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Abstract 

Background: Although depression is recognized as the leading cause of disability worldwide, 

decades of research have identified few actionable preventive factors. Using phenotypic and 

genomic data from the UK Biobank, we took advantage of a unique opportunity to screen a wide 

range of potentially modifiable factors that could offset known risk factors for depression. 

Methods: We curated baseline data on more than 100 lifestyle and environmental factors in 

participants’ lives, including behavioral (e.g., exercise, sleep, media use, diet), social (e.g., 

support, activities), and environmental (e.g., greenspace, pollution) variables. In a follow-up 

survey, participants reported on their traumatic life experiences and mental health, including 

depression. Polygenic risk scores for depression were generated based on large-scale genome-

wide association results. Excluding those meeting criteria for depression at baseline, we 

identified at-risk individuals at high predicted probability (> 90th percentile) for clinically 

significant depression at follow-up based on their (i) polygenic risk, or (ii) reported traumatic life 

events. Using a factors-wide design corrected for multiple testing and adjusted for potential 

confounders, we identified modifiable factors associated with follow-up depression in the full 

sample and among at-risk individuals. Using a two-sample Mendelian randomization (MR) 

design, we then examined which significant factors showed potential causal influences on 

depression risk, or vice versa. Results: A range of baseline modifiable factors were 

prospectively associated with follow-up depression, including factors related to social 

engagement, physical activity, media use, and diet. MR follow-up analyses provided further 

support for the effects of social support-seeking, TV use, and other factors on depression risk. 

Conclusion: As the field increasingly quantifies the role of genetic factors in complex conditions 

such as depression, knowledge of modifiable factors that could offset one’s genetic risk has 
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become highly relevant. Here, we present an approach to screening for potentially modifiable 

factors that may offset the risk of depression in general and among at-risk individuals. In light of 

the burden of disease associated with depression and the urgent need for actionable preventive 

strategies, this approach could help prioritize candidates for follow-up studies including clinical 

trials for depression prevention.  
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Introduction 

Depression now represents the leading cause of disability worldwide1, highlighting a 

pressing need for effective treatment and prevention strategies. However, despite decades of 

research into the causes and consequences of depression, our knowledge of actionable strategies, 

including modifiable factors that could mitigate depression risk at the population level, remains 

relatively limited. Two of the best substantiated risk factors for depression—genetic vulnerability 

and early life adversity2,3—are effectively unmodifiable in adults. 

A number of critical research gaps are evident. First, the literature to date has primarily 

focused on validating a limited set of candidate modifiable factors such as physical activity4,5 or 

social support6. While theoretically grounded and informative, there may be additional factors 

that could modify depression risk but remain overlooked or unknown. Scanning a wider range of 

factors could help confirm existing relationships while potentially identifying novel targets for 

prevention strategies. Systematically testing the relationship between many variables and a single 

outcome for hypothesis-free discovery is now common practice in other fields in the form of 

genome- or phenome-wide association studies and has led to new insights about underlying 

associations7,8, but has not been applied to searching for modifiable factors for depression. 

Second, few studies to our knowledge have assessed the relative influence of multiple modifiable 

factors in the same population. Although individual studies may pursue intriguing variables (e.g., 

dietary factors), the influence of these factors on depression—while statistically significant in a 

narrower context—may not be robust or as clinically important when considered with other 

factors. Understanding the relative importance of modifiable factors for depression has been 

limited to date by inadequate sample sizes for multiple testing and the lack of comprehensive 
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measurements of modifiable factors in a single study, but is now enabled by large cohort studies 

such as the UK Biobank9 in which wide-ranging assessments are available.  

Third, we do not always know which modifiable factors can make a difference for 

individuals who are at particularly elevated risk for genetic and/or environmental reasons. Some 

factors that generally help prevent depression in the general population may not necessarily be 

most relevant for individuals with specific risk profiles10, and vice versa. Genetic vulnerability 

represents an important source of risk for depression, with heritability estimates over 40%2. 

