, and end position to sort the principal
components. Most chromosome names are given as numbers (1 to 21); however, some are denoted as
characters such as X and Y for males and females, respectively. Hence, we assign X as 22 (for human,
20 for mouse) and Y as 23 (for human, 21 for mouse). We also assign mitochondria (MT) as 24 (or 22
for mouse). Then, we can align the gene names (embedded in the principal components) according to the
chromosome numbers and molecular positions. Table 4 shows the top variable genes for each principal
component for each data set. For example, Trapnell has the ENSG00000149925 ensembl gene ID for
PC1. By using biomaRt, this refers to ALDOA as the HUGO Gene Nomenclature Committee (hgnc)
ID with 16 chromosome names, with 30,064,164 start positions and 30,070,457 end positions. Then, we
can calculate the average molecular position and sort by the genetic spatial information according to the
chromosome name and average position.

Data # of PCs Top Variable Gene for each PC

Trapnell 20

ENSG00000149925, ENSG00000270629, ENSG00000113356, ENSG00000104980, ENSG00000126432,

ENSG00000281852, ENSG00000136874, ENSG00000121578, ENSG00000108561, ENSG00000149761,

ENSG00000135372, ENSG00000101470, ENSG00000196683, ENSG00000138675, ENSG00000138134,

ENSG00000092054, ENSG00000226248, ENSG00000160799, ENSG00000173436, ENSG00000103197

Buettner 20

ENSMUSG00000069083, ENSMUSG00000062997, ENSMUSG00000029580, ENSMUSG00000028837, ENSMUSG00000065990,

ENSMUSG00000101111, ENSMUSG00000101249, ENSMUSG00000020608, ENSMUSG00000013236, ENSMUSG00000015290,

ENSMUSG00000035506, ENSMUSG00000019942, ENSMUSG00000050107, ENSMUSG00000064356, ENSMUSG00000047675,

ENSMUSG00000032415, ENSMUSG00000031292, ENSMUSG00000027007, ENSMUSG00000035673, ENSMUSG00000002489

Meyer 15

ENSMUSG00000073421, ENSMUSG00000051748, ENSMUSG00000096967, ENSMUSG00000064356, ENSMUSG00000062590,

ENSMUSG00000071650, ENSMUSG00000030107, ENSMUSG00000029802, ENSMUSG00000002076, ENSMUSG00000070501,

ENSMUSG00000029196, ENSMUSG00000035498, ENSMUSG00000097164, ENSMUSG00000060441, ENSMUSG00000026944

Shekhar 15

ENSMUSG00000024985, ENSMUSG00000027674, ENSMUSG00000006007, ENSMUSG00000021803, ENSMUSG00000024857,

ENSMUSG00000029309, ENSMUSG00000028519, ENSMUSG00000028172, ENSMUSG00000022820, ENSMUSG00000064368,

ENSMUSG00000022836, ENSMUSG00000021036, ENSMUSG00000026740, ENSMUSG00000090733, ENSMUSG00000005150

Table 4: Top variable gene for each principal component for each data set

After sorting the PCs based on these two criteria, we build the functional data using fda and
fda.usc in the R software to convert the functional data from the original data. Then, we apply
two functional smoothing methods, parametric and non-parametric, to smooth the functional data. The
results of these processes are shown in Figure 4 and Figure 5. In particular, the functional data, in which
the phase components are sorted by eigenvalues and by genetic spatial information, are shown in Figure
4 and Figure 5, respectively. In each figure, the first panel shows the original multivariate data after PCA.
The second panel of the figure shows the functional data, and each cell is fitted using a B-spline basis.
We set a sufficient number of bases to construct the functional data from the scRNA-seq data. The third
and last panels display the functional data after smoothing. The first panel is using a B-spline basis with
a Generalized Cross-Validation (GCV) criterion, and the other panel is a kernel smoothing [15] using
a Nadaraya-Watson [37] estimator with GCV. Unlike the simulated data, which are already smooth and
sufficiently simple since we use a Gaussian process, the functions from the real scRNA-seq data are
messy and noisy. Therefore, the functions are smoothed after applying functional smoothing techniques.
All the smoothed data using parametric and non-parametric methods show very smooth curves compared
to the original functional data in Figure 4 and Figure 5. Using these results of the original and smoothed
data, we applied several classification methods to classify the clusters for the scRNA-seq data.

We performed clustering analysis on real data, and the classification results and accuracy rates are
shown in Table 5. In these real data experiments, we utilized three different cases of phase alignment
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Figure 4: Visualization of multivariate and functional scRNA-seq data with smoothing (sorted by eigenvalue).
Each subfigure shows the real scRNA-seq data after reducing the dimensionality of the gene expression data.
Each color and curve (for functional data) represents the individual cell, where the x-axis shows the index of the
principal components and the y-axis represents the principal component scores. The first panel shows the original
data, which are considered discrete multivariate data. The second panel is the function data converted from the
original discrete data. The third and fourth panels show the smoothed data with B-spline smoothing and kernel
smoothing using the Nadaraya-Watson estimator, respectively.

for each data set: 1) randomly aligned (Random), 2) sorted by eigenvalue (PC), and 3) sorted by ge-
netic spatial information (spatial). In this table, the shaded box represents the highest accuracy rate for
each scRNA-seq data set. All of the data sets show higher accuracy rates for functional clustering al-
gorithms. Moreover, smoothing methods enhance the classification efficiency from the results for the
Trapnell, Meyer, and Shekhar data sets. This table also shows that randomly sorted functional data
sets have lower accuracy rates compared to those sorted by our proposed criteria. Trapnell and Meyer
show higher accuracy rates for PC, and Buettner and Shekhar perform the robust classification and
show higher classification rates for Spatial. The classification results of randomly aligned (Random)
phase components are similar to the results of multivariate data clustering algorithms. In particular, the
accuracy rate is very similar to the MDA clustering classification rate for the Meyer data. In general, the
functional clustering approach with two methods of aligning the phase components on the scRNA-seq
data outperforms the multivariate clustering approach from these real-data experiments results.

