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Abstract  

The volumetric and morphometric examination of hippocampus formation subfields in 

a longitudinal manner using in vivo MRI could lead to more sensitive biomarkers for 

neuropsychiatric disorders and diseases including Alzheimer's disease, as the 

anatomical subregions are functionally specialised. Longitudinal processing allows for 

increased sensitivity due to reduced confounds of inter-subject variability and higher 

effect-sensitivity than cross-sectional designs. We examined the performance of a new 

longitudinal pipeline (Longitudinal Automatic Segmentation of Hippocampus Subfields 

[LASHiS]) against three freely available, published approaches. LASHiS automatically 

segments hippocampus formation subfields by propagating labels from cross-

sectionally labelled time point scans using joint-label fusion to a non-linearly realigned 

‘single subject template’, where image segmentation occurs free of bias to any 

individual time point. Our pipeline measures tissue characteristics available in in vivo 

high-resolution MRI scans, at both clinical (3 Tesla) and ultra-high field strength (7 

Tesla) and differs from previous longitudinal segmentation pipelines in that it leverages 

multi-contrast information in the segmentation process. LASHiS produces robust and 

reliable automatic multi-contrast segmentations of hippocampus formation subfields, 

as measured by higher volume similarity coefficients and Dice coefficients for test-

retest reliability and robust longitudinal Bayesian Linear Mixed Effects results at 7 T, 

while showing sound results at 3 T. All code for this project including the automatic 

pipeline is available at https://github.com/CAIsr/LASHiS  
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1. Introduction 

The hippocampus formation is a brain structure generating large interest and research 

activity due to its implication in memory, psychiatric and neurological disorders 

including Alzheimer’s Disease (AD; Daulatzai, 2013; Fotuhi et al., 2012), Motor 

Neurone Disease (Machts et al., 2018) and depression (Sapolsky, 2001), and 

especially its functional and structural changes in ageing (Fraser et al., 2015). Due to 

the hippocampal formation’s vulnerability in neurodegenerative disease, and its 

involvement in neurogenesis (specifically within the dentate gyrus [DG], Erickson et 

al., 2011), precise volumetric and morphometric measurements of hippocampus 

formation are important for clinical studies and ageing research. Recent work has 

focussed on the hippocampus formation subfields, which are impacted differentially in 

neurodegeneration and disease (e.g., Machts et al., 2018). Volumetric and 

morphometric examination of these hippocampus subfields, especially in longitudinal 

studies, may lead to more sensitive biomarkers of disorder and the progress of the 

diseases (Adler et al., 2018; Boutet et al., 2014; Henry et al., 2011; Kerchner et al., 

2012; La Joie et al., 2013; Maruszak & Thuret, 2014; Pluta et al., 2012). 

 

Hippocampus subfields are functionally and cytoarchitectonically disparate (Andersen, 

2007; Daulatzai, 2013; de Flores et al., 2019; Fotuhi et al., 2012) with heterogeneous 

cellular composition. The four Cornu Ammonis (CA) subfields each have regional 

variations in pyramidal cells, creating structural differences between these subfields, 

which can be reflected to a degree in differing contrast and intensity signals in 

magnetic resonance imaging (MRI) scans with sufficient sensitivity and spatial 

resolution, i.e., at high enough field strengths (3 Tesla [T] and above; e.g., Duvernoy 

et al., 2013; Naidich et al., 2003). As distinct cellular differences between subfields are 
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only observable ex vivo and translate into only subtle differences in the MR signal, it 

is difficult to characterize these tissue classes at lower field strengths and routine MRI 

sequences due to low signal to noise ratio (SNR) and imaging artefacts (D. Wang & 

Doddrell, 2005). 

 

Following from the above challenges, changes in small brain structures have been 

successfully studied at ultra-high field (UHF) using MRI sequences with different 

contrasts (multi-contrast MRI) and allowed remarkable details for imaging in vivo 

(Fracasso et al., 2016). UHF MRI enables the increased spatial resolution necessary 

to characterize tissue differences in vivo, and in reasonable acquisition times. Previous 

UHF in vivo hippocampus subfield segmentation studies (for review, see Giuliano et 

al., 2017) utilise ‘dedicated’ sequences (e.g., single- or multi-echo Gradient Echo, 

Turbo-Spin Echo [TSE]) that exhibit varying intensity and contrast characteristics for 

different tissue classes due to multiple refocusing pulses. Consequently, the subfields 

of the hippocampus are observable in these dedicated sequence types (Marques & 

Norris, 2018; Winterburn et al., 2013). 

 

Advances in MRI acquisition techniques and image analysis methods have made 

automatic segmentation of hippocampus subfields possible. More recently, fully 

automatic hippocampus subfield pipelines including Freesurfer’s hippocampus 

subfields method (Iglesias et al., 2015) and Automatic Segmentation of Hippocampus 

Subfields (ASHS; Yushkevich et al., 2015) have been released as open-source 

segmentation software that combine several computational methods to achieve more 

reliable and precise results. 
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While both Freesurfer and ASHS have been applied in various studies (Chiappiniello, 

2018; Iglesias et al., 2016; Pluta et al., 2012; Yushkevich et al., 2015), generally, 

segmentation errors cannot be avoided in practice. The cross-sectional variant of 

Freesurfer accounts for contrast differences in input images while leveraging a 

combination of T1w and T2w contrasts for defining hippocampus segmentation. The 

underlying assumption of the Freesurfer scheme is that the spatial distribution of brain 

structures will be consistent with the in vivo and ex vivo data in the atlas package, and 

spatial distributions of brain structures are homogenous within all scanned 

populations. A longitudinal variant of the hippocampus subfield method from 

Freesurfer (Iglesias et al., 2016) has also been introduced, which decreases residual 

(within-subjects) variability by allowing each participant to act as their own control. 

However, this method does not incorporate T2w information for labelling. It has been 

shown previously that T1w information generally does not contain signal that 

differentiates hippocampus subfields (Winterburn et al., 2013), including - in T2w 

contrast - the hypointense band of cells that separates the dentate gyrus (DG) from 

the CA regions known as the stratum radiatum lacunosum moleculare. 

