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Abstract 
Motivation: Imaging mass spectrometry (imaging MS) is a prominent technique for capturing            
distributions of molecules in tissue sections. Various computational methods for imaging MS            
rely on quantifying spatial correlations between ion images, referred to as co-localization.            
However, no comprehensive evaluation of co-localization measures has ever been performed;           
this leads to arbitrary choices and hinders method development. 
Results: We present ColocAI, an artificial intelligence approach addressing this gap. With the             
help of 42 imaging MS experts from 9 labs, we created a gold standard of 2210 pairs of ion                   
images ranked by their co-localization. We evaluated existing co-localization measures and           
developed novel measures using tf-idf and deep neural networks. The semi-supervised deep            
learning Pi model and the cosine score applied after median thresholding performed the best              
(Spearman 0.797 and 0.794 with expert rankings respectively). We illustrate these measures by             
inferring co-localization properties of 10273 molecules from 3685 public METASPACE          
datasets. 
Availability and Implementation:​ ​https://github.com/metaspace2020/coloc 
Contact: ​theodore.alexandrov@embl.de  

Introduction 
Metabolites and lipids play key roles in fueling and making up cells, ultimately determining their               
types and states. Concentrations of metabolites and lipids are carefully regulated to maintain             
homeostasis in tissues, organs, and organisms, and are profoundly and sometimes irreversibly            
altered in disease. Capturing spatial distributions of molecules in tissue sections is a prerequisite              
for any hypothesis-driven or discovery-oriented investigation of biology and medicine on the            
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levels of tissues and the organism. In the past two decades, a window of opportunity has been                 
opened by the development and further maturation of imaging mass spectrometry (imaging MS),             
a powerful and versatile technology for spatial molecular analysis ​(Doerr, 2018; Dreisewerd and             
Yew, 2017; Buchberger ​et al. ​, 2018) with a particular interest in clinical ​(Vaysse ​et al. ​, 2017)                
and pharmaceutical applications ​(Schulz ​et al. ​, 2018) ​. For a tissue section, imaging MS generates              
a hyperspectral image encompassing thousands to millions of ion images, each image            
representing the distribution of a particular molecule or several molecules in the section. Rapid              
development and growing popularity of imaging MS, as well as the high dimensionality and              
sheer size of generated data, measuring up to hundreds of gigabytes for a tissue section, have                
stimulated the development of computational methods and software ​(Alexandrov, 2012) ​. Various           
methods have been developed for low-dimensional data representation (based on PCA, NMF,            
t-SNE, bi-clustering), finding spatial regions of interest with spatial segmentation, search for            
markers associated with a region of interest, and, recently, for metabolite annotation ​(Palmer ​et              
al.​, 2017) ​. Many of these methods use some measure of spatial similarity between ion images,               
often referred to as ​spatial co-localization ​. Various measures for quantifying co-localization           
have been proposed, including the Pearson correlation, cosine score, Euclidean L​2​-measures           
(McCombie ​et al. ​, 2005; McDonnell ​et al. ​, 2008; Alexandrov ​et al. ​, 2010; Alexandrov, 2012)              
sometimes applied to transformed images, e.g., after hotspot removal or log-transformation           
(Watrous ​et al. ​, 2011) ​. Recently, new measures adopted from other fields have been proposed,              
including the Structural Similarity Index (SSIM) and hypergeometric similarity measure ​(Kaddi           
et al. ​, 2011; Ekelöf ​et al. ​, 2018; Aaron ​et al. ​, 2018) ​. However, despite the ubiquity of using                 
spatial co-localization in imaging MS and a variety of measures proposed, no rigorous and              
comprehensive evaluation of co-localization measures has ever been performed. 

This leads to arbitrary and often ​ad hoc choice of a co-localization measure in every particular                
study, lab, or software package. Moreover, it hinders the progress of imaging MS methods since               
new co-localization measures are faced with scepticism without objective criteria to demonstrate            
their advantages. This gap has persisted for over a decade due to the lack of ground truth data                  
that would allow one to evaluate a measure objectively. Obtaining ground truth data is              
challenging because it requires a comprehensive inventory of which molecules are represented in             
imaging MS data and which of them are co-localized. This is not possible for tissues and hardly                 
possible even for authentic standards due to our limited understanding of ionization of complex              
mixtures. 

