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Abstract

The transmission of vector-borne diseases is governed by complex factors including

pathogen characteristics, vector-host interactions, and environmental conditions. Tem-

perature is a major driver for many vector-borne diseases including Bluetongue viral

(BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose

etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal

agriculture and the economy of affected countries. Using modeling tools, we seek to

predict where transmission can occur based on suitable temperatures for BTV. We fit
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thermal performance curves to temperature sensitive midge life history traits, using

a Bayesian approach. Then, we incorporated these into a new formula for the dis-

ease basic reproductive number, R0, to include trait responses, for two species of key

midge vectors, Culicoides sonorensis and Culicoides variipennis. Our results show that

outbreaks of BTV are more likely between 15◦C and 33◦C with predicted peak trans-

mission at 26◦C. The greatest uncertainty in R0 is associated with the uncertainty in:

mortality and fecundity of midges near optimal temperature for transmission; midges’

probability of becoming infectious post infection at the lower edge of the thermal range;

and the biting rate together with vector competence at the higher edge of the thermal

range. We compare our R0 to two other R0 formulations and show that incorporating

thermal curves into all three leads to similar BTV risk predictions. To demonstrate

the utility of this model approach, we created global suitability maps indicating the

areas at high and long-term risk of BTV transmission, to assess risk, and anticipate

potential locations of establishment.

Keywords— Bluetongue disease, vector-borne diseases, transmission, Bayesian analysis

1 Introduction

With ongoing climate change, it is critical that we understand how temperature influences the

dynamics of emerging diseases. Vector-borne diseases are highly sensitive to climate factors,

particularly temperature [1, 2, 3]. Bluetongue virus (BTV) is no exception. The biting

midges of the Culicoides family responsible for transmitting BTV and many other arboviruses

are highly sensitive to changes in temperature [4, 5], and thus so is BTV transmission [6, 7].

More than 1,400 species of Culicoides have been classified, globally, but fewer than 30 have

been identified as competent vectors for BTV transmission [8].

BTV was first detected among merino wool sheep in South Africa in 1905, and since

then, the disease has been found on every continent but Antarctica [9]. In recent years,

outbreaks have occurred in North and Central Europe, parts of Asia, and Western North

Africa [10]. Though the cause of the recent appearance of BTV in some of these regions

(especially Northern Europe) is still unknown, it is believed that climate change is the main

driver, as the increase in temperature of certain locations makes them suitable for midges to

survive, and therefore transmit diseases [11].

BTV can infect most species of domestic and wild ruminants, including sheep, goats, and

cattle [12]. Sheep are the most susceptible to the disease and exhibit the highest morbidity

and mortality post infection [11, 13]. In the majority of strains of BTV’s 27 serotypes,

infected animals rarely show any clinical signs [14]. The severity of infection, and presence
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of clinical signs depend on the serotype, and the severity of infection can range from rapid

fatality to quick recovery. Common outward clinical signs include a blue tongue, fever, and

excessive salivation [11].

Figure 1: Bluetongue virus transmission diagram: the mechanisms underlying the transmission of bluetongue
virus include, host-vector interactions, host-pathogen interactions, vector-pathogen interactions as well as
the environmental effect on all interactions.

Since clinical signs are rarely exhibited by infected animals, in many cases BTV goes

without detection. Unofortunately, undetected cases can still result in mortality, and BTV

vaccine development is in its infancy [15]. An effective polyvalent vaccine to immunize against

more than one strain of BTV has yet to be developed [16]. Further, existing attenuated

viral vaccines pose significant health risks to livestock, such as reduced milk production in

lactating sheep, abortion, early embryonic death, and teratogenesis in pregnant females [17].

With the absence of an effective polyvalent vaccine, and the potential risks and costs of the

available vaccines, the impact of BTV on the U.S. beef industry can be significant. This

cost was estimated at $95 billion dollars in 2014 [16]. The mandatory testing of animals and

losses in foreign markets add to the economic impact of BTV on the U.S. livestock industry,

underscoring the need to assess the risk from it. The impact of BTV extends far beyond the

U.S.; the spread of the disease to areas previously believed to not be at risk, such as North

and Central Europe, regions of Asia, and Western North America, is concerning [13].

Although climate change is believed to be behind this unprecedented spread of BTV to

new areas, more research is needed to verify this hypothesis. Some of the cases of BTV-8

in Europe, specifically in France, have exceeded expectations and survived cold winters [18].

With such crucial components such as the potential for geographic spread, and virus survival,
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still unexplored, it is essential to study BTV further, to uncover the intricacies that dictate

its impact.

BTV cannot survive on its own in the environment. As shown in Figure 1, BTV trans-

mission involves host-vector interactions, host-virus interactions, vector-virus interactions,

and the effect of the environment. Once BTV is transmitted to a vector or host, its survival

is most notably dependent on temperature; while BTV can survive for years at some tem-

peratures, it can be inactivated in a matter of hours within a host at other temperatures

[13].

Due to the complexity involved in determining BTV and other VBD transmission, sci-

entists often use mathematical modeling to understand the transmission process of these

diseases [19, 20, 21]. The classical Ross-MacDonald model of VBDs and similar models al-

low us to calculate the corresponding basic reproductive ratio R0 of the disease [22, 23]. This

summary quantity is widely used to estimate how contagious the disease is and whether an

outbreak can occur. When R0 > 1, the disease is likely to spread, leading to an outbreak,

while R0 < 1, indicates that the disease is likely to die out.