 

Longitudinal processing allows for increased sensitivity (Fitzmaurice et al., 2011) due 

to reduced confounds of inter-subject variability and higher effect-sensitivity than 

cross-sectional designs. In image processing pipelines, longitudinal processing avoids 

many issues of secular trends inherent to cross-sectional designs, as participants act 

as their own control. These designs often exploit the knowledge that within-subject 

anatomical changes over time are usually significantly smaller than changes on an 

inter-subject morphological scale (Reuter et al., 2012). Longitudinal designs have 

been used to successfully characterise changes in brain morphometry over time with 
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greater accuracy than their cross-sectional counterparts (Reuter et al., 2012; Reuter 

& Fischl, 2011; Tustison et al., 2017). These designs avoid many types of image 

processing bias by transforming images into an intermediate space between time 

points where interpolation-related blurring is consistent across the time points. 

 

Currently, using ASHS to measure volumes of hippocampus subfields in a single 

participant at multiple time points does not account for the inherent variability present 

in cross-sectional methods. The Freesurfer longitudinal hippocampus subfields 

pipeline is the only dedicated longitudinal pipeline for measuring the volume of 

hippocampus subfield automatically. However, this method does not utilise the signal 

and tissue information available with multi-contrast MRI, and in particular, the 

‘dedicated’ T2w scan commonly used in measuring the subfields of the hippocampus. 

We aimed to develop a longitudinal automatic hippocampus subfield segmentation 

pipeline that incorporates multi-contrast information while being robust to 

computational errors inherent to purely cross-sectional methods. We then examined 

the performance of our new longitudinal pipeline (Longitudinal Automatic 

Segmentation of Hippocampus Subfields [LASHiS]) against three published 

approaches viz; cross-sectional (FS Xs) and longitudinal (FS Long) Freesurfer 

hippocampal subfields (V6.0 Dev20181125; Iglesias et al., 2016), and ASHS cross-

sectional (ASHS Xs; Yushkevich et al., 2015) 

 

We developed an open-source multi-contrast pipeline that shares commonalities with 

existing pipelines but can capture multi-contrast information from MRI scans 

automatically, while avoiding errors common to cross-sectional processing. We 

integrate several open-source software packages and programs to construct LASHiS 
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and propose the usage of multi-atlas fusion techniques to bootstrap automatic 

segmentation performance. Our pipeline is implemented with existing tools available 

through ANTs (ANTs Version: 2.2.0.dev116-gabc03; http://stnava.github.io/ANTs/; 

Avants, Tustison, & Song, 2010) and ASHS 

(https://sites.google.com/site/hipposubfields/; Yushkevich et al., 2015). Our pipeline 

and all associated code can be found at https://github.com/CAIsr/LASHiS.  
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2. Methods and materials 

2.1 Towards Optimising MRI ChAracterisation of Tissue (TOMCAT) imaging data 

Seven healthy participants (age: M = 26.29, SD = 3.35, sex: 3 female, 4 male) were 

scanned using a 7 T whole-body research scanner (Siemens Healthcare, Erlangen, 

Germany), with maximum gradient strength of 70 mT/m and a slew rate of 200 mT/m/s 

and a 7 T Tx/32 channel Rx head array (Nova Medical, Wilmington, MA, USA) in three 

sessions with three years between session one and two, and 45 minutes between two 

and three, allowing for a scan-rescan condition. The study was approved by the 

university human ethics committee and written informed consent was obtained from 

the participants. Participants were scanned using a 2D TSE sequence (Siemens WIP 

tse_UHF_WIP729C, variant: tse2d1_9), TR: 10300 ms, TE: 102 ms, FA: 132°, FoV: 

220 mm, voxel size of 0.4 x 0.4 x 0.8 mm3 Turbo factor of 9; iPAT (GRAPPA) factor 2, 

acquisition time (TA) 4 minutes 12 seconds. The scan was repeated thrice over a slab 

aligned orthogonally to the hippocampus formation. An anatomical whole-brain T1w 

scan using a prototype MP2RAGE sequence (WIP 900; Marques et al., 2010; O’Brien 

et al., 2014) at 0.75 mm isotropic voxel size was also acquired (TR/TE/TIs = 4300 ms 

/ 2.5 ms / 840 ms, 2370 ms, TA = 6:54). At the first time point, the data was acquired 

as part of a larger study (Bollmann et al., 2018), and the nominal resolution was 0.5 

mm isotropic with the same parameters. For all subsequent processing, all MP2RAGE 

images for the first time point were resampled to 0.75 mm isotropic using b-spline 

interpolation. TSE images were resampled to 0.3 mm isotropic and motion-corrected 

using non-linear realignment (Shaw et al., 2019) to ensure all segmentation strategies 

had an equivalent chance of succeeding. We have previously explored the effects of 

non-linear realignment on hippocampus subfield segmentation (Shaw et al., 2019) and 

have found the method to be beneficial for segmentation reliability and sharpness. 
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Non-linear realignment is a process of minimum deformation averaging of multiple 

repetitions of the same sequence, which boosts SNR and image sharpness. This 

method works best when input images are isotropic (in this case interpolated using 3rd 

order b-splines). Inter-scan movement before the initial interpolation could lead to 

unwanted artefacts further downstream in the realignment process. However, non-

linear realignment has been shown to iteratively converge more readily to ‘crisp’ 

isotropic voxels with distinct features, and the realignment procedure ensures that only 

anatomically consistent features of the three TSE images are retained, which 

motivated our choice. 

 

2.1.2 ADNI-3 MRI data 

As a follow up study for the small n TOMCAT dataset, we used longitudinal data from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)-3 (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography 

(PET), other biological markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of mild cognitive impairment (MCI) and early 

Alzheimer’s disease (AD). 