Here, we are addressing this apparent gap by presenting ColocAI, an artificial intelligence             
approach to quantify co-localization between ion images. First, we present a gold standard set of               
pairs of ion images ranked by imaging MS experts by the perceived co-localization. This effort               
was enabled by METASPACE, the open knowledge base of spatial metabolomes ​(Alexandrov ​et             
al.​, 2019) ​, through being able to select a large number of public representative datasets, employ               
modern web-based technologies for user-friendly and facilitated image ranking, engage a large            
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number of experts, and consolidate their rankings into a high-quality gold standard set. Second,              
using the gold standard set of pairs of images manually ranked by their co-localization, we have                
evaluated a variety of co-localization measures, including the cosine score, Pearson correlation,            
and SSIM. Moreover, we propose several novel measures for co-localization, e.g., using tf-idf             
adopted from natural language processing as well as approaches based on deep learning. 

We found the semi-supervised deep learning-based Pi model as well as the cosine score applied               
after median thresholding to be the most optimal spatial co-localization measures for imaging             
MS. We propose to use them in data analysis methods relying on co-localization. Our work               
provides a gold standard set (available at GitHub ) which can be used for evaluating future               1

measures, and in general illustrates how artificial intelligence approaches enabled by open-access            
data, web technologies, community engagement, and deep learning open novel avenues to            
addressing long-standing challenges in imaging MS.  

Methods 

Experiment design to collect expert knowledge 
In artificial intelligence and computer vision, a gold standard set is a collection of images               
manually tagged or ranked by experts called rankers. Having a gold standard set enables training               
and evaluation of machine learning models and algorithms. However, creating an unbiased,            
representative, and high-quality gold standard set is a substantial challenge on its own. To the               
best of our knowledge, there exists no gold standard set of co-localized images for imaging MS.                
We aimed at creating a gold standard set that would quantify the perceived by experts degree of                 
co-localization for different ions. We designed the gold standard set to consist of             
target-comparison sets where each set includes one ​target ion and 10 ​comparison ions ranked              
according to their co-localization with the target ion.  

To create a gold standard set of co-localized ion images, we selected public datasets from               
METASPACE with the aim to have a manageable number of diverse yet representative             
high-quality datasets from different labs. First, we selected labs with at least three active              
contributors of public data, 9 labs in total. For every lab, we selected active contributors to                
METASPACE, 42 rankers in total. We aimed at asking each ranker to rank up to 20 sets. For                  
each lab, we randomly selected round(20 * N_TL * 2 / 3) public datasets submitted by this lab to                   
METASPACE, where N_TL is the number of rankers from a given lab.  
 
From each dataset, we randomly selected one target ion and 10 comparison ions constituting a               
target-comparison set. We then used the RankColoc web app (described later) to go through the               

1 ​https://github.com/metaspace2020/coloc  
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target-comparison sets and exclude noisy images or images with only a few pixels. For each lab,                
we aimed at obtaining round(20 * N_TL / 3) high quality sets, although it was not always                 
possible due to the quality of the datasets. This allowed us to have the same target-comparison                
set ranked by three rankers to test for the ranking consistency and to obtain average ranks. 

Pilot study 
Before creating the gold standard set, we ran a pilot study to investigate the difficulty of ranking                 
ion images in the target-comparison sets according to their co-localization, as well as to learn               
potential pitfalls and obstacles of the ranking process. The pilot study was basically a full study                
including dataset selection, web app implementation, rankers recruitment, gold standard set           
creation, and agreement evaluation, but performed in a smaller format with 5 rankers only. 