Similar to many other psychiatric disorders, depression is now recognized as a polygenic 

condition11—influenced by many variants across the genome with individually small effects12. 

As we are increasingly able to quantify polygenic risk for depression13 and potentially return this 

information to individuals in the future14, it becomes vital to expand knowledge of effective 

actionable measures for those identified at elevated risk. In addition to genetics, life history 

factors such as traumatic events are known to increase risk for depression15. As we more 

comprehensively assess established sources of genetic and environmental risk in a precision 

medicine framework16, knowledge of modifiable factors that are most relevant for high-risk 

individuals could help guide recommendations on how to offset pre-existing vulnerabilities for 

depression17.  

Finally, modifiable factors may be associated with depression in observational data for 

myriad reasons, including unaccounted third variables (i.e., confounding) as well as reverse 

causation (e.g., whereby depression risk influences observed behavioral patterns). To strengthen 

conclusions about which factors may be high-priority intervention targets, Mendelian 

randomization (MR) analyses can be used to further test the relationship between empirically 

identified modifiable factors and depression. MR is an alternative strategy for potential causal 
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inference that uses genetic variants inherited at birth to approximate a natural experiment in 

which individuals are assigned to varying average lifetime levels of an exposure (e.g., social 

affiliation) in relation to an outcome of interest (e.g., depression)18. While MR also has its 

limitations, its use of genetic data bypasses typical sources of confounding in observational data 

and allows for independent triangulation of traditional questions19. We previously leveraged the 

MR framework to validate a relationship between objectively measured physical activity and 

reduced risk of depression5. Here, we extend this framework to examine a range of potential 

factors that may influence depression.  

In the present study, we took advantage of a unique opportunity to screen a broad range 

of potentially modifiable factors for depression. Using phenotypic and genomic data from UK 

Biobank participants without substantial depressive symptoms at baseline, we conducted 

association tests between 105 potentially modifiable factors and clinically significant depression 

at follow-up (Figure 1). Given the established causal role of genetics and traumatic life events 

on depression risk, we also aimed to identify modifiable factors that may influence depression 

even in the context of these largely static risk factors. Finally, we used two-sample Mendelian 

randomization analyses to further assess the directional and potentially causal relationships 

between identified modifiable factors and depression.  
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Figure 1. Overview of analytic design to test prospective associations between modifiable 

factors and subsequent depression. Associations were tested in three analytic samples: (a) full 

sample; (b) at-risk individuals based on polygenic risk; and (c) at-risk individuals based on 

reported traumatic life events. To reduce bias in associations from contemporaneous reporting, 

modifiable factors were selected from those indexed to the baseline assessment, while 

subsequent depression was assessed at the follow-up survey approximately 5 years later. Key 

distinctions with previous depression analyses in the UK Biobank are summarized in 

Supplementary Methods S0, emphasizing our targeted focus on modifiable factors for 

depression in a prospective design and among different risk groups. 
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Our sample consisted of 123,794 adult individuals of white British ancestry who enrolled 

in the UK Biobank, had high-quality genomic data (for quality control procedures, see Methods 

S1), and completed an online follow-up mental health survey approximately five years after their 

initial enrollment (Figure 1). Data analytic procedures were approved by the institutional review 

board at Partners HealthCare and conducted as part of UK Biobank application #32568. Data 

processing and statistical analyses were conducted between October 2018 and July 2019.  

Measures 

Depression. At baseline, participants reporting depressed mood and/or anhedonia (for 

details, see Methods S2) for more than half the days in the past two weeks were considered to 

have elevated depressive symptoms20 and were excluded (n=5,416; leaving n=118,378). Follow-

up symptoms of depression were then measured in an online survey approximately five years 

after the baseline assessment, using the PHQ-921, which were summed to create an overall score 

ranging from 0 to 27. To derive predicted probabilities for depression to stratify at-risk groups, 

we created a binary variable for clinically significant depression at follow-up based on a score 

cut-off of >1022.  