 

At 3 T, either an anatomical 1 mm3 isotropic full-brain T1w MP-RAGE or Accelerated 

SPGR sequence was acquired. A high-resolution ‘dedicated hippocampus slab’ T2w 

TSE or FSE was also acquired at 0.4x0.4x1 mm. Specific details and acquisition 

parameters are given in http://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-

MRI-protocols.pdf. The data was downloaded in October of 2019 and consisted of 112 
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participants that had both T1w and T2w scans and been scanned two or more times 

(fulfilling the longitudinal condition). 17 participants had three time points. 79 

participants were included in the final analysis, as some data sets could not be 

processed due to computational errors in one or more of the pipelines or time points, 

resulting in 11 participants with three time points and 68 with two time points. We note 

that Freesurfer produced the most failures in processing (n = 79), with LASHiS and 

ASHS completing 92 cases each. We included all results for each method in the 

GitHub repository associated with this work. In total, 43 females and 36 males were 

processed meeting the following diagnostic criteria: 12 late mild cognitive impairment 

(LMCI), 31 cognitively normal (CN), 8 mild cognitive impairment (MCI), 7 significant 

memory concern (SMC), and 20 early mild cognitive impairment (EMCI) (Age M = 

77.68, SD = 8.76). 

 

Data were converted to BIDS using BIDSCoin (https://github.com/Donders-

Institute/bidscoin), and pre-processed identically to the TOMCAT dataset, with the 

exception of resampling to 0.4 mm isotropic instead of 0.3 mm isotropic for the T2w 

scan.  

 

2.2 Longitudinal Assessment of Hippocampal Subfields (LASHiS)  

2.2.1 Atlas Construction 

The entire LASHiS pipeline is described in Figure 1. Optionally, the ASHS pipeline can 

be optimised through the incorporation of a group-specific atlas. Similarly, creation of 

a group-specific atlas is a benefit to our proposed method. This atlas is comprised of 

a representative pool of subjects (approximately 20-30 participants), manually 

labelled, and passed through the ASHS_train pipeline described in Yushkevich et al. 
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(2015). Essentially, the manual segmentations are used as inputs (priors) for the joint-

label fusion (JLF) algorithm in subsequent segmentations, and to train classifiers for 

the ASHS cross-sectional pipeline. Creating a group-specific atlas (of 20-30 subjects) 

would be beneficial for large longitudinal studies, as segmentation training would be 

performed on group-specific characteristics. However, having a group specific atlas is 

generally not necessary for robust performance of ASHS (Xie et al., 2018). 

 

 

Figure 1. Longitudinal Automatic Segmentation of Hippocampus Subfields (LASHiS) 

pipeline. The pipeline consists of the following steps with the input of any number of 

T1w and T2w individual time points per participant: 1) (In red; optional) pre-processing 

of both T1w and T2w scans. 2) (In yellow) Offline construction of a sample-specific 
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atlas for LASHiS. 3) Labelling of individual time points of each subject using ASHS 

and a representative atlas (or an atlas created in [2]) to yield hippocampus subfield 

estimates. 4) Construction of a multi-contrast Single Subject Template (SST). 4) JLF 

of each of the individual time point labels to the SST using both contrasts and individual 

hippocampus subfield labels to produce a labelled SST. 5) Application of the inverse 

subject-to-SST transformations to SST labels. 6) Measurement and calculation of 

subfield labels in subject-space. 

 

2.2.2 Pre-processing and cross-sectional processing 

The ASHS Xs pipeline has been previously proposed and discussed (Yushkevich et 

al., 2015). Briefly, the pipeline labels hippocampus subfields of a given T1w and 

dedicated T2w scan covering the hippocampus subfields. This approach leverages a 

multi-atlas segmentation method and corrective learning techniques to segment 

(usually 3 T or 7 T) MRI data. The process involves first training existing manually 

labelled in vivo atlases of T2w scans. These trained atlas packages inform labels for 

new in vivo T1w and dedicated T2w scans. ASHS provides many of these atlases at 

https://www.nitrc.org/projects/ashs. These open source atlases may be replaced with 

a group-specific atlas as proposed in 2.1.1. The T2w input scan is usually acquired 

anisotropically with reduced resolution along the major axis of the hippocampus 

subfield and high in-plane resolution. The spiral structure of the hippocampus 

formation does not change rapidly along its major axis, which motivates this parameter 

choice (Iglesias et al., 2016). ASHS Xs employs similarity-weighted voting for learning 

segmentation priors and JLF for multi-atlas segmentation prior to classification. In the 

segmentation protocol, weighted voting at the voxel level derives ‘strong’ 

segmentation choices for the target image (Yushkevich et al., 2015).  
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For pre-processing of all data, we included modified pre-processing steps based on 

the ANTs cortical thickness pipeline (Tustison et al., 2014) and our previous work 

(Shaw et al., 2019). These steps were incorporated to ensure consistent segmentation 

results across participants and included: 

 

I. Skull stripping (i.e., ROBEX; Iglesias, Liu, Thompson, & Tu, 2011) of the 

T1w scan for removal of background tissue and artefacts that may result 

in registration errors further downstream 

II. N4 bias correction (ANTS version 2.20.dev116-gabc03; Tustison et al., 

2010) of the T1w scan that mitigates low spatial frequency variations in 

the data 

III. Rician denoising of T1w and T2w scans (Manjón et al., 2010), which has 

been shown to reduce high-frequency Rician noise in MRI scans 

(Tustison et al., 2017) 

IV. Intensity normalisation of T1w and T2w scans to the atlas using 

histogram matching (Nyúl et al., 2000) 

V. If multiple repetitions of the dedicated T2w scan are available, non-linear 

realignment of these scans to reduce motion artefacts and increase the 

sharpness of the scans as in Shaw et al. (2019) 

 

LASHiS derives initial segmentations of each time point cross-sectionally using the 

ASHS pipeline with an atlas package similar to the subjects’ intensity and spatial 

characteristics. This yields an atlas-defined number of hippocampus subfield labels. 

Due to our small sample size, it was not possible to create a bespoke atlas for 

validation. Therefore, we utilized ASHS (V2.0) with the Penn Memory Center 3 T 
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ASHS Atlas (Yushkevich et al., 2015). We motivated this choice based on Xie et al 

(2018), who found that atlas composition does not significantly affect segmentation 

between 7 T and 3 T, and the contrast and intensity profiles of the scans in the 3 T 

atlas are similar to the TSE scans we collected in the present study. 

 

2.2.3 Single-subject template (SST) 

In parallel to cross-sectional processing, a minimum deformation average multi-

contrast template of average intensity and shape is created in accordance with Avants 

et al. (2010). This template serves as an intermediate between any n time points of a 

subject and is biased equally to any given time point. All subsequent processing of 

hippocampus volumes is done in the space of the SST in order to treat all time points 

in the same way. We have also found previously that combining scans in this way 

increases segmentation consistency and image sharpness (Shaw et al., 2019).  