Web app for manual ranking of ion images 
The RankColoc web app was developed with the aim to facilitate image ranking as well as help                 2

inspect ranked sets. For a public dataset in METASPACE, the web app downloads ion images               
from METASPACE using the GraphQL API , and shows a target and 10 comparison ion images.               3

The web app helps a ranker rank each comparison image from 0 to 9 by dragging and dropping it                   
into one of the ten rank boxes or leave it unranked. Several images can be assigned the same                  
rank. The web app page includes instructions for rankers. For each ranker, we assigned a               
collection of target-comparison sets and generated unique URLs containing the sets and the             
ranker ID. Ranking results were stored in real time, associated with the ranker ID, and could be                 
opened by either the same ranker or a curator. Figure 1 shows screenshots of RankColoc web                
app with examples of the ranked sets. Supplementary Video 1 illustrates the ranking process. 

Evaluating obtained rankings 
We assessed the complexity of the task and reproducibility of the rankers’ judgements by              
calculating pairwise correlations between the rankers, i.e., correlations between their ranks of            
comparison ion images in the same sets. The images left unranked (i.e., perceived by rankers as                
completely not co-localized with the target ion image) were assigned the rank 10. We computed               
average Spearman and Kendall ranker-pairwise rank correlation for each lab, ranker, and set. 

Creating the gold standard set 
To ensure the high quality of the resulting gold standard set, we have excluded (a) sets for which                  
the average Spearman pairwise correlation between rankers was less than 0.4, and (b) rankers              
whose average Spearman correlation with other rankers was less than 0.4. After some rankers              
were excluded, some sets ended up with just one ranking. We excluded those sets as well.  

2 ​https://github.com/metaspace2020/coloc/tree/master/RankColoc  
3 ​https://github.com/metaspace2020/metaspace/tree/master/metaspace/python-client  
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Figure 1. ​Screenshots of the RankColoc web app showing two target-comparison sets ranked by              
experts. a. MALDI-imaging dataset from a wheat seed section, submitted to METASPACE by             
Dhaka Bhandari, Justus Liebig University Giessen. b. MALDI-imaging dataset from a rat brain             
tissue section, submitted to METASPACE by Berin Boughton, University of Melbourne . 4

4 METASPACE URLs for example datasets: ​https://metaspace2020.eu/annotations?ds=2018-06-28_09h17m56s ​, 
https://metaspace2020.eu/annotations?ds=2016-12-01_18h38m52s  
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The resulting gold standard set contains pairs of ion images (target image and a comparison               
image) with each pair assigned an average rank across three rankers. The ranks range from 0,                
representing the highest co-localization, to 10, representing the lowest or no co-localization.  

Co-localization measures 
Our implementation of the co-localization measures is available at the GitHub repository .  5

Measures that do not require learning 
Correlation and cosine-based measures. First, we considered the commonly-used co-localization          
measures: Pearson correlation, Spearman correlation, and cosine similarity applied to flattened           
ion images, i.e., one-dimensional vectors of pixel intensities. 

Structural similarity (SSIM) measure. Following ​(Ekelöf ​et al. ​, 2018) ​, we considered the            
structural similarity (SSIM)​ ​index ​(Wang ​et al. ​, 2004) ​ with the Gaussian weights. 

Tfidf-based measure. We developed a measure based on the term frequency–inverse document            
frequency (tf-idf) concept from the field of natural language processing ​(Leskovec ​et al. ​, 2014) ​.              
Using flattened ion images, we calculated the tf-idf value for each pixel-ion pair to quantify how                
important a pixel  is for the particular ion  with respect to all ions in the dataset :p i D  

f idf (p, i, D) tf (p. i) idf (p, D),t   =  *    

f (p, ) nt(p, ) / nt(p , )t i = i i ∑
 

p∈P′ D

i ′ i  

,df (p, D) log(|I | / | )i  =  D {i nt(p, ) }∈ ID : i i > 0 |  

where is the set of all pixels in , is the set of all ions in , and is the P D         D  ID         D   nt(p, )i i    
intensity of in . We then created tf-idf vectors of the same dimensionality as the intensity  i   p              
vectors and quantified co-localization of ion images as the cosine similarity between the             
corresponding tf-idf vectors. 