Modifiable factors. We curated data on 105 potentially modifiable factors that were 

measured or derived at the baseline assessment (Table S1). These factors included behavioral 

(e.g., exercise, sleep, media use, diet), social (e.g., activities, support), and environmental (e.g., 

greenspace, pollution) variables. We selected these variables by inspecting the UK Biobank 

online data showcase (http://biobank.ctsu.ox.ac.uk/crystal/index.cgi) for broad domains of 

modifiable factors and relevant variables within these domains. After review by three separate 

authors (KWC, JWS, KN), we included variables in a domain that were (a) not likely a close 

comorbidity of mental health (e.g., substance use or cognitive functioning); (b) putatively 
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modifiable at an individual and/or societal level (e.g., lifestyle or environmental factors); and (c) 

largely available for most participants and not just administered to a small subset (e.g., based on 

branching response options). Potentially correlated variables within a category (e.g., 16-hour and 

24-hour noise pollution) were retained to assess the relative influences of all available variables. 

We also selected two non-modifiable variables hypothesized to be unrelated to depression, i.e., 

hair color and skin tanning tendency, as negative controls. Data cleaning and processing were 

performed on all variables (described in Methods S3 and Table S1). Continuous variables were 

scaled to a mean of 0 and standard deviation of 1. 

Traumatic life experiences. Participants also reported on their history of traumatic life 

experiences in the online follow-up survey—including childhood physical, sexual, and emotional 

abuse; partner-based physical, sexual, and emotional abuse; and other lifetime traumatic events, 

specifically, sexual assault, violent crime, life-threatening accident, and witnessing violent death 

(for details, see Methods S2). 

Covariates. Baseline variables were also extracted for basic participant characteristics 

(i.e., participant sex, age, assessment center); sociodemographic factors (i.e., socioeconomic 

deprivation, employment status, household income, completion of higher education, urbanicity, 

household size); and physical health factors (i.e., BMI, and physical illness/disability) (for details 

and inclusion rationale, see Methods S2).  

Polygenic risk scoring 

Polygenic risk scores (PRS) were generated based on large-scale genome-wide 

association results for major depression11—specifically, we used summary statistics (discovery 

GWAS n=431,394) from the Psychiatric Genomics Consortium leaving out the UK Biobank to 

minimize sample overlap and including 23andMe data for improved statistical power. We 
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retained SNPs with minor allele frequency > 0.01 and INFO quality score > 0.80 for scoring. To 

generate polygenic risk scores, we applied PRS-CS23—a Bayesian polygenic prediction method 

that places a continuous shrinkage (CS) prior on effect sizes for all HapMap3 SNPs and infers 

posterior SNP weights using GWAS summary statistics combined with an external LD reference 

panel (1000 Genomes Project European sample). Because PRS-CS (available as a Python 

package via https://github.com/getian107/PRScs) allows multivariate modeling of local LD 

patterns and can accommodate a range of underlying genetic architectures while preserving all 

SNPs for scoring, it demonstrates increased explanatory power compared to conventional and 

other Bayesian methods, particularly when using a large discovery GWAS23 (for comparison 

with conventional clumping and thresholding, see Methods S4). We set the global shrinkage 

parameter at 0.01 to reflect the likely polygenic architecture of major depression. Scores were 

calculated by summing the number of risk alleles at each SNP multiplied by the posterior SNP 

weight inferred using PRS-CS, with a total of 1,090,207 included SNPs. We standardized the 

scores within this analytic sample (mean=0, SD=1; for distribution, see Methods S4). We then 

extracted residuals from a model in which PRS were regressed against the top 10 European 

ancestry PCs provided by the UKB for use as stratification-adjusted PRS in subsequent analyses. 