Here we are interested in answering the following questions: (1) How does R0, and thus

risk of transmission of BTV, vary with temperature? (2) Do different model assumptions

lead to different values of R0? and (3) Which traits contribute the most to variation in

R0 estimates? To answer these questions, we take the following three-step approach used

previously for VBDs such as malaria [1, 2]. First, we derive a new R0 for BTV, and we

use Bayesian inference to fit lab data for temperature-sensitive midge life-history traits, to

estimate the thermal responses of these traits. Next, we compare our R0 to two previously

derived forms where the midge density, V , is constant to ascertain if this generates major

differences in outbreak prediction. We then contrast this with a temperature-sensitive midge

density, V (T ), expressed in terms of midge traits.

We compare results for all three forms of R0, and identify which parameters lead to

high variation in R0, using uncertainty analyses. This can indicate that either further data

collection is needed to refine estimates, or that certain parameters have greater impacts

on BTV disease transmission at different temperatures. Furthermore, understanding which

temperature range results in R0 > 1, for given levels of other fixed parameters in our model,

could inform prevention and control strategies.
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2 Methods

2.1 Derivation of R0

To predict the outbreak potential of BTV, several forms of the basic reproductive number

R0 have been developed [19, 20, 21]. The classical reproductive ratio for a generic VBD

[1, 24] is given by

R0 =

(
V bc a2

d H µ
e−µ/ν

)1/2

from [24] (1)

where V is midge population density; bc is vector competence (the product of the probability

that a midge can transmit the infection to an uninfected host, b, and the probability that

a midge gets infected when biting an infected host, c); a is the per-midge biting rate; µ is

the adult midge mortality rate; ν is the pathogen development rate (ν = 1/EIP with EIP

the extrinsic incubation period); H is host density; and d is infected host recovery rate.

The model used to derive this version of R0 is a system of delay differential equations that

assumes no exposed class and that susceptible midges move to the infected class shortly after

contact with an infected host. A similar scenario can be described using a system of ordinary

differential equations while expressing the delay between the contact with infected host and

midges becoming infectious in terms of an exposed class. In this case, the reproductive

number for the midge-borne viral disease (BTV) can be expressed as,

R0 =

(
V bc a2

d H µ

ν

ν + µ

)1/2

from [19] (2)

This version of R0 is a reduced version from a model that uses multiple types of host and

multiple types of midge species as in [19, 20].

Figure 2 shows a schematic representation of our BTV transmission model (Equations

(S1.1)-(S1.8) in Appendix S1) which considers a single host population split into susceptible

individuals that are vulnerable to BTV disease (S), infected individuals that have acquired

infection (I), and individuals who have recovered from the disease (R). In addition, we

consider a vector population containing susceptible midges (Sv), three levels of exposed indi-

viduals (Ev), and an infected class of midges (Iv). The exposed classes in the model represent

the extrinsic incubation period that midges undergo before becoming able to transmit in-

fection. To calculate the basic reproductive number R0, we use a next generation matrix

method described in [25, 26], which leads to the following R0 equation:

R0 =

(
V bc a2

d H µ

(
3 ν

3 ν + µ

)3
)1/2

(3)
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Figure 2: A schematic illustration of BTV transmission. The host population is composed of three classes:
susceptible (S), infected (I), and recovered (R). The midge population is composed of a susceptible class
(Sv), three exposed classes (Ev), and an infected class (Iv). Black arrows show movement between classes
and red arrows indicate contact potentially leading to transmission.

all parameters in our R0, except d and H, are assumed to be temperature dependent. The

term

(
3 ν

3 ν + µ

)3

in our R0 represents the number of midges that survive the extrinsic

incubation period, leading to a slight difference between the three R0 forms. We can represent

all three formulas of R0 with a simple equation given by:

R0 =

(
V gf

d H µ

)1/2

(4)

=

(midge density)

g︷ ︸︸ ︷
(transmission potential)

f︷ ︸︸ ︷
(prob of becoming infectious)

(host recovery rate) (host density) (vector mortality)


1/2

(5)

where the expression for V and g are the same for all three versions and are given by:

V =
F pE pL pP

µ2 (ρE + ρL + ρP )
(6)

g = a2 bc (7)

where F is eggs per female per day, pE, pL, and pP are survival probabilities for eggs, larvae,

and pupae; ρE, ρL, and ρP are development times for eggs, larvae and pupae, respectively; µ

is adult midge mortality; a is midge biting rate and bc is midge competence. The difference
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between the three R0 formulas lies in the functional form, f , representing the probability

of midges surviving to become infectious post infection. Table 1 summarizes the functional

forms for each of the three models considered.

Ref Formula Traits Used

Dietz 1993 f1 = e−µ ν µ : adult
mortality rate

Gubbins et. al. 2008 f2 =
ν

ν + µ
ν : pathogen

development rate

new R0 f3 =

(
3ν

3ν + µ

)3

Table 1: Functional forms used in R0 formulas and the parameters involved.

Figure 3 shows all three functional forms as we fix the parasite development rate ν and

vary the midge mortality rate µ. We use all three forms in our analysis while comparing the

constant vector density case V to temperature-sensitive density V (T ).
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Figure 3: (Left) Functional forms f versus midge mortality rate µ with a fixed ν = mean(ν(T )) = 0.061.
(Right) Functional forms f versus pathogen development rate ν with a fixed µ = mean(µ(T )) = 0.15

2.2 Bayesian fitting of temperature-sensitive traits

As ectotherms, midges are sensitive to temperature. The thermal performance for these

temperature-dependent traits is generally hump-shaped, starting at zero at a given minimum

temperature, then increasing to a peak value as temperature increases, then sharply dropping

to a lower value at a maximum temperature [27, 28].
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Here, we collected trait data corresponding to two midge species from the family Culi-

coides, namely, Culicoides sonorensis and Culicoides variipennis, both found the US [29].