 

2.2.4. Joint-Label Fusion (JLF) and longitudinal estimations of segmentations 

Following SST creation and labelling, and cross-sectional labelling, individual time 

point multi-contrast scans and their cross-sectionally defined segmentation labels then 

act as multi-contrast atlases to compute SST labels using JLF. The intended usage of 

JLF is to propagate manually derived labels to a target image. However, we used JLF 

with the atlases being automatically labelled. We also include the automatically 

labelled SST as an extra input to increase the power of the method. JLF assigns the 

spatially varying atlas (input) weights to the SST in a way that accounts for error 

correlations (Wu et al., 2017) between every n pairs of atlases. In this way, no single 

time point is biased towards the segmentation of the SST, and the SST is labelled 

based on a weighted vote of the segmentations from each time point and the SST. In 
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our scheme, a working region of interest (ROI) is defined roughly around the 

hippocampus, non-linearly warped to the space of the SST ROI, and JLF applied with 

parameters chosen based on (Wang et al., 2013). The inverse of these non-linear 

transformations is later used for labelling the input images. This approach, therefore, 

bootstraps cross-sectional segmentations of hippocampus subfields to the SST, and 

the best fitting labels are chosen based on the intensity and shape characteristics of 

the SST, not the individual time points. 

 

Subsequently, the inverse of the time point to SST transformations from the JLF 

piecewise registration is applied to the generated SST hippocampus subfield labels, 

warping the SST labels to each individual time point. Provided the time point-to-SST 

registrations are accurate (Avants et al., 2011) and invertible, the reverse 

normalisation of the labels can be considered a robust and reliable method for 

transforming the labels to the space of the subject’s time point hippocampus subfield 

labels. Finally, we used Convert3D (Yushkevich et al., 2006) to measure the new 

subfield volumes in time point space. 

 

2.3 Statistical Evaluation 

2.3.1. Hippocampus subfield segmentation methods 

We compared the performance of our LASHiS strategy with three other established 

strategies, and one other exploratory strategy detailed below, examples of the output 

of each segmentation strategy are given in Figure 2: 

1. Cross-sectional ASHS (ASHS Xs), the segmentation strategy described in 

Yushkevich (2015), was used to compute segmentations for each time point 

independently in a cross-sectional manner. We utilised segmentation results 

that incorporated the high-resolution T2w scan information. We modified certain 
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parameters in ASHS to account for our 7 T high-resolution and pre-processed 

(isotropic) inputs to account for resolution and image size. We used the Penn 

Memory Center atlas https://www.nitrc.org/frs/?group_id=370  for segmentation 

due to input-atlas contrast similarities and an increased number of subfield label 

outputs compared to the available 7 T atlases. 

2. Cross-sectional Freesurfer hippocampus subfield segmentation (FS Xs): the 

method described in Iglesias et al. (2015) was used to compute segmentations 

for each time point independently in a cross-sectional manner. Due to skull strip 

failures in recon-all and mri_watershed, the brain mask was replaced with the 

brain mask created in the pre-processing steps using ROBEX (Iglesias et al., 

2011) in order to give Freesurfer the best chance of succeeding. 

3. Freesurfer longitudinal hippocampal subfields (FS Long): This pipeline, 

described by Iglesias et al. (Iglesias et al., 2016) utilises intensity and contrast 

information from an ex vivo manually traced atlas of hippocampal subfields to 

delineate in vivo subfield information. The ex vivo atlas is supplemented by an 

in vivo Freesurfer atlas (as described in Kennedy et al., 1989), which informs 

segmentation of the geometric priors surrounding the hippocampus. In this way, 

the generative model that classifies hippocampal subfields in vivo is calculated 

from the spatial distribution of the hippocampus and its surrounding brain 

regions as described in the atlas priors. 

4. JLF-free LASHiS (Diet LASHiS): This method is similar to LASHiS, though does 

not utilise the JLF bootstrapping step or cross-sectional processing, thus 

reducing processing time by approximately 20%. Instead, the SST is created, 

labelled using ASHS and a representative atlas package, and labels were 

reverse-normalised to time point space using the transformations calculated in 
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the template building procedure, as distinct from the SST transformations 

derived in the JLF step. We incorporated this method to determine the relative 

importance of the JLF bootstrapping step in our pipeline. This would be 

considered a standard reverse normalisation segmentation pipeline. 

 

 

 

 

 

 

Figure 2. Hippocampus subfield segmentation results 

(coloured) for a single representative subject for the five 

tested methods at the same slice in a coronal view. Each 

segmentation result is overlaid on the high-resolution T2w 

scan except for FS Long, which utilises a T1w scan for 

segmentation. Green arrows denote a possible under-

segmentation, orange a possible over-segmentation. 
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2.3.2 Evaluation methods 

Here, we evaluate our strategy in line with previously published methods in order to 

quantify reliability, reproducibility and precision. We reproduced analyses employed 

by both the FS Long hippocampus segmentation strategy (i.e., test-retest reliability) 

and longitudinal Bayesian Linear Mixed Effects (LME) modelling (Sorensen et al., 

2016). 

 

2.3.3 Experiment one: Test-retest reliability 

We evaluated the test-retest reliability of all methods through testing differences 

between the second and third time point in the TOMCAT dataset. For each participant, 

we segmented each scan-rescan session with the five segmentation methods and 

assessed performance based on two metrics: 1) absolute differences in volume 

estimates for each hippocampus subfield label between scan-rescan acquisitions, and 

2)  the Sørensen-Dice similarity coefficient (Dice, 1945). We first measured the volume 

similarity coefficient, which does not rely on segmentation locations (Taha & Hanbury, 

2015). This metric does not implicitly rely on overlaps in segmentations (such as Dice 

overlaps, which can be difficult to measure without bias when comparing between 

analysis strategies, as in Iglesias et al., [2016]). For completeness, and to have a direct 

comparison with Iglesias et al. (2016), we also assessed Dice overlaps between time 

point two and three in all pipelines. The Sørensen-Dice similarity coefficient between 

two binary masks is described as “twice the number of elements common to both 

segmentations divided by the sum of the elements in the segmentations”, and is 

defined as: 