Image transformations. For all considered ion intensity-based measures, we applied the           
following transformations to the ion image prior to calculating co-localization: 1) removing            
hotspots with intensities of greater than 0.99 quantile; 2) applying the median filter with a square                
window of size ranging from 1 (no filter applied) to 5 with step 1; 3) applying quantile                 
thresholding, namely filtering out pixels with intensities below a quantile value for quantiles             
ranging from 0 to 0.9 with step 0.05. Evaluation whether using a transformation is beneficial as                
well as optimizing the size of the median filter and the quantile value was performed using the                 
5-fold cross-validation for each measure. Measures with the best performing filters were then             
applied to the entire gold standard set. 

5 ​https://github.com/metaspace2020/coloc/tree/master/measures 
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Figure 2. ​ Architecture of the Xception-based deep learning model. 

Measures based on deep learning 

With the advent of deep learning in artificial intelligence, models based on neural networks have               
become the method of choice for processing unstructured data such as images. Therefore, in our               
study we have developed several methods exploiting current state of the art deep learning              
approaches that would learn ion co-localization from the gold standard set. 

Xception-based model ​. This model, illustrated in Figure 2, is based on the well-known Xception              
convolutional architecture designed to extract informative features from images ​(Chollet, 2017) ​.           
We introduced the following modifications. First, the input has 2 channels corresponding to the              
target and comparison ion images. The 2 channels pass through the Xception architecture             
without the final classification layer, which in our case is replaced with a regression output. The                
Xception-based model is supervised, and its target variable is the rank as specified in the gold                
standard set, with the Mean Squared Error (MSE) loss function. 

Mu model​. The Mu model is a variation of the Xception-based model with the difference that the                 
top layers are replaced with two 2048-dimensional outputs followed by a discriminator. The mu              
model encodes a pair of ion images into two 2048-dimensional representations, computed image             
similarity as the Pearson correlation coefficient between the representations, and then regresses            
the similarity score onto the rank target with the MSE loss. 

Unsupervised UMAP​. We developed a model based on the Uniform Manifold Approximation            
and Projection (UMAP), a recently developed nonlinear dimensionality reduction technique with           
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broad applications in biology ​(McInnes ​et al. ​, 2018) ​. In this model, we applied UMAP to embed                
flattened ion images (i.e., one-dimensional vectors of pixel intensities) into 20-dimensional space            
using the “cosine” distance metric. After the unsupervised embedding model defined the distance             
between ion images, we calculated the Pearson correlation coefficient between the corresponding            
embedded vectors to rank comparison images with respect to the target image. This model is               
unsupervised and does not use the gold standard set. 

UMAP+GBT model ​. Since in our case supervision is actually possible, we extended the UMAP              
model with a supervised model on top. Namely, we used gradient boosted trees (GBT), a state of                 
the art regression model ​(Chen and Guestrin, 2016) ​, feeding UMAP 20-dimensional features as             
input and regressing them onto rank targets from the gold standard set with the MSE loss                
function. 

Pi model ​. The pi model is based on the recently developed approach of temporal ensembling for                
semi-supervised learning ​(Laine and Aila, 2016) ​. This approach uses an ensemble of network             
outputs from different training epochs as quasi-targets for training on unlabeled samples, which             
has been shown to significantly improve the final model quality. In our case, the pi model                
follows the general architecture of the Xception-based model, but the last layers are replaced              
with two heads for two loss components: 

● supervised loss as in the Xception-based model, the MSE between the network prediction             
and the rank; 

● unsupervised loss intended to stabilize the network prediction; we define it as the squared              
error between network predictions on a pair of ion images and the same pair of ion                
images subjected to various image augmentations (intensities and geometric         
transformations). 

The unsupervised loss component has allowed us to use ~40,000 unlabelled ion images from              
3685 public METASPACE datasets, gathering ~56,000 unlabelled pairs from them for training            
in addition to the labeled gold standard set. 

Evaluation of the co-localization measures  
For each set, we calculate Spearman and Kendall correlation coefficients separately for each             
target-comparison set and report the mean and median values ovell all sets. 
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Results 

The co-localization gold standard set 
We have initially selected 239 datasets from METASPACE with 304 target-comparison sets of             
ion images for 42 rankers from 9 labs (Table 1).  

