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1 Abstract 1

Variation is characteristic of all living systems. Laboratory techniques 2

such as flow cytometry can probe individual cells, and, after decades of 3

experimentation, it is clear that even members of genetically identical cell 4

populations can exhibit differences. To understand whether variation is 5

biologically meaningful, it is essential to discern its source. Mathematical 6

models of biological systems are tools that can be used to investigate causes 7

of cell-to-cell variation. From mathematical analysis and simulation of these 8

models, biological hypotheses can be posed and investigated, then parameter 9

inference can determine which of these is compatible with experimental data. 10

Data from laboratory experiments often consist of “snapshots” representing 11

distributions of cellular properties at different points in time, rather than 12

individual cell trajectories. These data are not straightforward to fit using 13

hierarchical Bayesian methods, which require the number of cell population 14

clusters to be chosen a priori. Here, we introduce a computational sampling 15

method named “Contour Monte Carlo” for estimating mathematical model 16

parameters from snapshot distributions, which is straightforward to imple- 17

ment and does not require cells be assigned to predefined categories. Our 18

method is appropriate for systems where observed variation is mostly due to 19

variability in cellular processes rather than experimental measurement error, 20

which may be the case for many systems due to continued improvements in 21

resolution of laboratory techniques. In this paper, we apply our method 22

to quantify cellular variation for three biological systems of interest and 23

provide Julia code enabling others to use this method. 24

2 Introduction 25

Variation, as opposed to homogeneity, is the rule rather than exception 26

in biology. Indeed, without variation, biology as a discipline would not 27

exist, since as evolutionary biologist JBS Haldane wrote, variation is the 28

“raw material” of evolution. The Red Queen Hypothesis asserts organisms 29

must continually evolve in order to survive when pitted against other - also 30

evolving - organisms [1]. A corollary of this hypothesis is that multicellular 31

organisms should evolve cellular phenotypic heterogeneity to allow faster 32

adaptation to changing environments, which may explain the observed 33

variation in a range of biological systems [2]. Whilst cell population variation 34

can confer evolutionary advantages, it can be costly in other circumstances. 35

In biotechnological processes, heterogeneity in cellular function can reduce 36

yields of biochemical products [3]. In human biology, variation across cells 37

can enable pathologies to develop; it can also frustrate treatment of illness 38

because key subpopulations are missed by medical interventions that target 39

“average” cell properties. For example, cellular heterogeneity helps some 40

cancerous tumours to persist [4] and can make tumours more likely to evolve 41

resistance to chemotherapies [5]. To discern whether observed variation is 42

benign or requires remedy, methods of analysis are needed that can quantify 43

and help to understand its source. 44

Mathematical models are essential tools for understanding cellular sys- 45

tems, whose emergent properties are the result of a nexus of interactions 46

between actors. Perhaps the simplest flavour of mathematical model used 47

in biological systems is an ordinary differential equation (ODE) that ag- 48

gregates individual actors into compartments according to structure or 49

function, and seeks to model the mean behaviour of each compartment. 50
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Data from population-averaged experimental assays can determine whether 51

such models faithfully reproduce system behaviours and can be used to 52

understand the structure of complex metabolic, signalling and transcrip- 53

tional networks. The worth of such “population average” ODE models 54

depends on whether averages mask substantial differences in individual 55

behaviour [6]. In some cases, differences in cellular protein abundances 56

due to biochemical “noise” are not biologically meaningful [7] and the 57

system is well described by average cell behaviour. In others, there are 58

functional consequences. For example, a laboratory study demonstrated 59

that subpopulations of clonally-derived hematopoietic progenitor cells with 60

low expression of a stem cell marker, diverged into a separate blood lineage 61

from those with high expression [8]. 62

Many modelling frameworks are available to describe cell population 63

heterogeneity, with each posing different challenges for parameter inference. 64

A recent review is presented in [9]. These approaches include modelling bio- 65

chemical processes stochastically, where properties of ensembles of cells are 66

represented by probability distributions that evolve according to chemical 67

master equations. See [10] for a tutorial on stochastic simulation of reaction 68

diffusion processes. Alternatively, population balance equations (PBEs) are 69

typically partial integro-differential equations that determine the dynamics 70

of the “number density” of differing cell types. In PBEs, cell properties 71

are represented as points in Rn, with each dimension corresponding to a 72

different attribute. These attributes include parameters controlling cell life 73