The data collection method consisted of synthesizing data from published literature, via

assembling data from tables, and digitizing data points from graph; details on data fitting

for each trait is provided in Appendix S1. In searching for the data we would use for this

study, we were particularly interested in controlled laboratory experiments on midge trait

variation at constant temperatures, ideally with three or more data points. For digitization,

we used the free software PlotDigitizer [30].

We used the temperature-dependent trait fits in all three R0 formulas for comparison.

Following a method first introduced by Mordecai et al. in 2013 [1], we fit unimodal curves to

temperature-sensitive traits. For the unimodal curves, we chose between a Brière (Equation

(8)) or a quadratic formula (Equation (9)) depending on the trend seen in data.

Brière: kT (T − TMin)
√
TMax − T (8)

Quadratic: inter − n.slope T + qd T 2 (9)

where the constants k, TMin, TMax, inter, n.slope, and qd are the result of fitting trait data,

and each trait requires specific values for the equation to fit the data. For more information

on the values, see Appendix S1.

Similarly to Johnson et al., [2], we used a Bayesian approach for our fitting method.

For each continuous trait, we choose a normal distribution as our likelihood that represents

the data. We truncated the likelihood distributions at zero to avoid negative values for

all thermal curves, and at one for fitting probabilities. We chose priors for each of the

fitting form parameters to assure parameters have the correct sign and range. When fitting

probabilities, we often switched our likelihood to a binomial distribution.

We use a Markov Chain Monte Carlo (MCMC) sampling in JAGS/rjags to fit our models

[31]. For each fit, we run five MCMC chains with 5000 step burn-in followed by 25000

samples, of which 5000 thinned samples were kept for subsequent analyses. We used these

5000 samples of each parameter to calculate the associated trait thermal curves, resulting in

5000 thermal fits of the trait data. Next, we use the mean of all 5000 posterior distributions

as the thermal curve fitting the trait data.

After generating the 5000 posterior mean curves for each of trait, we derive the 5000

posterior curves for R0 then calculate the mean to get the temperature-dependent R0. For

each posterior mean, we calculated the corresponding 95% highest posterior density (HPD)

interval which is the smallest credible interval in which 95% of the distribution lies [32]. Our

analysis was implemented in R [33]. More details on likelihoods and priors used can be found
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in Appendix S1.

2.3 Uncertainty in R0

The R0 formulas (Equation 1, 2, 3) depend on multiple temperature-sensitive traits, and

so do their posterior densities. Hence, there are many sources of uncertainty in the mean

posterior density that can be identified through uncertainty analysis. We calculate the

uncertainty associated with f , g, and V by varying one while keeping the rest constant.

Next, we calculate the 95% credible interval around the mean posterior curve and measure

the relative width of the interval, i.e. the difference between the upper and lower quantiles.

We repeat this process for each individual component, f , g, and V then plot all the curves

together against temperature. In this plot, we can identify which model component cre-

ates the most uncertainty in R0 by identifying the curve with the highest value at a given

temperature.

2.4 Mapping suitability

To visualize and apply our understanding of the thermal suitability of BTV, we mapped both

suitability and risk, at global scales. First, we present the geography of suitability across

the globe by mapping the number of months of suitable temperatures for transmission - i.e.

where R0 >0, using monthly average temperatures from the WorldClim dataset [34]. We

note that here we use a scaled form of R0 by dividing the thermal performance of R0 by the

maximum R0 value.

Second, we map livestock at risk of transmission, using the latest FAO Gridded Livestock

of the World (GLW3) data for 2010, which details global distributions of sheep, goats, cows,

and others, at a 5 minute scale [35]. To create a visually accessible risk map, suitability

was scaled 0-1, and this was multiplied by 1+log(livestock). Thus we create a scaled risk

map, balancing the season length and livestock density, to emphasize areas of coincidence,

rather than simple suitability. In this case we used the GLW3 sheep distribution [36], as the

primary host at risk. All map calculations and manipulations were run in R using packages

raster [37, 38], maptools [39] and Rgdal [40], following methods described in [41].
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3 Results

3.1 Temperature-dependence model components

Here we summarize the model components that depend on temperature and explain their

role in the model.

Midge thermal traits

Figure 4 shows two columns, one for development time and one for survival probability.

The development time column shows the time in days that eggs, larvae, and pupae need

to develop to the next stage. The data are fitted using a quadratic function, under the

assumption that juvenile midges at a given stage will need more time to develop at very low

(<20◦C) and very high (>35◦C) temperatures. For eggs, the development time ranges from

60 to 70 days; for larvae, from 15 to 35 days; and for pupae between 40 and 80 days.

On the other hand, the second column shows survival probabilities for eggs, larvae, and

pupae. We fit the survival probabilities using a Brière curve (Figure 4 B). The survival

probability is relatively high for eggs (0.2 < pE < 0.8), very low for larvae (pL < 0.2), but

almost always 100% for the pupae stage (pP ∼ 1). For fecundity F , we use data on the

number of eggs laid per female per day. To fit F we use a Brière curve as shown in Figure 5

A. The fecundity reaches a maximum around 30◦C and we do not have data for temperatures

beyond that. The mortality rate, µ, is fit using a quadratic curve where we assume that the

mortality is highest for temperature less than 10◦C and higher than 30◦C (Figure 5 B).