Pilot study 
The pilot study was crucial to inform us about the complexity and subjectivity of the task and to                  
design the final version of the web app and the study accordingly. In particular, we learned that                 
ranking comparison images was more natural for the rankers than ordering them because this              
allowed the rankers to assign the same rank to several comparison images. Selecting high-quality              
datasets and skipping noisy ion images and images with just a few non-zero pixels was crucial                
for obtaining reproducible rankings. Some rankers preferred to leave non-co-localized images           
unranked and we have implemented this option for the final study. 

Agreement between experts 
Table 1 shows the average pairwise ranker correlation values for each lab that represent              
agreement between rankers. Note that the agreement values cannot and shall not be compared              
across different labs because every lab ranked images from different METASPACE datasets. For             
example, ranking images with a simple and clear spatial structure led to higher agreement values.               
The mean correlation across all sets was 0.700 (Spearman) and 0.629 (Kendall). After excluding              
sets and rankers with low agreement, the mean agreements for the final version of the gold                
standard set is 0.791 (Spearman) and 0.711 (Kendall). 

The gold standard set 
The final version of the gold standard set includes 234 sets with 2210 ion image pairs from 182                  
public imaging datasets from METASPACE ranked by 38 rankers from 9 labs, available at              
https://github.com/metaspace2020/coloc/tree/master/GS​. The datasets represented human (37%),      
mouse (21%), pig (7%), rat (6%) and other organisms; brain (27%), kidney (11%), skin (9%),               
seed (4%) and other organs; MALDI (84%) and DESI (16%) ionisation; DHB (44%), DAN              
(17%), DHA (6%), BPYN (5%) and other MALDI matrices; Orbitrap (69%) and FTICR (31%)              
mass analyzers; positive (68%) and negative (32%) polarity. For every target-comparison pair of             
ion images, average rank across three rankers has been assigned. The ranks range from 0,               
representing the highest co-localization, to 10, representing the lowest or no co-localization.  
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Lab Number 
of 

rankers 

Number 
of 

datasets 

Number 
of sets 

Average pairwise agreement  

Spearman Kendall 

mean median mean median 

University of Copenhagen 8 66 78 0.534 0.730 0.489 0.620 

EMBL 8 33 53 0.763 0.804 0.666 0.710 

University of Melbourne 6 29 40 0.806 0.836 0.732 0.742 

JLU Giessen 5 29 33 0.612 0.688 0.545 0.597 

IBMP 3 20 20 0.638  0.681 0.550 0.604 

PNNL 3 20 20 0.686 0.687 0.596 0.609 

MPI Bremen 3 19 20 0.843 0.925 0.787 0.879 

UT Austin 3 16 20 0.808  0.866 0.745 0.770 

M4I 3 7 20 0.730 0.680 0.660 0.608 

Total 42 239 304 0.700 0.773 0.629 0.666 

Final version after filtering 
out rankers and sets 

38 182 234 0.791 0.800 0.711 0.708 

Table 1. Information about the co-localization gold standard set created from public            
METASPACE datasets contributed by 9 labs with target-comparison sets ranked manually by 42             
experts from these labs. The final version was obtained after filtering out rankers and sets with                
agreement less than 0.4 and sets ranked by one ranker only. 

Evaluation of co-localization measures 

Measures that do not require learning 

Table 2 shows the performance of co-localization measures requiring no learning, measured            
using the gold standard set as Spearman and Kendall rank correlation to the expert rankings. For                
each measure, we show its best performance and optimal image transformation parameters. The             
best performing measure is the cosine similarity with quantile threshold 0.5, without hotspot             
removal and with median filter with window size 3. The second best measure is the Pearson                
correlation measure with no image transformation applied. The SSIM measure recently proposed            
in the context of imaging MS ​(Ekelöf ​et al. ​, 2018) ​ was outperformed by other measures. 
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Co-localization 
measure 

Correlation with the expert rankings 
in the gold standard set 

Optimal parameters of image 
transformations 

Spearman  Kendall  Quantile for 
thresholding 

Hotspot 
removal 

Median 
window size mean median mean median 

Cosine 0.794 0.849 0.682 0.720 0.5 No 3 

Tfidf-cosine 0.769 0.825 0.653 0.689 0.65 No 0 

Spearman 0.737 0.783 0.620 0.647 0.7 No 0 

Pearson 0.788 0.838 0.674 0.719 0 No 0 

SSIM 0.559 0.623 0.449 0.488 0 No 0 

Table 2. ​Performance of the co-localization measures requiring no learning in terms of             
Spearman and Kendall correlation coefficients with the optimal parameters for image           
transformations. 
 