1. 𝐷𝑆𝐶 =  
2|𝑋∩𝑌|

|𝑋| + |𝑌|
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where a perfect overlap between two segmentations (X and Y) is 1, and no overlap is 

0 (Taha & Hanbury, 2015). In LASHiS, Diet LASHiS, FS Xs, and ASHS Xs, the final 

result of hippocampus subfield labels occurs in a native (input) space. We resampled 

all labels in these four pipelines to an intermediate space (SST space) using a rigid 

linear realignment, and calculated Dice overlaps in these cases with the fuzzy Dice 

counterpart using the freely available EvaluateSegmentation tool (Taha & Hanbury, 

2015). There is a bias towards FS Long for having superior Dice overlap evaluation 

due to the extra interpolation required in these linear realignments, which are not 

necessary in FS Long. We discuss the implications of this in section 4.1. 

 

We leveraged Bayesian paired t-tests in accordance with Rouder, Speckman, Sun, 

Morey, and Iverson (2009) to assess the differences in subfield changes across the 

second and third time point using Jamovi, R, and the BayesFactor plugin (Morey & 

Rouder, 2019; R Core Team, 2019; The Jamovi Project, 2019). In our analyses, BF10 

> 3 was taken as substantial evidence for the alternative hypothesis, with BF10 > 10 

taken as strong evidence, and BF10 greater than 100 were considered decisive. BF10 

values between 1 and 3 were considered anecdotal evidence for the alternative 

hypothesis. In contrast, BF10 < 0.33 (or BF01 > 3) was considered as substantial 

evidence for the null, with BF10 between 0.33 and 1 providing anecdotal evidence for 

the null hypothesis in accordance with Lee and Wagenmakers (2013). BF10 values can 

be interpreted to mean that these data are x many times more likely to be observed 

under the alternative hypothesis than the null hypothesis, such that BF10 = 3 suggests 

that these data are 3 times more likely under the alternative hypothesis than the null 

hypothesis. BF10 between 0.33 and 1 can be considered as anecdotal evidence for the 

null, while values around 1 are non-evidential.  
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2.3.4 Experiment two: Bayesian Longitudinal Linear Mixed Effects Modelling 

To assess relationships between cross-sectional and longitudinal results while 

accounting for subject-specific trends (Tustison et al., 2017), we quantify between, and 

within (residual) variability of hippocampus subfield volume. In this experiment, we 

aimed to assess the utility of each pipeline for measuring each hippocampus subfield 

and detecting potential biomarkers therein. It is possible to quantify the relative 

performance of cross sectional and longitudinal pipeline variants with Bayesian LME 

models (Tustison et al., 2017). Intuitively, the best longitudinal method maximises both 

within-subject reproducibility and between-subjects variability (to distinguish between 

sub-groups). Maximising the ratio between between-subject variability and residual 

variability indicates a good performance. A summary measure of this is the variance 

ratio, which shows the linear relationship between within- and between-subjects 

variability, which is a useful measure of performance for longitudinal pipelines. Higher 

variance ratios indicate optimised prediction and credible intervals for the 

segmentation quality. 

 

Freesurfer and ASHS provide different outputs in terms of subfield names. To 

overcome difficulties computing variance values relating to non-overlapping regions, 

we have concatenated several subfields that share commonalities across all pipelines 

and present these in Table 1. We excluded subfields that did not share any 

commonalities across pipelines from the analysis.  
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Table 1. Label names for all hippocampus subfields that share similarities between 

Freesurfer and ASHS pipelines. 

Combined label 
name for 
analysis 

Freesurfer label names 
(FS Xs, FS Long) 

ASHS label names 
(ASHS Xs, Diet 
LASHiS, LASHiS) 

CA1 CA1-head & CA1-body CA1 

CA2-3 CA3-head & CA3-body† CA2 & CA3 

DG GC-ML-DG-head, GC-ML-DG-body, 
CA4 head, & CA4 body 

DG‡ 

SUB Presubiculum-head, presubiculum-tail, 
subiculum head, & subiculum tail 

SUB 

†Freesurfer combines estimates of CA2&CA3 as label CA3 in their algorithm. 

‡ASHS combines estimates of DG and CA4 as label DG in their algorithm. 
 

The subfields chosen in our analysis include Cornu Ammonis (CA) region 1 (CA1), CA 

region 2 and 3 (which was combined in Freesurfer’s method; CA2-3), Subiculum (SUB; 

comprising presubiculum and subiculum in the Freesurfer pipeline), and dentate gyrus 

(DG; comprising of CA4 and DG in the ASHS atlas package). These four subfields are 

measured for all analyses for left and right sides for a total of eight subfields. Note that 

LASHiS computes as many labels as in the initial atlas package (usually 14 per side). 

To obtain more internally consistent measures of volume and to focus results on 

determining what fraction of hippocampal volume is attributed to each subfield rather 

than fractions of whole brain volume, we normalised all raw volume values by total 

hippocampus formation volume (e.g., CA + DG + SUB). We examined subfield results 

for all comparisons but report significant differences only between the most relevant 
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comparisons: namely between LASHiS and FS Long, as these are the two longitudinal 

pipelines of interest.  
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3.0 Results 

3.1 Experiment one: test-retest reliability 

We conducted a series of Bayesian paired-sample t-tests in order to test absolute 

volume differences between the second and third time point. Figure 3 shows 

differences between methods for volume similarity in this test-retest experiment. We 

found that LASHiS and Diet LASHiS showed significantly higher volume similarity in 

all subfields than other methods. Specifically, we found LASHiS to have decisively 

higher (BF10 > 100) volume similarity coefficients compared to FS Long in all subfields. 

ASHS Xs also showed high volume similarity in DG subfields compared to the 

Freesurfer variants, though with high variability; we observed larger variability in the 

volume similarity in all other methods compared to LASHiS variants (see 

Supplementary Figure 1 for subfield variance breakdowns). All other comparisons with 

LASHiS are detailed in Supplementary Figure 1 and 2.  