Stratifying participants at risk for follow-up depression  

Among individuals with available data on later depression and risk variables (i.e., 

polygenic risk and reported traumatic life events) (n=113,587; 5% meeting criteria for follow-up 

depression), we removed a holdout training sample of 1,000 participants consisting of an even 

split of randomly selected cases and controls for follow-up depression (for rationale, see 

Methods S5). In this holdout training sample, we regressed follow-up depression against (a) 

polygenic risk, or (b) reported traumatic life events. For the latter, each traumatic life event was 
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entered as a separate independent variable within a multivariable model to estimate relative 

weights of each event on depression risk, rather than assuming equal influences. We obtained 

regression model coefficients for each set of risk variables from the training sample (Methods 

S5) and used these coefficients as weights to generate predicted probability scores for follow-up 

depression for individuals in the remaining testing sample (n=112,587)—based on (a) polygenic 

risk, or (b) reported traumatic life events (for resulting distributions, see Methods S5). Selecting 

individuals with high predicted probability scores (> 90th percentile) for depression, we obtained 

three samples: (i) individuals in the full sample unselected for risk (full; maximum n=112,587), 

(ii) individuals at higher risk based on genetic factors (PRS; maximum n=11,258), and (iii) 

individuals at higher risk based on reported traumatic life events (TLE; maximum n=11,258). 

Only 13.8% of participants (n=1,558) could be assigned to both PRS and TLE risk groups, 

suggesting only modest overlap and potentially distinct influences on depression (for exploratory 

results in this reduced sample, see Figures S20-25).   

Factors-wide association scan 

Using a factors-wide association approach with logistic regression (Methods S5), we 

tested associations between each baseline modifiable factor and clinically significant follow-up 

depression in each of these samples (Figure 1), with a conservative Bonferroni-corrected 

threshold for establishing top hits (p = 0.000159, i.e., 0.05 divided by 105 tests in three primary 

analytic samples). All associations were adjusted for participant sex, baseline age, and 

assessment center (Model 0). We further adjusted for potential sociodemographic confounders 

described earlier (Model 1), then added physical health factors (Model 2). All analytic samples 

were restricted to participants with full covariate data (full: maximum n=100,519; PRS: 

maximum n=10,093; TLE: maximum n=10,152) to ensure differences in results between 
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successively adjusted models reflected the addition of covariates, rather than varying sample 

size. We also descriptively assessed the degree of overlap between significant factors in each at-

risk sample versus the full sample.  

Mendelian randomization (MR) analyses 

We performed bidirectional two-sample MR analyses (Methods S6) between depression 

and modifiable factors identified in the fully adjusted factors-wide association scan (Model 2) for 

the full sample and at-risk groups, if any. For genetic instruments, we accessed the GWAS Atlas 

online database24 (https://atlas.ctglab.nl) to obtain publicly available UK Biobank-based 

summary statistics for each identified factor. For depression, we retained the summary statistics 

from the Psychiatric Genomics Consortium11 used for polygenic scoring. As genetic instruments, 

we extracted highly associated SNPs (p < 1x10E-7) that were clumped for independence at r2 > 

0.001. Using the TwoSampleMR package in R25, we conducted MR analyses to estimate the 

effect of each modifiable factor on the risk of depression, and vice versa. For primary MR 

analyses, we combined per-SNP effects using inverse variance weighted (IVW) meta-analysis, 

where the resulting estimate represents the slope of a weighted regression of SNP-outcome 

effects on SNP-exposure effects where the intercept is constrained to zero. We applied MR-

PRESSO26 in combination with additional tests (i.e., Cook’s distance, studentized residuals, Q-

value outliers) to detect statistical outliers reflecting likely pleiotropic bias27, and removed these 

outliers to generate estimates for reporting. We relaxed the instrument p-value threshold for 

several traits (p < 1x10E-6; i.e., vitamin B; walking frequency) that did not have sufficient SNPs 

(three or fewer) following outlier removal. We then compared the pattern of IVW results to other 

established MR methods whose estimates rely on different assumptions and are known to be 

relatively robust to horizontal pleiotropy, specifically the weighted median approach28 and MR 
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Egger regression29. We further assessed horizontal pleiotropy using standard methods including 

leave-one-SNP-out analyses, the modified Cochran’s Q statistic, and the MR Egger intercept 

test30. Finally, for significant results, we searched each instrument SNP in the PhenoScanner v2 

database (http://www.phenoscanner.medschl.cam.ac.uk), to identify known associations with 

depression-related traits at p<1x10E-5 with each instrument SNP or any SNPs that were in 

linkage disequilibrium at r2>0.80, and assessed whether removing these SNPs substantively 

changed the pattern of results. Reported estimates were converted to odds ratios where the 

outcome was binary, and interpreted using a conservative Bonferroni-corrected p-value threshold 

(0.05/number of factors with available summary statistics). 