Figure 6 shows the biting rate a and the transmission probability b both fit with a Brière

curve. The biting rate minimal values lie around 10◦C and increase to reach a maximum at

30◦C. While the transmission probability b is minimal around 15◦C and reaches a maximum

at 30◦C. We do not have data for the infection probability c so we assume that it is equal

to 0.5. Lastly, Figure 7 shows the parasite development rate fit using a Brière curve, with

minimal values around 15◦C and maximal values around 32◦C. Overall, these thermal traits

all lack data values at extreme temperatures.

Midge density V

Recall the midge density formula given by

V (T ) =
F (T ) pE(T ) pL(T ) pP (T )

µ(T )2 (ρE(T ) + ρL(T ) + ρP (T ))
(10)

To estimate midge density V , we use survival probabilities pE, pL, pP , for egg, larvae and
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Figure 4: Figures in Column A show development time in days for midge juvenile stages, eggs ρE , larvae ρL,
and pupae ρP . Figures in Column B show survival probabilities for midge juvenile stages, eggs pE , larvae
pL, and pupae pP . The solid line is the mean of the posterior distributions of the thermal response curves
while the dashed lines represent the HPD intervals

pupae; and development times ρE, ρL, ρP corresponding to the egg, larvae, and pupae life

stages; the fecundity measure represented by the number of eggs per female per day F ; and

adult mortality rate µ. Given all the traits contributing to the midge density formula we can

evaluate V (T ) to visualize how midge density varies with temperature. Figure 8 shows that

midge density V is highest between 20 ◦C and 28 ◦C; it increases at temperatures higher
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Figure 5: (A) Eggs per female per day F and (B) adult mortality rate µ traits as they vary with temperature.
The solid line is the mean of the posterior distributions of the thermal response curves while the dashed lines
represent the HPD intervals
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Figure 6: (A) Biting rate a and (B) probability that midges transmit infection when biting an uninfected
host b. The solid line is the mean of the posterior distributions of the thermal response curves while the
dashed lines represent the HPD intervals

that 10 ◦C and decreases when temperature exceeds 28 ◦C.

Transmission potential

The component g, is estimated by calculating the product of midge biting rate a and vector

competence bc. For the transmission probability c, we assumed that there will be a 50%

chance for midges to become infected after biting an infected host c = 0.5. Figure 9 shows

the transmission potential thermal curve and its linear dependence on c. Ideally, when data

are available we suspect that c will also depend on temperature and would have a hump-

shaped thermal curve as well.

g(T ) = b(T )c a2(T ); (11)
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line is the mean of the posterior distributions of the thermal response curves while the dashed lines represent
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density, we evaluate Equation 10 at all temperature-dependent traits using the fitted curves. The solid black
line shows the estimated density and the dashed lines show the corresponding HPD interval. A constant
value V = 2 shown for comparison for subsequent modeling.
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Figure 9: (Left) The transmission potential g as the biting rate a and transmission probability b vary with
temperature while the infection probability is constant c = 0.5. The solid line shows the estimated curve and
dashed lines are the HPD interval. (Right) We fix the biting rate a = mean(a(T ) = 0.18 and transmission
probability mean(b(T ) = 0.23 and vary the infection probability between 0 and 1.

Functional form

Equation 12 shows all the different formulas used in the models we present in this paper.

All three formulas use the mortality rate µ given in Figure 5 (B), and the parasite devel-

opment rate ν fitted using a Brière curve in Figure 7. Recall, each of these formulas is the

probability that a midge becomes infectious post infection. Figure 10 shows the variation

of the functional form with temperature based on the two temperature-dependent traits µ

and ν. Although there are differences between the magnitude of these curves, we can see

that their peak occurs at the same temperature (25 ◦C), which is due to the traits’ thermal

curves used in the formula. In addition, all of their HPD intervals overlap which means that

there are no significant differences between them.

f(ν(T ), µ(T )) =



e−µ(T )/ν(T ) [24]

ν(T )

ν(T ) + µ(T )
[19]

(
3ν(T )

3ν(T ) + µ(T )

)3

new R0

(12)
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Figure 10: Functional forms used in R0 versus temperature, the black line shows our model with the newly
derived R0, the purple line shows the model presented in [19], and the blue line shows the model presented in
[24]. Each solid line represents a different model and the dashed lines show the corresponding HPD intervals.
We note that there is an overlap between all HPD intervals meaning that there are no statistically significant
differences between these models.

3.2 Thermal response of R0

We use thermal traits to evaluate R0 given by Equation 4 with constant midge density V

(Figure 11 Top) and with temperature-dependent midge density V (T ) (Figure 11 Bottom).

The three models are slightly different when constant midge density is used but become

agree when temperature-dependent midge density is used. This is due to all the temperature-

sensitive traits used to calculate V (T ); however, this also leads to a higher uncertainty shown

in the range of HPD interval in Figure 11 (Bottom). The lower thermal bound of the three

posterior means are different by a magnitude of 1◦C. However, the peak temperature and

upper thermal limits are in agreement for all three models. With these results, we predict

that R0 > 1 occurs at temperature greater than 15◦C and less than 33◦C, meaning that BTV

is likely to cause an outbreak within this temperature range. We note that this prediction

is based on assuming c = 0.5 which may not be always true in reality.