 
Image transformation applied 
before calculating cosine 
similarity 

Correlation with the expert 
rankings in the gold standard set 

Optimal parameters of image 
transformations 

Spearman  Kendall Quantile 
value 

Hotspot 
removal 

Median 
window 

size mean median mean median 

Quantile thresholding, hotspot 
removal, denoising 

0.794 0.849 0.682 0.720 0.5 No 3 

Quantile thresholding, hotspot 
removal (no denoising) 

0.792  0.844 0.681 0.720 0.5 No - 

Hotspot removal, denoising 
(no quantile thresholding) 

0.779  0.842 0.665 0.719 - No 3 

Table 3.​ The effect of using different types of image transformations onto the performance of the 
cosine-based measure.  
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Deep Learning-based model 

Correlation with the expert rankings in the gold standard set 

Spearman Kendall 

mean median mean median 

Xception model 0.777 0.820 0.682 0.716 

Pi model 0.797 0.847 0.712 0.752 

Unsupervised UMAP 0.761 0.827 0.656 0.686 

UMAP+GBT 0.758 0.845 0.672 0.741 

Mu model 0.725 0.804 0.638 0.705 

Table 4. The performance of deep learning-based models measured as Spearman and Kendall             
correlations with expert rankings in the gold standard set. The best performance is achieved by               
the semi-supervised Pi model that makes use of both labelled and unlabelled data.  
 
Table 3 shows the effect of using different types of image transformation on the performance of                
the cosine measure. Surprisingly, applying hotspot removal did not improve the performance.            
Denoising images by using the moving median filter improves the performance only marginally             
(Spearman correlation from 0.792 to 0.794), whereas using quantile thresholding led to a             
significant improvement (Spearman correlation from 0.779 to 0.794). 

Measures based on deep learning 

Table 4 shows the performance of co-localization measures based on deep learning models. The              
Pi model achieved the best performance, with a slight improvement over cosine similarity and              
nearly reaching the human-to-human agreement between the experts in our study. This is no              
surprise since the Pi model is a state-of-the-art semi-supervised model that makes use of both               
labeled data from the gold standard set and unlabeled data from METASPACE. What is              
interesting is that the purely unsupervised UMAP model performed on par with supervised             
Xception and UMAP+GBT, its own version enhanced with supervision through gradient boosted            
trees, and outperformed the Mu model. This may indicate that the structural properties of              
co-localization are relatively evident in the data, and once these properties are extracted the rest               
is just “noise”. This would imply that our results are already close to perfect given the “noise”                 
inherent in the notion of co-localization, and would also explain why the best model results are                
so close to the human-to-human agreement. 

12 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/758425doi: bioRxiv preprint 

https://doi.org/10.1101/758425
http://creativecommons.org/licenses/by/4.0/


Inferring molecular relationships by mining public METASPACE data 

We have applied the best derived co-localization measures to illustrate how they can be used on                
a large scale to mine data from the public knowledge base METASPACE. More specifically, we               
aimed to infer co-localization relationships between all molecules represented in public           
METASPACE annotations. For this, we downloaded ion images for all annotations from 3685             
public datasets in METASPACE using its API , calculated co-localizations between all ion            6

images within a dataset using either the cosine score after 0.5 quantile thresholding or deep               
learning Pi-model, the best performing methods in their respective classes, and averaged            
co-localization across all datasets. Finally, we visualized all 10273 resulting molecular formulas            
in a two-dimensional space using UMAP with the average co-localization used as the             
pre-computed distance. The annotations that are more co-localized on average are shown closer             
to each other (Figure 3). 