 

 

Figure 3. Box plots of volume similarity coefficients (left) and Dice coefficients (right) 

of each hippocampus subfield for the TOMCAT dataset (7 T). (left, black filled shapes, 

and right, white filled shapes) from time point two and time point three for each method, 
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where a value of 1 represents perfect overlap between time points, and 0 represents 

no overlap. Error bars represent overall standard deviation. Freesurfer Xs, ASHS Xs, 

Diet LASHiS and LASHiS all require resampling to a common space before overlap 

calculation of Dice scores. Higher scores between time points denote higher subfield 

overlap between the test-retest conditions. 

 

We next conducted Bayesian paired-sample t-tests for Dice overlaps between the 

segmentation labels in the second and third time point. Figure 3 shows Dice overlap 

values of each subfield for each method. Note, that Dice scores for LASHiS, Diet 

LASHiS, Freesurfer Xs and ASHS Xs are negatively affected by the resampling 

needed to compute the registrations between the two time points, which is not present 

in the FS Long method. Our results do not fully replicate Iglesias et al. (2016) in terms 

of mean Dice overlap scores for test-retest reliability, but we found slightly lower Dice 

overlaps for all subfields in our sample in the Freesurfer methods compared to Iglesias 

et al. (2016). This discrepancy is potentially due to methodological differences 

between Iglesias et al. (2016) and our study - scanner hardware (1.5 T rather than our 

7 T) and sequence choice (IR-SPGR rather than our MP2RAGE). 

In terms of subfield differences, we will detail comparisons only for LASHiS and FS 

Long, with all method comparisons included in Supplementary Figure 3 and 4. We 

found that Dice overlaps for LASHiS were higher than FS Long for test-retest reliability 

decisively in Left-DG and Right-DG (BF10 > 100) and anecdotally in Left-CA1 (BF10 > 

1). We found no difference between LASHiS and FS Long in Right-CA1, and Right-

SUB (BF10 < 1). FS Long had substantially higher scores than LASHiS for Right-CA2-

3, Left-CA2-3, and Left-SUB (BF10 > 10).  
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3.2 Experiment Two: Bayesian longitudinal Linear Mixed Effects modelling 

We compared the performance of five hippocampus subfield segmentation processing 

approaches using longitudinal LME modelling to quantify between and residual 

variability, and the variance ratio of these. Figure 4 provides the 95% credible intervals 

for the variance ratios in each subfield for each of the pipelines. As noted in Tustison 

et al. (2017)", “superior methodologies are designated by larger variance ratios”. For 

the TOMCAT (7 T) dataset and across subfields, LASHiS has higher variance ratios 

for Left-CA1, Left-SUB, Right-DG, and Right-SUB. FS Long out-performs LASHiS for 

Left-CA2-3 and Right-CA1 and ASHS Xs performs best for Right-CA2-3 and Left-DG 

(followed closely by LASHiS and diet LASHiS). We also note lower values in CA2-3 

subfield variance ratios in LASHiS in both hemispheres. For the ADNI dataset (3 T), 

across subfields we found overlapping 95% credible intervals for all subfields between 

LASHiS and Freesurfer Long, with the exception of right DG, where LASHiS has 

significantly higher variance ratios than all other methods including FS Long.   

 

For the TOMCAT dataset, we found overlapping credible intervals for all pipelines for 

variance ratios, with obvious trends towards LASHiS as having the highest variance 

ratios. Figure 4 shows the relative distributions of variance ratios per subfield for each 

of the assessed pipelines. A trend towards higher variance ratios for LASHiS 

compared to the other methods can be observed. We also note that variance ratios 

for Diet LASHiS are comparable to FS Long. There are clear trends towards LASHiS 

having the superior variance ratios in Left and Right CA1, Left and Right SUB, and 

Right DG regions. LASHiS has low variance ratio values in Right CA2/3 and therefore 

has higher variance ratios than all other methods in 5 of 8 subfields. We also provide 

within and between subject variability for each subfield in Supplementary Figure 5 and 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 1, 2020. ; https://doi.org/10.1101/759217doi: bioRxiv preprint 

https://doi.org/10.1101/759217
http://creativecommons.org/licenses/by-nc-nd/4.0/


LASHiS USING MULTI CONTRAST MRI  

27 

6, respectively, and the overall breakdowns for the variance ratio in Supplementary 

Figure 7. 

 

Figure 4. Variance ratio for each subfield (x-axis), for each method (coloured lines) for 

the TOMCAT dataset (7 T). Values represent the linear regression between residual 

and between-subjects variability. Therefore, higher values indicate better 

discrimination between subjects, and higher within-subject reproducibility between the 

test-retest conditions. Shapes represent the mean variance ratio, with lines denoting 

the 95% credible intervals for each method.  

 

For the ADNI dataset, we found that the overall residual variability for Fs Long and 

LASHiS were generally lower (non-significant) than all other methods (Supplementary 

Figure 8), resulting in high variance ratios for Fs Long and LASHiS (Figure 5). We note 

higher between-subjects variance in 6 of 8 subfields in LASHiS compared to FS Long 

(Supplementary Figure 9). However, all differences were non-significant, except for 

the variance ratio in right DG (Figure 5), which was significantly higher in LASHiS 

compared to FS Long. This significant difference was largely driven by the low residual 

variability in this subfield for LASHiS. 
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Figure 5. Variance ratio for each subfield (x-axis), for each method (coloured lines) for 

the ADNI sample (3 T). Values represent the linear regression between residual and 

between-subjects variability. Therefore, higher values indicate better discrimination 

between subjects, and higher within-subject reproducibility between the test-retest 

conditions. Shapes represent the mean variance ratio, with lines denoting the 95% 

credible intervals for each method.   
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4.0 Discussion 

4.1 Experiment One, test-retest reliability 

The test-retest results highlight the reliability of the LASHiS pipeline. Capitalising on 

the availability of data from multiple time points to increase SNR in the SST improves 

the inherent regularisation and prior information for segmentation, as proposed for 

LASHiS. LASHiS and Diet LASHiS show excellent test-retest reliability for volume 

similarity coefficients. Deformable registration has been previously used successfully 

to segment hippocampus structures in groups of participants (Hammers et al., 2007; 