3.3 Source of uncertainty in R0

In Figure 11 (Bottom), a high variation around R0 posterior density is shown in the large

HPD interval. To determine the source of this uncertainty, we plot the calculated relative

widths for each R0 component, see Figure 12. The results show that at a low temperature

range (14◦C < T < 18◦C) uncertainty in R0 is mainly due to the uncertainty in the functional
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Figure 11: (Top) R0 with constant midge density V and (Bottom) R0 with temperature-dependent midge
density V (T ). The plots shows the magnitude of R0 changing as temperature increases. Each solid line
represent the mean of the posterior distributions of R0 while the dashed lines are the HPD intervals.
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formf. At intermediate temperatures (18◦C < T < 33◦C), the uncertainty is caused by the

midge density V (T ). At very high temperatures (33◦C < T < 35◦C), the transmission

potential g is the component producing the most variability in R0.
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Figure 12: The source of uncertainty in R0(T ) is measured by calculating the relative width of quantiles
with each component varying with temperature while the remaining components are kept constants.

3.4 BTV risk maps

Figure 13 illustrates the number of months each area is at risk of BTV transmission with

the assumption that Culicoides sonorensis and Culicoides variipennis are the main vectors.

The results show that, under baseline long-term average current temperature conditions,

much of central Africa, south Asia, central and the northern part of South America, and

northern Australia are suitable for year-round bluetongue transmission. These areas are also

the warmest parts of the world, and as we move away from them, the temperature is lower

and the number of months of suitability is reduced.

Next, we used the global distribution of sheep to determine areas where sheep are at risk

of acquiring BTV. The choice of sheep was mainly due to ready data availability, and also

because sheep are the BTV host with highest mortality and morbidity rates, and therefore of
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great interest and relevance. The map shows that areas where sheep are at the highest risk

(scale > 3) are located around the equator. The next highest risk regions (1 < scale < 3)

are areas with of high livestock industry, such as central and south America and Europe.

Figure 13: Map of the number of months (1-12) areas are at risk of bluetongue virus transmission according to
our temperature-dependent R0. This map based on the current mean monthly temperatures and is restricted
to bluetongue disease caused by the two midge species Culicoides sonorensis and Culicoides variipennis.

Figure 14: Scaled transmission risk suitability of bluetongue virus for sheep, as the primary host at risk,
worldwide. the scale ranges from a low risk, 0, to a high risk, 5.
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4 Discussion

Here we are interested in the effect of temperature on BTV spread. As highlighted in a 2018

systematic review [42], BTV has been studied using many different modeling approaches.

The systematic review summarized BTV models used post-1998 [42], most of which relied

more on strong modeling assumptions than data. The model results were used to inform

animal health decision-making by identifying at-risk areas and the risk of spread in case of

introduction [43]. Although a few models have used the R0 approach to study BTV, our

model differs in that it incorporates temperature across a wide range, leading to estimating

an R0 that is also temperature dependent. Linking R0 to temperature can help identify BTV

outbreak risk based on temperature at particular locations. This can inform management

policies and control strategies, within current and changing climate conditions.

We use a Ross-Macdonald type modeling approach to describe BTV transmission [22, 23].

We also adopt two previously used BTV models, [24] and [19], to compare their resulting

R0s to ours. This mechanistic approach allowed us to derive the basic reproduction ratio’s

posterior distribution as a function of temperature. We were able to both determine the

suitable temperature for possible BTV outbreaks when R0 > 1 and the temperatures at

which BTV outbreaks are likely to die out when R0 < 1. We note that the thermal response of

R0 here is dependent on our model assumptions, for example setting the infection probability

to be c = 0.5 and choosing the host density H and recovery rate d such that Hd = 1.

Based on the available traits’ laboratory data we used in our model, we predict that BTV

outbreaks, at least from the examined midge species, can occur within the temperature range

of 15◦C and 33◦C, with outbreak peak at about 26◦C. This result was obtained regardless of

which R0 formula used, i.e., all three different models lead to the same predictions. Similarly,

investigating the lower thermal limit, peak, and upper thermal limit of R0 led to no differ-

ence between peaks and upper thermal limits for all three forms, and a difference between

lower thermal limits of only 1 ◦C. This indicates that the uncertainty of temperature effects

outweigh the effects of differences in modeling assumptions for these models.

Previous studies have investigated temperatures suitable for other vector-borne diseases.

For example, a study on three mosquito-borne diseases, Zika, dengue, and chickungunya

transmitted by Aedes aegypti and Aedes albopictus showed that the transmission is likely to

occur between 18-34◦C with peak transmission between 26-29◦C [44]. Moreover, the temper-

atures suitable for the transmission of the plant-borne disease, citrus greening, between 16◦C

and 33◦C with peak transmission at 25◦C [45]. Together with our findings, this shows that

there are similarities between ectotherm vectors in the way they respond to temperature.

For example, their traits follow humped shaped thermal performance curves. But there are
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differences in the temperatures ranges they tolerate, and the temperatures at which their

performance is maximal.

Incorporating different temperature-dependent traits into the model led to uncertainty

in the R0 posterior density. Our uncertainty analysis allowed us to determine the traits

responsible for causing uncertainty in R0 at each part of the temperature range. At a low

temperature range (14◦C < T < 18◦C) more data are needed for the parasite development

rate, ν, and mortality rate, µ, to reduce this uncertainty in the functional form f . At

moderate temperatures (18◦C < T < 33◦C) the uncertainty in R0 is caused by V , meaning

that more data are needed in traits contributing to estimating the midge density. The

biting midge density V (T ) appears to be the main source of uncertainty across a wide

temperature range. At very high temperatures (33◦C < T < 35◦C) we need more data

on vector competence bc and biting rate a. Reducing the uncertainty in R0 will refine our

predictions and our control and prevention suggestions.