To investigate whether the inferred co-localization properties are associated with chemical           
properties of the molecules, we highlighted glycerolipids, an important class of lipids which are              
known to be easily detectable by imaging mass spectrometry (Figure 3a). Note that the              
assignment of a molecular annotation (formula) to a molecular class was performed accounting             
for potential ambiguity, with unambiguously assigned annotations shown in green and           
ambiguously assigned annotations shown in red (Figure 3). One can see that glycerolipids indeed              
form dense clusters that indicates their high average co-localization. A subclass of glycerolipids,             
triradylcglycerols (with the classes names as in HDMB) represent the majority of the             
glycerolipids in METASPACE and form the densest clusters (Figure 3b). Sparser representation            
of glycerolipids in the negative polarity data (Figure 3c) illustrates the common knowledge of the               
positive mode being the preferred way of ionization for this class of lipids. Using another               
co-localization measure (deep learning-based Pi model instead of the cosine) also confirms the             
findings but shows a visible difference in data organization. This reflects the robust capacity of               
both measures to capture chemically-associated co-localization but also shows the differences           
between them, which can be potentially used in the future to further improve the results.  

Another class of lipids, glycerophospholipids, represents a large part of molecules in            
METASPACE, clearly forming a cluster in the UMAP chemical space (Figure 3e). Performing             
examination in a way similar to Figures 3a-d, one can see that the molecular subclass of                
glycerophospholipids, glycerophosphoethanolamines, represents the core of the cluster of         
co-localized glycerophospholipids (Figure 3f). Opposite to glycerolipids, glycerophospholipids        
are known to be ionizable in both positive and negative modes, and this is reflected in their                 
strong presence as well as clustered appearance on Figure 3g. Examining deep learning Pi              

6 ​https://github.com/metaspace2020/metaspace/tree/master/metaspace/python-client  
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score-based mapping (Figure 3h), one can see that despite dense spacing, there is clearly less               
separation visible to the class of glycerolipids (Figure 3h vs Figure 3d) compared to the cosine                
score-based UMAP visualization (Figure 3g vs Figure 3a), which makes cosine score-based            
results easier for interpretation. 

Discussion 

Gold standard 
Creating a high-quality gold standard set of expert-ranked pairs of target-comparison images was             
possibly the most challenging part of the study. Not only it required scientific formulation of the                
co-localization problem and development of an experiment design able to capture the perceived             
extent of co-localization from the experts, but it was also the most time-consuming part of our                
study to organize the whole ranking experiment by selecting datasets, recruiting almost 50             
experts, communicating with them, reminding them to complete the task, and when necessary             
coming back to them with requests for corrections. Altogether it required 95 emails solely for               
communicating with the rankers. Despite having expertise in performing crowdsourcing studies           
in imaging MS ​(Ovchinnikova ​et al. ​, 2019; Palmer ​et al. ​, 2015) and overwhelmingly positive              
support of METASPACE users in performing the ranking, running this study would not be              
possible without access to diverse public data in METASPACE and without using modern web              
technologies employed for the RankColoc web app that both critically facilitated the process.             
The achieved average pairwise correlation between the rankers (mean Spearman 0.791) confirms            
a strong inter-ranker agreement. This indicates that there is a consensus between experts with              
respect to perceived co-localization and, importantly, that this consensus was successfully           
captured in the gold standard set, thus validating our efforts. 

Performing the pilot study was essential to avoid pitfalls and refine the experimental design and               
the web app for more objective ranking before engaging a large number of experts. Nevertheless,               
after performing the complete study, we see opportunities for next-level improvement. For            
example, in the spirit of active learning, we could choose comparison ions not randomly but               
those ions where our models are most uncertain about their ranking. 