4 Discussion

In this study, we have proposed a new framework, functional data analysis for scRNA-seq data, to iden-
tify the subpopulations of cell populations. We have demonstrated that functional data analysis can be
applied to scRNA-seq data to improve the accuracy rate of classification to identify and characterize cell
populations. This is another method of analyzing scRNA-seq data considering cells as a functional shape
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Figure 5: Visualization of multivariate and functional scRNA-seq data with smoothing (sorted by genetic spatial
information). Each subfigure shows the real scRNA-seq data after reducing the dimensionality of the gene expres-
sion data. Each color and curve (for functional data) represents the individual cell, where the x-axis shows the
index of the principal components and the y-axis represents the principal component scores. The first panel shows
the original data, which are considered discrete multivariate data. The second panel is the function data converted
from the original discrete data. The third and fourth panels show the smoothed data with B-spline smoothing and
kernel smoothing using the Nadaraya-Watson estimator, respectively.

Type Smoothing Clustering
Trapnell Buettner Meyer Shekhar

Random PC Spatial Random PC Spatial Random PC Spatial Random PC Spatial

MDA

k-means 39.58 45.83 57.29 30.81

hierarchical 36.11 33.68 51.04 25.59

Mclust 40.28 53.13 53.13 31.07

FDA

No Smoothing

funHDDC 52.43 53.13 52.08 48.96 61.46 64.58 56.25 52.08 57.29 30.29 28.98 30.81

k-means 34.38 35.76 38.89 33.68 33.68 33.68 54.17 59.38 51.04 29.50 26.89 29.42

funFEM 39.58 52.08 49.65 45.49 47.22 46.88 58.33 58.33 60.42 30.81 28.98 30.81

Parametric (b-spline)

funHDDC 43.06 53.47 48.61 40.28 35.42 46.88 50.00 62.50 60.42 27.94 34.99 29.50

k-means 36.81 37.50 52.43 44.10 36.46 51.04 51.04 50.00 51.04 33.16 31.59 32.64

funFEM 39.93 50.35 42.36 44.10 36.46 51.04 50.00 66.67 55.21 27.94 31.85 30.29

Non-parametric (N.W.)

funHDDC 36.11 35.76 42.36 41.67 34.38 44.10 51.04 63.54 60.42 28.20 34.79 31.07

k-means 43.40 36.81 50.00 41.67 41.67 45.83 50.00 52.08 52.08 29.77 36.03 37.08

funFEM 46.53 39.93 44.44 44.79 40.97 48.61 50.00 51.04 54.17 30.03 31.85 28.46

Table 5: Classification results (%) for real data. Each gray box shows the highest classification rate for each data set.

rather than discrete vectors. This framework improves the classification rates in scRNA-seq analysis, in
particular, when the biological data may not represent the strongest signal present in the data. This was
one of the major problems in multivariate data analysis since any evaluation is based on typical inference
by clustering the cells using MDA clustering algorithms, and these clustering label risks are biased. In
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MDA, most bioinformatics techniques and methods are focused on examining the discrete genomic units
of genes, and this approach might ignore spatial information and eventually loses important information
such as the functional nature of the gene expression dynamics. In this sense, an approach based on FDA
also plays a major role in scRNA-seq analysis.

We noted that there are two main strategies in this paper for building functional data from scRNA-
seq data. One strategy is considering how to handle the number of spikes that are considered dropouts.
scRNA-seq analysis allows us to reveal rare and complex cell populations and uncover regulatory rela-
tionships between genes. However, the computational analyses are more complicated due to the high
variability, low capture efficiency and high rates of the zero-inflated values of the scRNA-seq assays.
To solve this problem, we first perform PCA to condense the gene expression data for formatting for
functional data. In this way, we can not only reduce the dimensionality of the data but also remove the
dropouts such that the function can be easily fitted to the data. The other problem of building functional
data is that the phase components of the function do not allow permutations, which would affect the anal-
ysis. To obtain the best classification results, we investigated the order of the phase components of the
function. We give two methods of handling the order of the phase components: using the PCs from PCA,
which are sorted by eigenvalues, and sorting by genetic spatial information since each gene is located in
different chromosomes and at different molecular positions. We approach the clustering analysis using
this spatial information to increase the classification accuracy.

There is still the shortcoming of applying functional data analysis in that, due to the removal of noise
several times, some of the important facts may end up ignored in the analysis. For example, we first
normalize and scale the gene expression data to reduce biological errors, such as batch effects; then,
we perform PCA to remove the dropouts of the data to fit the function. Then, we fit the function on
discretized gene expression data using a known basis. We also apply smoothing techniques to smooth
the functional data. When implementing these several steps, we might remove crucial information about
the gene expression data.

Although there are disadvantages in applying functional data analysis, this new statistical technique
enhances the classification performance and ultimately improves the understanding of stochastic biologi-
cal processes. Therefore, this new framework should not be considered as a replacement for conventional
MDA methods. However, it can be truly effective when current MDA methods cannot detect or uncover
the hidden nature of the gene expression dynamics due to weak signals. Moreover, this study enables the
conversion of functional data from gene expression data, and any further functional statistical analysis
is applicable to scRNA-seq analysis. This is a critical step for scRNA-seq analysis as well as functional
data analysis.
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