We were interested in using our derived R0 thermal response to determine areas at risk

of BTV. A straightforward risk map can be a useful planning tool, both to understand

the scale of current risk, and to anticipate suitable regions where establishment of BTV

could be successful were it to be introduced, with competent vectors. To omit the effect

of our parameters lacking data, namely, host density H, host recovery rate d, and infection

probability c, we used a scaled form of R0 for spatial analyses and visualization. We divide

the thermal response of R0 by the maximum value of R0 which leads to a temperature varying

R0 curve with values between 0 and 1. We created global risk maps showing the number

of months per year each location worldwide is suitable for BTV disease transmission given

the presence of two midge species, namely, Culicoides sonorensis and Culicoides variipennis.

The results show that warmer areas are at risk year-round, while cooler areas are at risk for

fewer months. However, these results are based on long-term, baseline current temperatures,

and with climate change, and the continuous rising of global temperatures, the area at risk

of BTV may expand and shift to include places with previously lower risk [46].
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S1 Appendix

S1.1 Transmission model for BTV

We use an SIR-SEI type of compartmental model to describe vector-host interactions in

transmitting BTV (see Figure 2). The host population (H) is divided into susceptible (S),

infected (I), and recovered (or immune) (R) classes, while the vector population (V ) is

divided into susceptible (SV ) and infected (IV ) classes as well as three Exposed (EV ) classes.

Here we use three exposed classes in the vector population to incorporate a more realistic

length of the extrinsic incubation period. Using three compartments with the exit rate from

each compartment being 3 ν, lead to a Gamma distribution for overall midge progression

to the infectious class with a mean rate of ν. Increasing the number of compartments used

from 3 to a larger number leads to a Gamma distribution with lower variance around the

mean [47]. This approach is an alternative to using fixed time delays, which are not suitable

when using temperature-dependent parameters. Both host (H) and vector (V ) populations

are assumed (and are by definition of the model) constant.

dS

dt
= −ab

H
IV S (S1.1)

dI

dt
=
ab

H
IV (t− τ)S(t− τ)− dI (S1.2)

dR

dt
= dI (S1.3)

dSV
dt

= rV − ac

H
ISV − µSV (S1.4)

dEV 1

dt
=
ac

H
ISV − 3νEV 1 − µEV 1 (S1.5)

dEV 2

dt
= 3νEV 1 − 3νEV 2 − µEV 2 (S1.6)

dEV 3

dt
= 3νEV 2 − 3νEV 3 − µEV 3 (S1.7)

dIV
dt

= 3νEV 3 − µIV . (S1.8)

where

H = S + I +R (S1.9)

V = SV + EV 1 + EV 2 + EV 3 + IV (S1.10)

The model’s parameters are presented in the Table S1.1 below. Note that the parameters

τ is the time that a susceptible (S) takes to become infected after receiving a bite from
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Parameter Definition Units
d Recovery rate of infected hosts 1/day
τ Host’s exposure period day
r Vector population’s birth rate 1/day
a Vector biting rate bites / day
b Probability that a midge is infected dimensionless
c Probability that a midge is infectious dimensionless
µ Mortality rate of adult vectors 1/day
ν Parasite’s development rate 1/day

Table S1.1: Parameters used in the mathematical model, their description, and units.

infected vector (IV ). The parameter ν is the inverse of the Extrinsic Incubation Period of

the pathogen (EIP), i.e., ν =
1

EIP
. We define the vector population size to be V =

λ

µ
,

where λ is the total birth rate of adult midges in the whole population (adults/day), and

µ is per-capita adult mortality rate (1/day). This is based on Parham & Michael [48], who

derive the expression phenomenologically by treating V as a random variable. Thus, λ is

equivalent to rV in the model above, given that r = µ at disease free equilibrium, and is

given by

λ =
F pE pL pP

(ρE + ρL + ρP ) µ
(S1.11)

where F is the number of eggs produced by all females in the population per day, pE,L,P

are the survival probabilities in the Eggs, Larvae, and Pupae stages, and ρE, ρL, ρP are the

development time in each stage. Then, the abundance of the vector becomes,

V =
λ

µ
=

F pE pL pP
(ρE + ρL + ρP ) µ2

(S1.12)

S1.2 Host recovery rate d sensitivity analysis

Although all ruminants are susceptible to BTV disease, each responds to the infection differ-

ently, with sheep being the most susceptible and showing extreme morbidity and mortality.

In addition, BTV host recovery depends on the intensity of the infection as well as the time

of disease detection, which results in recovery rate variability among hosts. To account for

this, we perform a sensitivity analysis on the host recovery rate d by looking at the derivative

of R0 with respect to d as follows:

∂R0

∂d
=

1

2

(
− V g f

d2 H µ

)(
V g f

d H µ

)−1/2

= − 1

2d

(
R2

0

)
(R0)

−1 = −R0

2d
. (S1.13)

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/759860doi: bioRxiv preprint 

https://doi.org/10.1101/759860


Since
∂R0

∂d
< 0 always, the basic reproductive ratio R0 increases as the recovery rate d

decreases. Figure S1.1 shows different R0 densities corresponding to different host recovery

rate values. Higher lengths of infection 1/d, i.e. lower recovery rates d, are associated

with higher R0 densities, meaning that hosts with low recovery rate such as sheep are more

challenging to manage as the chance of outbreak for them is more likely.
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Figure S1.1: Host recovery rate d values correspond to different R0 posterior densities. As d decreases, R0

density increases meaning that a lower recovery rate correspond to a higher outbreak risk.