Results 

Sample description 

In the full sample, participants were 54% female and had a mean baseline age of 56.1 

(standard deviation, SD = 7.7). 46% reported college or university qualifications, 65% reported 

current paid or self-employment, and 64% reported average household income of 31,000 pounds 

or higher. Participants had a mean BMI of 26.7 (SD = 4.4) and 26% endorsed physical 

illness/disability. Overall, 3.9% met the cut-off for clinically significant symptoms at follow-up; 

as expected, the prevalence of follow-up depression was elevated within the high PRS group 

(6.1%) and the high TLE group (12.1%).  

Modifiable factors prospectively associated with depression status in the full sample 

In the full sample, 49 factors were significantly associated with depression (Model 0) 

(Figure S1 and Table S2a), ranging across physical activity, media use, sleep, social, 

environmental, and dietary domains. After adjusting for sociodemographic factors (Model 1), 39 

factors were significantly associated with depression (Figure S2 and Table S2b). After further 
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adjusting for physical health factors (Model 2), 29 factors remained significantly associated with 

depression (Figure 2 and Table S2c).  

 

Figure 2. Consistency of top associated factors across levels of covariate adjustment. Blue = 

reduced odds of depression; red = increased odds of depression. Results are shown only for 

factors that had significant associations in at least one model. 
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Of the 29 top hits identified in Model 2, 18 factors were associated with reduced odds of 

depression and 11 were associated with increased odds of depression (Figure 3; Table S2c). The 

top ten factors included six protective factors: confiding in others (aOR=0.83, 95% CI [0.82-

0.85], p=9.50E-100); sleep duration (aOR=0.83 [0.80-0.85], p=5.31E-33); engaging in exercises 

like swimming or cycling (aOR=0.70 [0.66-0.75], p=2.88E-25); walking pace (aOR=0.79 [0.74-

0.84], p=3.33E-15); being part of gym/club (aOR= 0.77 [0.72-0.83]; p=3.93E-12); and cereal 

intake (aOR=0.89 [0.87-0.92], p=9.58E-12); and four risk factors: daytime napping (aOR=1.29 

[1.22-1.37], p=1.20E-19); computer use (aOR=1.10 [1.07-1.13], p=9.38E-12); TV use 

(aOR=1.12 [1.08-1.16], p=6.05E-12); and cell phone use (aOR=1.10 [1.07-1.13], p=1.25E-11).   

 

Figure 3. Association results between modifiable factors and clinically significant 

depression in the full sample, adjusted for sociodemographic and health factors. A) 

Association plot for modifiable factors in relation to follow-up depression, with x-axis organized 

by conceptual domains, y-axis showing statistical significance as -log10 of p-value, and red 

horizontal line showing the significance threshold corrected for multiple testing. B) Adjusted 

odds ratios for significant factors, in ascending order (i.e., from risk-reducing to risk-increasing).  
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Factors associated with depression among at-risk individuals based on polygenic risk 

Among individuals at high predicted probability for depression based on polygenic 

scores, 12 factors were identified to be significantly associated with depression (Model 0) 

(Figure S6 and Table S2d), ranging across physical activity, media, sleep, social, and dietary 

domains. After adjustment for sociodemographic factors (Model 1), 10 factors showed 

associations with depression (Figure S7 and Table S2e). After further accounting for physical 

health factors (Model 2), five factors remained associated with depression (Figure S9 and Table 

S2f). Notably, each of these factors had been identified in the full sample (Figure 2). Of these 

(Figure S8), two were associated with reduced odds of depression: frequency of confiding in 

others (aOR=0.85 [0.81-0.89], p=2.87E-13) and sleep duration (aOR=0.81 [0.75-0.88], p=4.07E-

07). The other two factors were associated with increased odds of depression: time spent using 

the computer (aOR=1.17 [1.09-1.26], p=1.19E-05), salt intake (aOR=1.21 [1.10-1.30], p=1.31E-

04), and time spent using the TV (aOR=1.17 [1.08-1.27], p=1.57E-45).  