Hogan et al., 2000). LASHiS benefits from deformable registration-based image 

segmentation, as the hippocampus is segmented only in SST space. We contrast 

LASHiS with FS Long, which utilises an SST in order to compute time point 

segmentations. However, the FS Long SST uses only T1w information, potentially 

limiting the reliability of the time point to SST registration, and therefore decreasing 

the volume similarity. Indeed, Iglesias et al. (2016) found an average of 4.5% 

difference in absolute volume similarity in their test-retest condition. In terms of Dice, 

all other methods were at a disadvantage to FS Long for this metric due to the 

interpolation step required to realign the scans. This effect was mitigated through the 

utilisation of a fuzzy Dice coefficient in all other methods. However, despite the 

disadvantage, LASHiS shows comparable Dice overlaps in the test-retest condition to 

FS Long, except for the smaller subfields (e.g., CA2/3). One additional potential source 

of bias is the various anatomical definitions of hippocampus subfields proposed by 

both FS Long and ASHS/LASHiS. We attempted to correct for differences in 

anatomical priors of subfields by combining subfields that were present in both ASHS 

and Freesurfer. However, it should be noted that the definition of the anatomical priors 

by the anatomists/raters of the respective atlas packages would have a strong 
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influence on segmentation results, and in particular, Dice overlaps. For example, 

utilising an atlas package that intrinsically defines smaller subfields would result in 

thinner subfields, resulting in lower Dice scores. However, previous work by Xie et al. 

(2018) has shown that atlas composition largely does not affect the segmentation 

quality of 7 T images using ASHS. The influence of label priors of Freesurfer has not 

been examined, so we therefore cannot exclude the possibility that the Freesurfer 

method is biased negatively by the initial labelling of the atlas. Coupled with the results 

of volume similarity, we can assert that LASHiS is a reliable method for longitudinal 

hippocampus subfield segmentation.  

 

4.2 Experiment Two, Bayesian longitudinal Linear Mixed Effects modelling  

Many evaluation strategies employ manual segmentations (e.g., Berron et al., 2017) 

to provide a gold standard for evaluation of any segmentation strategy. However, 

manual hippocampus subfield segmentation is time and labour intensive, taking up to 

eight hours initially, and two hours after five months of training (Wisse et al., 2016) and 

is prone to inter- and intra-rater variability (Boccardi et al., 2011; Hsu et al., 2002; 

Mulder et al., 2014). We explored the usefulness of LASHiS in the examination of the 

variance ratio in our longitudinal Bayesian LME modelling experiment. Higher variance 

ratios that are characterised by both lower residual variability and larger between-

subjects variability are beneficial for longitudinal cohort studies. In the TOMCAT 

dataset, we found the highest variance ratios in LASHiS, underscoring the usefulness 

of our approach in maximising between subject differences. We note outliers in 

variance ratios in LASHiS and FS Long, which are driven by results in CA2-3, and 

SUB, respectively. For LASHiS, high residual variability was found for right CA2-3, 

driving this outlier. 
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For the ADNI data, only one subfield (right DG) had a significantly higher variance ratio 

in LASHiS than FS Long, with all other subfields having overlapping 95% CIs. Our 

result in the ADNI dataset suggests that using any longitudinal pipeline is 

advantageous for examining hippocampal subfield volumetry. Optimised longitudinal 

pipelines such as Fs Long and LASHiS are important for analysing data. However, the 

atlas package should be the determining factor when selecting which pipeline to utilize. 

For LASHiS in ADNI, we made use of the Penn Memory Center ASHS atlas, which 

has been labelled on older aged participants with similar contrast and acquisition 

parameters to the data acquired in ADNI. We therefore suggest that at 3 T, the choice 

of atlas composition and labelling scheme should inform the user on segmentation 

method choice.  

 

We want to note here, that LASHiS is potentially negatively biased by limitations in 

subfield selection. All Freesurfer schemes combine CA2 & CA3 estimates in their 

algorithms. In calculating our subfield estimates, we summed CA2 and CA3 volumes 

offline, potentially biasing our estimates of residual variability. We note a similar 

residual variability outlier in the ASHS Xs scheme in the left CA2-3 combined subfield 

regions. Volume estimates of CA2 and CA3 regions were generally reported less 

precisely than other subfields, as measured by the low test-retest statistics and low 

within-subject variability in the LME experiment. Previous research (Dalton et al., 

2017; Pipitone et al., 2014; Wisse et al., 2016; Yushkevich et al., 2015) has repeatedly 

shown discrepancies in reporting these subfield boundaries in vivo. This is largely due 

to their small size and the reliance on heuristic geometric rules for segmenting CA2/3 

subfields on in vivo MRI, rather than visible contrast differences in the scan. Thus, 

inter- and intra-rater reliability are often low for these subfields (Xie et al., 2018). Our 
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automatically derived subfield estimates are likely influenced by discrepancies in the 

manual labels that inform segmentations. Notably, FS Long also suffers from a low 

variance ratio in CA2-3, suggesting either i) a homogeneous participant pool leading 

to low between-subject variability, ii) large, unexpected differences in time points in 

these subfields, or iii) a combination of these.  

 

4.4 Benefits and advantages of LASHiS 

Both LASHiS and the FS Long scheme segment hippocampus subfields and derive 

volume estimates from MRI images. However, only the T1w scan of an individual is 

processed through the longitudinal stream of ‘recon-all’ before longitudinal processing 

of hippocampus subfields, potentially explaining the FS Long results compared to 

LASHiS. Our design utilises multi-contrast information from MRI scans and importantly 

allows for information that can only be captured by multi-contrast MRI (i.e., the 

subfields of the hippocampus) to be included in the labelling. 

 

LASHiS derives its power from its ability to decrease random errors in the labelling 

procedure, and through increasing the likelihood for correct labelling to occur when 

the SST is created. This implicitly increases SNR and sharpness of the SST compared 

to the individual time points through the template building procedure (Shaw et al., 

2019). Our inclusion of Diet LASHiS highlights the contributions of the JLF step from 

the simple labelling of the SST, which may be subject to both random and systematic 

errors. In LASHiS, these random errors may be mitigated in part due to the 

bootstrapping of JLF from the individual time point to the SST. It is possible that this 

step decreases the likelihood of random errors in the labelling scheme because of 

JLFs ability to vote on labels that fit best to the SST. Therefore, random variance 
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caused by mislabelling at any individual time point may be ameliorated by the JLF 

step. In turn, this is the likely cause for the low residual variability found in LASHiS in 

Experiment Two. Our inclusion of JLF labelling using automatically generated labels 

is a novel consideration in the field of hippocampus subfield segmentation and relies 

on the assumption that automatically generated subfield labels are considered 

accurate. 