S1.3 Uncertainty analysis

We investigate the uncertainty caused in each of R0 components, the midge density V , the

functional form f , and the transmission potential g by examining the source of uncertainty

within each component. For the midge density, the uncertainty is mainly caused by the

adult midge mortality rate µ within a wide temperature range, from 10◦C to 32◦C. At

higher temperatures (¿32◦C) the uncertainty is caused by the fecundity F .

In the functional form case, the uncertainty is caused by the adult mortality rate µ for

temperatures between 18◦C and 32◦C, this range overlaps with that of the midge density. At

lower lower (10-18◦C) and higher (32-45◦C) temperature ranges, the uncertainty is caused

by the pathogen development rate ν. In the transmission potential the overall uncertainty

is caused by the biting rate a.
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Figure S1.2: The source of uncertainty in the midge density V (Top), the functional form f (Bottom-left),
and the transmission potential g (Bottom-right) is measured by calculating the relative width of quantiles
with each parameter varying with temperature while the remaining parameters are kept constants.

S1.4 Bayesian fitting of traits thermal curves

To fit each trait, we chose a unimodal functional form as the mean function. We use normal

distributions for most of the data while binomial distributions are used when fitting proba-

bility distributions. We used uninformative priors appropriate for the biological description

of the data, taking into account the positivity of their values as well as their range. The

values in the priors are decided as we go until the appropriate fitting curve is obtained.
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Midges biting rate a

The biting rate of adult midges is one of many factors that influence Bluetongue transmission

[49]. In order to calculate the biting rate, the time required for female Culicoides sonorensis

to lay eggs after a blood meal, also known as a gonotrophic period, is required. Biting rate

(a) can be approximated by taking the inverse of the gonotrophic cycle duration. Similar

to other traits, the biting rate is sensitive to environmental factors, especially, temperature

[49] (see Figure S1.3 for thermal fit).

Vector competence bc

Vector competence for adult midges is a measure of their ability to transmit the disease. It is

genetically determined and heavily influenced by environmental factors such as temperature

and humidity [50]. Vector competence (bc) is the product of the probability of a vector

getting infected after a blood meal containing a pathogen (c) and the probability of a vector

transmiting infection (b). While we were able to find data for b concerning Culicoides

sonorensis [51], we were unable to find data for c. We assume c = 0.5 for all calculations

used in this analysis. We did fit a Bayesian model to the parameter b (Figure S1.4).

Juvenile survival probability pE, pL, pP

Vaughan et. al. studied the sub-adult life cycle of Culicoides variipennis at temperatures

of 20 ◦C, 25 ◦C, and 28 ◦C [52]. We define the probability of an egg hatching by using the

mean percentage of laid eggs that hatched at each given temperature. We now define the

probability of successful larval pupation by collecting the percentage of larva that ended up

pupating at each given temperature. We finally define the probability of pupae emerging to

become adults, pP , as the mean percentage of pupae that survive to the adult stage at each

given temperature (Figures S1.5, S1.6, S1.7).

Juvenile development time ρE, ρL, ρP

Egg Development Time is defined as the time in days required for eggs to hatch in a given

temperature. Culicoides variiennis were studied in a laboratory setting [52]. Larva Devel-

opment Time is defined as the time in days required for the larva to mature into a pupa in

a given temperature. Pupa Development Time is defined as the time in days required for a

pupa to mature into adult midges in a given temperature (Figures S1.8, S1.9, S1.10).

26

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/759860doi: bioRxiv preprint 

https://doi.org/10.1101/759860


0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T (ºC)

Bi
tin

g 
R

at
e 

(a
)

Tmin

D
en

si
ty

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

Tmax

D
en

si
ty

20 25 30 35 40

0.
00

0.
05

0.
10

0.
15

0.
20

k

D
en

si
ty

0.0000 0.0005 0.0010 0.0015 0.0020

0
50

0
10

00
15

00
20

00
25

00
30

00

tau

D
en

si
ty

0 50 100 150 200 250 300 350

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Figure S1.3: (Top) The mean trajectory in solid line and HPD interval in dashed black for the biting rate
a. (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for the biting rate
a. The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation
kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

Fecundity F

The rate at which female midges lay eggs is closely related to the spread of Bluetongue. This

rate is typically measured as eggs per female per day. For this study we also utilized fecundity
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Figure S1.4: (Top) The mean trajectory in solid line and HPD interval in dashed black for the probability
of a vector transmitting the virus when biting b. (Bottom) Histograms of the posterior distribution for each
parameter of the Brière fit for the probability b. The prior distribution for each parameter is plotted in red.
The Brière fit is determined by the equation kT (T − TMin)

√
TMax − T using a binomial distribution.

data that was taken over two oviposition cycles and transformed the data (originally eggs

per female) by dividing by the median oviposition time [49].
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Figure S1.5: (Top) The mean trajectory in solid line and HPD interval in dashed black for the egg survival
probability pE . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for
the probability pE . The prior distribution for each parameter is plotted in red. The Brière fit is determined
by the equation kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

Pathogen development rate ν

Parasite development has been shown to increase with temperature in studies that support

the hypothesis that global warming has been cause for latitudinal shifts which in turn increase
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Figure S1.6: (Top) The mean trajectory in solid line and HPD interval in dashed black for the larval survival
probability pL. (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for
the probability pL. The prior distribution for each parameter is plotted in red. The Brière fit is determined
by the equation kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

the reach of vectors that transmit diseases like bluetongue [53]. In order to investigate this

trait’s relationship with temperature, we made use of data on Extrinsic Incubation Period