Factors associated with depression among at-risk individuals based on traumatic life events 

Among individuals with high predicted risk for depression based on their reported 

traumatic life events, 18 factors were significantly associated with depression (Model 0) (Figure 

S13 and Table S2g). After adjustment for sociodemographic factors (Model 1), 16 factors were 

significantly associated with depression (Figure S14 and Table S2h). After further adjusting for 

health factors (Model 2), five factors remained associated with depression (Figure S16 and 

Table S2i). Again, each of these factors had been identified in the full sample (Figure 2). Of 

these (Figure S15), four factors were associated with reduced odds of depression: frequency of 

confiding in others (aOR=0.85 [0.82-0.88], p=5.87E-23); engaging in exercises like swimming 
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or cycling (aOR=0.66 [0.58-0.74], p=6.30E-11); sleep duration (aOR=0.84 [0.79-0.89], p=7.93E-

09); and typical walking pace (aOR=0.81 [0.73-0.90], p=1.56E-4), while one factor was 

associated with increased odds of depression: time spent watching TV (aOR=1.15 [1.08-1.22], 

p=9.15E-06).  

Follow-up Mendelian randomization (MR) analyses 

 All modifiable factors identified within at-risk groups had been identified in the full 

sample; thus, we tested any factors identified in the adjusted full sample (Model 2) with available 

GWAS summary statistics. Bidirectional MR analyses between each factor and depression 

revealed a number of findings suggesting causal influences (Figure 4 and Figure 5); results 

across MR methods for each factor are summarized in Table S3. 

MR evidence supported a beneficial effect of confiding in others (OR=0.76 [0.67-0.86], 

p=2.53E-05; 10 SNPs), with non-significant effects in the reverse direction. No effect 

heterogeneity (Q statistic=5.5, p=0.78) was observed, and the MR-PRESSO global test (p=0.82) 

and MR Egger intercept test (p=0.78) did not provide evidence of horizontal pleiotropy. Given 

the lower number of SNPs tested, this effect remained notably significant when relaxing the 

instrument SNP p-value threshold to 1x10E-6 (OR=0.89 [0.84-0.95], p=7.63E-4; 50 SNPs), and 

when retaining only SNPs with no known associations with potentially relevant traits in the 

PhenoScanner database (Table S3). We also found MR evidence supporting a deleterious effect 

of TV use (OR=1.09 [1.04-1.15], p=1.33E-03; 145 SNPs), with non-significant effects in the 

reverse direction. No effect heterogeneity (Q statistic=130.8, p=0.78) was observed, and the MR-

PRESSO global test (p=0.44) and MR Egger intercept test (p=0.78) did not provide evidence of 

horizontal pleiotropy.  
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Daytime napping showed bidirectional effects with depression, such that daytime 

napping was linked to higher odds of depression (OR=1.34 [1.17-1.53], p=1.82E-05; 91 SNPs) 

while depression was also associated with increased daytime napping (beta=0.05 [0.03-0.06], 

p=8.45E-11; 43 SNPs), with no evidence of effect heterogeneity or horizontal pleiotropy in 

either direction. Surprisingly, MR evidence suggested that multivitamin use was also linked to 

increased odds of depression (OR=1.28 [1.11-1.47], p=6.04E-04; 6 SNPs); however, with the 

lower number of SNPs tested, this effect was notably attenuated when relaxing the instrument 