Taking into account the efforts necessary for producing such a gold standard set, we do not                
expect it to be repeated on a larger scale in the near future. However, we are considering to                  
implement an online approach where a target-comparison set or a reduced version of it will be                
occasionally shown to METASPACE users. This approach would provide a continuous           
population of the gold standard set. However, it should be carefully designed to ensure the               
quality and check for consistency, since the ranking task will be split into small subtasks and                
performed over a period of time by a larger diverse crowd of rankers. 
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Figure 3. Visualization of co-localization molecular relationships as learned from          
METASPACE. Dots representing annotations (each corresponding to one of 10273 unique           
molecular formulas) are mapped based on their average co-localization across 3685 public            
METASPACE datasets. For a molecular class, the green color represents unambiguous           
assignment when all isomers belong to the class whereas the red color represents ambiguous              
assignment when some isotopes belong to another class. 
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Co-localization measures 
Comparing the performance of the evaluated measures of co-localization (mean Spearman 0.797            
for the deep learning Pi model and 0.794 for cosine similarity after median filtering) with               
average pairwise agreement between the rankers (mean Spearman 0.791), we suggest that the             
best measures approach the theoretically best performance. The slight positive difference (0.797            
vs 0.791) can be due to the averaging of rankings in the produced gold standard set, thus                 
introducing positive effects of averaging compared to the values used for the rankers agreement              
calculation. The fact that we potentially reached the best possible performance explains only a              
slight improvement when using an advanced deep learning-based method compared to cosine            
similarity. Another reason can be due to the specifics of the considered problem: ion images               
from the same dataset have the same size and structure and can be compared pixel-by-pixel after                
flattening; they also do not undergo changes in the view angle or brightness or other non-linear                
deformations that would apply to, e.g., photos used in computer vision where deep learning              
significantly benefits from its capacity to extract abstract visual features thus allowing            
comparison of different images showing the same object. Here, future efforts can be focused on               
developing next-level methods for spatial association between molecules that would consider           
“molecular microenvironment” rather than “tissue section” context. 

Another effect that suggests that the considered problem is relatively simple is the comparable              
performance of both unsupervised and supervised methods. Another reason for this effect could             
be the small size of the training set ( ​2340 pairs of ranked images); this is also supported by the                   
best performance of ​a semi-supervised model which used all public METASPACE data for             
deriving a representation of ion images. We hope that these results, comparing a variety of deep                
learning models, and this discussion will be helpful for future deep learning applications in              
imaging MS. 

Comparing the best co-localization measures (deep learning Pi model and cosine similarity after             
median thresholding), we investigated how well they correspond to expert ranking for each             
target-comparison pair from the gold standard. Figure 4 shows that there is no visible difference               
between these two measures: for 50% of all target-agreement sets both measures achieve high              
performance (Spearman correlation with the expert ranking is greater than 0.8). Despite the fact              
that error analysis of low-valued sets has not revealed any factors that would allow us to improve                 
the measures, one can potentially combine the considered measures and thus achieve a better              
performance with an ensemble ranking. Interestingly, Figure 4 highlights that the           
target-comparison pairs for which both measures performed well also have visibly high values of              
the rankers agreement. This provides another confirmation that the developed co-localization           
measures reproduce the perceived co-localization when experts themselves agree on it. 
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Figure 4. Scatterplot showing for each of 2340 target-comparison sets from the gold standard              
how well the best co-localization measures (deep learning Pi model, cosine similarity after             
median thresholding) reproduce the average expert ranking, as measured by the Spearman            
correlation. Each dot is colored according to the rankers agreement for the respective             
target-comparison set. 

Applications 
A wide coverage of organisms, organs, ionization types, MALDI matrices, and mass analyzers             
represented in the imaging MS datasets used in the gold standard set ensures broad applicability               
for the findings and measures developed in this study. We expect key applications of the               
developed and evaluated co-localization methods to be in the search for molecular biomarkers             
associated with either a particular molecule or a region of interest. They should also improve               
distance-based methods for data analysis, e.g., representation of the full dataset using clustering             
of ion images ​(Alexandrov ​et al. ​, 2013) ​. Moreover, we expect this work to provide a               
scientifically rigorous justification for using these measures in systems biology approaches           
aimed at uncovering molecular relationships between molecules by assuming the tissue           
representing cells of different phenotypes. Here, cutting-edge methods relying on distance or            
similarity measures, such as UMAP demonstrated in this paper, can replace more conventional             
methods such as PCA, NMF or t-SNE. 
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