(EIP) to create a new parameter: Parasite Development Rate (ν) (ν = 1/EIP). EIP is the
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Figure S1.7: (Top) The mean trajectory in solid line and HPD interval in dashed black for the pupal survival
probability pP . (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for
the probability pP . The prior distribution for each parameter is plotted in red. The Brière fit is determined
by the equation kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

time between a vector getting infected with a pathogen to the time that the vector itself is

able to transmit the pathogen.
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Figure S1.8: (Top) The mean trajectory in solid line and HPD interval in dashed black for egg development
time ρE . (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for egg
development time ρE . The prior distribution for each parameter is plotted in red. The quadratic fit is
determined by the equation inter − n.slope T + qd T 2 using a normal distribution with precision τ .

Adult mortality rate µ

The rate at which midges die over a span of time is known as the mortality rate µ. We

define the mortality rate of midges as 1
lf

, where lf represents the lifespan of midges in days,
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Figure S1.9: (Top) The mean trajectory in solid line and HPD interval in dashed black for larval development
time ρL. (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for larval
development time ρL. The prior distribution for each parameter is plotted in red. The quadratic fit is
determined by the equation inter − n.slope T + qd T 2 using a normal distribution with precision τ .

or the probability of survival for the midges. We define mortality rate in the case where lf

is the lifespan of midges in days. Mortality rate is also sensitive to environmental factors,

especially temperature [49].
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Figure S1.10: (Top) The mean trajectory in solid line and HPD interval in dashed black for pupal development
time ρP . (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for pupal
development time ρP . The prior distribution for each parameter is plotted in red. The quadratic fit is
determined by the equation inter − n.slope T + qd T 2 using a normal distribution with precision τ .

Thermal traits prior distributions

Table S1.2 summarizes all the priors used to fit the thermal curves.
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Figure S1.11: (Top) The mean trajectory in solid line and HPD interval in dashed black for fecundity F .
(Bottom) Histograms of the posterior distribution for each parameter of the Brière fit for fecundity F .
The prior distribution for each parameter is plotted in red. The Brière fit is determined by the equation
kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .

S1.5 Posterior distributions for all R0 forms

For all three R0 posterior distributions we provide posterior distributions for the lower tem-

perature limit, peak temperature, and upper temperature limit.
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Figure S1.12: (Top) The mean trajectory in solid line and HPD interval in dashed black for the parasite
development rate ν. (Bottom) Histograms of the posterior distribution for each parameter of the Brière fit
for the parasite development rate ν. The prior distribution for each parameter is plotted in red. The Brière
fit is determined by the equation kT (T − TMin)

√
TMax − T using a normal distribution with precision τ .
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Figure S1.13: (Top) The mean trajectory in solid line and HPD interval in dashed black for the mortality
rate µ. (Bottom) Histograms of the posterior distribution for each parameter of the quadratic fit for the
mortality rate µ. The prior distribution for each parameter is plotted in red. The quadratic fit is determined
by the equation inter − n.slope T + qd T 2 using a normal distribution with precision τ .
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Model Parameter Mean Function Parameters Prior

Biting Rate TMin dunif(0, 20)
a Brière TMax dunif(20,40)

k dgamma(1,20)
τ dgamma(0.01, 0.01)

Transmission probability TMin dunif(10,24)
b Brière TMax dunif(25,35)

k dgamma(1,10)

Egg Survival Probability TMin dunif(10,20)
pE Brière TMax dunif(35,40)

k dgamma(1,20)
τ dgamma(7, 5−10 )

Larval Survival Probability TMin dunif(0,8)
pL Brière TMax dunif(30,40)

k dgamma(1,20)
τ dgamma(1.5, 0.001)

Pupal Survival Probability TMin dunif(1,5)
pP Brière TMax dunif(35,40)

k dgamma(1,5)
τ dgamma(10, 0.002)

Egg Development Time inter dgamma(1, 0.01)
ρE Quadratic n.slope dgamma(1, 0.5)

qd dgamma(4,28)
τ dnorm(3, 1/800)

Larval Development Time inter dgamma(1, 0.01)
ρL Quadratic n.slope dgamma(1, 0.5)

qd dgamma(4,28)
τ dnorm(3, 1/1000)

Pupal Development Time inter dgamma(1, 0.01)
ρP Quadratic n.slope dgamma(1, 0.5)

qd dgamma(4,28)
τ dnorm(3, 1/200)

Eggs per Female per Day TMin dunif(1, 10)
F Brière TMax dunif(29,35)

k dgamma(1,1)
τ dgamma(9, 0.0005)

Parasite Development Rate TMin dunif(1, 17)
ν Brière TMax dunif(18,45)

k dgamma(1,10)
τ dgamma(9, 0.05)

Adult Mortality Rate inter dgamma(2,2)
µ Quadratic n.slope dgamma(3,3)

qd dgamma(2,2)
τ dnorm(1000, 1/500)

Table S1.2: Prior distributions for each of the parameters for the fitting of the responses for each of the
thermal traits considered.
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Figure S1.14: Minimum, peak and, maximum temepratures posterior densities for the R0 presented here.
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Figure S1.15: Minimum, peak and, maximum temepratures posterior densities for Dietz 1993 [24] R0
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Figure S1.16: Minimum, peak and, maximum temepratures posterior densities for Gubbins 2008 [19] R0
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