SNP p-value threshold to 1x10E-6 (OR=1.07 [1.0-1.14], p=0.0498; 30 SNPs). Depression was 

also nominally associated with increased intake of multivitamins (OR=1.06 [1.002-1.13], 

p=4.07E-2; 44 SNPs). Other nominal results at the traditional p<0.05 threshold are summarized 

in Methods S7 and included tea intake (protective), frequency of family/friend visits 

(protective), exercises such as cycling or swimming (protective), and salt intake (risk-

increasing). 
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Figure 4. MR estimates of top modifiable factors → the risk of depression with outliers 
removed, based on the inverse-variance weighted method (for the weighted median 
method, see Figure S26). 
 

  
Figure 5. MR estimates of depression → top modifiable factors with outliers removed, 
based on the inverse-variance weighted method (for the weighted median method, see 
Figure S27). Odds ratio estimates on left shown for dichotomous factors as outcomes, and beta 
estimates on right shown for non-dichotomous factors as outcomes. 
 

 
Discussion 

Although depression is recognized as the leading cause of disability worldwide, decades 

of research have identified few actionable prevention strategies. We recently used MR to validate 

the protective effect of objectively measured physical activity5 on depression risk, but have 

expanded this program of research to assess contributions to depression risk from a wider range 

of modifiable factors. Using phenotypic and genomic data from UK Biobank participants, we 

screened a broad panel of potentially modifiable factors that may offset genetic and 

environmental vulnerability to incident depression. Consistent with literature regarding the 
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multifactorial nature of depression risk31, we identified numerous modifiable factors that were 

prospectively associated with depression ranging across multiple domains, including physical 

activity, social, media-related, and dietary domains.   

Several factors identified to be protectively associated with depression were not 

unexpected—but received novel validation in an MR framework. The frequency of confiding in 

others, an index of emotional social support, showed a robust phenotypic association consistent 

with MR results even after removing potentially pleiotropic instruments, suggesting that 

increased confiding in others is likely to be causally linked with reduced odds of depression. This 

echoes previous evidence on the mood-related benefits of social support6 and substantiates its 

role in preventing depression. Frequency of visiting family/friends also showed nominal results 

in the MR framework, suggesting that multiple dimensions of social support (not only reaching 

out to confide in others, but generally having increased social interactions) may help reduce risk 

of depression. Consistent with these findings, we previously demonstrated that greater levels of 

social cohesion in a sample of military personnel reduced the risk of incident depression despite 

high polygenic risk or exposure to traumatic events32.  

As expected, engagement in various kinds of physical activity showed protective 

associations with follow-up depression. However, these relationships were not strongly 

supported in the MR framework. We previously observed5 using MR that while objective 

measures of physical activity (not included here) are linked to reduced odds of depression, self-

report measures of physical activity do not necessarily show these patterns. Objective measures 

of physical activity—reflecting a broad tendency for movement/activity—have demonstrated 

higher heritability33 and may yield more powerful genetic instruments in an MR framework. 
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Indeed, the self-report activity variables examined in the present study tended to have fewer 

genome-wide significant SNPs than other traits examined (e.g., media use). 

Our MR findings were also consistent with prior evidence that increased TV time is a risk 

factor for poor mental health, including depression34. This work adds to broader evidence linking 

screen time to mental health outcomes35 and suggests that reducing hours spent watching TV 

could have a role in mitigating depression risk. It remains unclear whether these effects are due 

to screen time and media exposure per se, or whether TV watching serves as a proxy for time 

spent in sedentary behavior more generally, which has been associated with depression36. 

Nominal MR results also suggested some possibility for reverse causation, where increased use 

of other screen-based media (e.g., computer use) appeared to be a consequence of depression.  

Other modifiable factors that have received less attention also emerged in our scan. 

Daytime napping was not only phenotypically associated with increased depression risk but also 

showed bidirectional influences in the MR context. These results suggest that increased daytime 

napping could increase risk of depression, and therefore limiting (excessive) daytime napping 

could prove beneficial for reducing depression risk—however, that depression may also increase 

one’s tendency to engage in daytime napping. Conversely, greater overall sleep time was 

associated with reduced odds of follow-up depression; however, this relationship was not 

substantiated in the MR framework. This may be because sleep shows a more complex and non-

linear relationship with depression37 than could be modeled in this broad focus study. 