 

We included a computationally less expensive and faster approach to multi-contrast 

hippocampus subfield segmentation, namely Diet LASHiS. This method performs all 

steps save for the initial cross-sectional segmentations and the bootstrapping of these 

segmentations to the SST using JLF. Diet LASHiS performed well in the volume 

similarity portion of Experiment 1, and in Experiment 2 in comparison to the other 

methods examined, though to a lesser degree than LASHiS in the TOMCAT dataset. 

In the ADNI dataset, Diet LASHiS performs worse than both LASHiS and Fs Long, 

suggesting the reverse normalisation to SST approach may not be suitable for smaller 

subfield estimations at 3 T (as the small CA2&3 regions largely drove this result). It is 

possible that the SST creation step in Diet LASHiS is not optimal for 3 T data, the 

larger voxel size may incur a larger partial volume effect when inverting the 

deformation field. As the steps taken to complete LASHiS and Diet LASHiS are the 

same except for the additional JLF bootstrapping method, we conclude that the 

increased sensitivity and robustness in the LASHiS scheme was due to the JLF step. 

Indeed, despite the disadvantage of potentially increasing systematic errors with the 

JLF bootstrapping step, it is evident that these systematic errors are largely overcome 

in the initial cross-sectional labelling of the hippocampus subfield with ASHS Xs.  
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Processing time for LASHiS depends largely on compute infrastructure, T2w image 

size, and the number of time points. Our testing on three time points with high-

resolution (0.3 mm3) T2w images ran in the order of 24 hours on a single CPU core, 

and 4 hours on 8 cores and 64 GB memory without parallelisation. Many steps, 

including the initial cross-sectional segmentations and SST creation, can be run in 

parallel using job scheduling software (PBS, Sun Grid Engine, Slurm, etc.) and 

parallelised across cores, decreasing the time required by orders of magnitude 

commensurate with the number of cores employed. Diet LASHiS is estimated to 

decrease compute time by approximately 20%, as neither the cross-sectional, nor the 

JLF steps are required. ASHS Xs takes between 1-2 hours on a single core, while FS 

Xs takes approximately 40 minutes after 24-48 hours of pre-processing on a single 

core (https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllRunTimes). Fs Long takes 

approximately 60 minutes on a single core after 24 hours of cross-sectional processing 

per time point, and further creation of an SST. On eight cores with 64 GB of memory 

and with parallelisation, our average run time for the entire Freesurfer longitudinal 

pipeline was 20 hours per participant. The great advantage of LASHiS is the flexibility 

of computational processing options for each step, allowing for scalable processing of 

larger datasets.  

 

Our incorporation of a Bayesian approach to the widely used longitudinal LME method 

for examining differences in method performance aids in discrimination of subtle 

differences between participants with small variability (as in the present study). This 

technique allowed us to simultaneously examine small differences between 

participants, while also capturing longitudinal within-subject changes; both of which 
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are especially important in examining clinical subpopulations and other low-n studies, 

where small longitudinal changes need to be captured precisely.  

 

4.5 Limitations 

The design of our pipeline decreases random variability in any session due to the SST 

registration and JLF scheme. A limitation of our scheme is that label errors (i.e., 

systematic errors) in subjects will propagate to the SST, despite the sophisticated JLF 

algorithm employed that does not independently compute similarity weights between 

the pairs while voting (H. Wang et al., 2013). Therefore, it is important to note that 

LASHiS is never free from labelling errors that occur in all image segmentation 

pipelines. These systematic errors can be avoided through quality assurance of scans 

and labels at the cross-sectional level (i.e., before the JLF bootstrapping step), which 

is essential in any volumetric labelling scheme, regardless. 

 

We here report a small healthy cohort of young adults with no known psychological or 

neurological disorders scanned at 7 T. We assumed no difference between time point 

two and three, and very small differences between time point one and two due to the 

age and health of the participants. We concede this limitation in our interpretation of 

test-retest analyses. The Bayesian nature of our longitudinal LME modelling accounts 

for small sample sizes (Sorensen et al., 2016), and the results of Experiment One and 

Two should therefore not be affected by our small sample size in the TOMCAT dataset. 

We also included a larger dataset from the ADNI consortium, though were unable to 

conduct test-retest statistics on this sample due to data availability. Future work could 

improve upon the methods we used for the ADNI dataset, including building and 
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manually labelling an atlas with the specific intensity profile/MR characteristics of ADNI 

data in order to improve segmentation priors for LASHiS. 

 

Our test-retest statistics in the 7 T TOMCAT dataset show that LASHiS has improved 

metrics compared to other longitudinal methods, with obvious differences to previous 

work reporting the same methods (Iglesias et al., 2016), where Dice overlaps were 

considerably higher overall for the Freesurfer methods. We note this limitation of 

having such a small sample size in the present study, which was the likely reason for 

the higher variability in the Dice overlap scores in the Freesurfer method. However, as 

LASHiS shows a consistent improvement compared to all other methods, we are 

confident LASHiS is a robust and reliable method for longitudinal multi-contrast 

hippocampus subfield segmentation.   
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4.6 Conclusions 

Here, we present a technique for automatically and robustly segmenting 

hippocampus subfield volumes using UHF multi-contrast MRI in healthy subjects. 

We found that LASHiS shows marked improvements at 7 T across several relevant 

measures, such as Dice similarity and volume similarity coefficients for test-retest 

reliability, and Bayesian LME modelling, compared to other methods used for cross-

sectional and longitudinal hippocampus segmentation. Results from the 3 T ADNI 

dataset highlight the importance of utilising longitudinal pipelines for hippocampus 

volumetry, with the user determining pipeline choice by the atlas priors. LASHiS 

utilises multi-contrast information and joint-label fusion, which better captures 

hippocampus subfield tissue characteristics and decreases random errors in the 

labelling procedure.  
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