Among the more surprising findings was an association between multivitamin use and 

increased odds of follow-up depression that was supported by initial MR analysis, though 

attenuated when considering a more relaxed set of genetic instruments. We also found evidence 

of reverse causation (whereby individuals with depression may turn to vitamin supplementation), 
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which may have contributed to this phenotypic association. To our knowledge, no studies have 

linked multivitamin use to increased risk of depression so caution is required, particularly since a 

meta-analysis of multivitamin supplementation trials found no significant effect on depressive 

symptoms38. Prior studies of vitamin intake and depression have largely focused on individual 

micronutrients (such as vitamin D and folate), with highly mixed results39.  

Environmental factors such as pollution and exposure to natural environment showed 

initial associations with depression—risk and protective effects, respectively—that did not 

persist after adjusting for sociodemographic factors, and were thus not tested in the MR 

framework. While these unadjusted findings were in line with growing evidence40, it may be that 

environmental exposures exert stronger influences earlier in development41, or shape lifetime 

mental health risk rather than incident cases in a relatively short follow-up period. In addition, 

sub-features of the natural environment (e.g., tree  versus grass coverage) have shown divergent 

effects on mental health risk42, requiring more nuanced study than possible here. 

The recent emergence of precision medicine as a framework for disease prevention and 

treatment motivated our effort to examine whether protective factors operate differentially 

among individuals at higher risk for depression. We found that all factors identified as protective 

among at-risk individuals (whether based on polygenic risk or reported traumatic life events) 

were also protective in the full sample. This suggests that the benefits of these identified factors 

can be observed in the presence of static vulnerability factors such as genetic risk or reported 

traumatic life events. 

Our study should be evaluated in light of several limitations. First, while we considered a 

wide array of lifestyle and environmental factors, we were limited by the variables available in 

the UK Biobank database, which did not include coping styles or psychological factors that 
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could also be modifiable with respect to depression risk. Second, our study relied on self-report 

measures which can be subject to reporting biases and may not optimally capture all underlying 

factors of interest. Our assessment of follow-up depression was based on a self-report measure 

that, while widely used, may not be fully concordant with a clinical diagnostic interview. In 

addition, the self-reported outcome could explain stronger associations with factors that were 

also self-reported and have an emotional component (e.g., social factors). Third, confirmation of 

causal effects may require randomized controlled trials of preventive interventions. In some 

cases, such trials might be prohibitively costly, require long duration of follow-up, or be 

otherwise unfeasible. We sought to address this with a prospective design complemented by 

Mendelian randomization analyses, which provides an important alternative for verifying 

actionable strategies. However, it should be noted that MR estimates reflect lifelong average 

effects of genetic variants and should not be interpreted in the same way as effects from a 

discrete intervention trial or within a brief follow-up period. The absence of an MR result does 

not disconfirm the potential importance of a factor operating within more acute time frames. 

Finally, our analyses were restricted to an older white British sample that volunteered for 

research and thus represents a healthier and more engaged population43, and may thus not be 

generalizable to other populations.  

In conclusion, there has to date been limited systematic, large-scale research on 

modifiable factors for depression. Here, we demonstrate a novel two-stage approach to 

identifying factors that may protect against the development of depression. Using a large-scale 

sample with both genomic and wide-ranging lifestyle and environmental measures, we screened 

more than 100 potentially modifiable factors for their association with incident depression, 

including among at-risk individuals, and then tested potential causal effects in a Mendelian 
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randomization framework. Our results prioritize an array of potential targets for prevention 

strategies, including behavioral and lifestyle factors, aimed at reducing the risk of depression. In 

light of the enormous burden of depression and the dearth of validated avenues for prevention, 

our results may have important implications for the future of precision psychiatry.  
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