- for example, their rate of death and division, which vary according to a 74

cell’s location in this “attribute” space. These functional differences control 75

the rate at which cells progress through life, which is represented by a 76

“flow” of cells from certain areas of attribute space to others - like chemicals 77

diffusing down a concentration gradient. With PBEs, observed variation at 78

a point in time is due to the initial spread of cells across attribute space 79

coupled with the differing dynamics of cells in different areas of this space. 80

See [11] for an introduction to PBEs. 81

Here, we suppose heterogeneity in quantities of interest across cells is 82

generated by idiosyncratic variation in the rates of cellular processes. The 83

modelling approach we follow is similar to that of [12] and is based on an 84

ODE framework. In our model, each cell evolves according to an ODE, with 85

its progression directed by parameters whose value varies between cells. To 86

our knowledge, this flavour of model is unnamed, so, for sake of reference, 87

we call them “heterogenous ODE” models (HODEs). In HODEs, the aim 88

of inference is to estimate distributions of parameter values across cells 89

consistent with observations. A benefit of using HODEs is that these models 90

are computationally straightforward to simulate and, arguably, simpler to 91

parameterise than PBEs. By using HODEs, we assume that most observed 92

variation comes from differences in biological processes across cells, not 93

inherent stochasticity in biochemical reactions within cells as is assumed 94

when employing stochastic simulations algorithms. 95

Inference for HODEs is problematic due, partly, to the experimental 96

hurdles involved with generating data of sufficient standard. Unlike models 97

which represent a population by a single scalar ODE, since HODEs are 98

individual-based, they ideally require individual cell data for estimation. A 99

widely-used method for generating such data is flow cytometry, where a 100

large number of cells are streamed individually through a laser beam, and, 101

for example, the concentrations of fluorescently-labelled proteins are mea- 102

sured [13]. Other experimental techniques, including Western blotting and 103
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cytometric fluorescence microscopy, can also generate single cell measure- 104

ments [14,15]. These experimental methods are all, however, destructive, 105

meaning individual cells are sacrificed during measurement, and observa- 106

tions at each time point hence represent “snapshots” of the underlying 107

population [15]. These snapshots can be described by histograms [12] or 108

density functions [9] fit to measurements of quantities of interest. Since 109

HODEs assume the state of each cell evolves continuously over time, exper- 110

imental data tracing individual cell trajectories through time constitutes 111

a richer data resource. The demands of obtaining such data are, however, 112

higher and typically involve either tracking individual cells through imaging 113

methods [16], or trapping cells in a spatial position where they can be 114

monitored over time [17]. These techniques impose severe restrictions on 115

experimental practices meaning they cannot be used in many circumstances, 116

including for online monitoring of biotechnological processes or analysis 117

of in vivo studies. For this reason, “snapshot” data continues to play an 118

important role for determining cell level variability in many applications. 119

By fitting HODES to snapshot data, cellular variability can be esti- 120

mated and a number of approaches have been proposed for doing so. In 121

HODEs, parameter values vary across cells according to a to-be-determined 122

probability distribution, and the solution to the inverse problem requires 123

solving the cell-specific ODE system many times for each individual. The 124

count of cells in experiments typically exceeds ∼ 104 [15], so approaches 125

where the computational burden scales with this count are usually infeasi- 126

ble. To avoid this burden, some approaches fit probability densities to raw 127

snapshot data and use these densities, rather than raw data, for estima- 128

tion [12,15,18,19]. We follow this approach here. We now briefly describe 129

the existing approaches for using HODE models to estimate cell population 130

heterogeneity. Hasenauer et al. (2011) present a Bayesian approach to 131

inference for HODEs, which models the input parameter space using an 132

ansatz of a mixture of densities of chosen types. The authors then use their 133

method to reproduce population substructure on synthetic data generated 134

from a model of tumour necrosis factor stimulus. Hasenauer et al. (2014) 135

use mixture models to model subpopulation structure in snapshot data 136

with multiple-start local optimisation employed to maximise the non-convex 137

likelihood, which they then apply to synthetic and real data from signalling 138

pathway models. Loos et al. (2018) also use mixture models to represent 139

subpopulation structure and use maximum likelihood to estimate both 140

within- and between-subpopulation variability, which permits fitting to 141

multivariate output distributions with complex correlation structures. Dixit 142

et al. (2018) assign observations into discrete bins, then choose likelihood 143

distributions according to the maximum entropy criterion, which they then 144

use to estimate cell variability within a Bayesian framework. 145

Our framework is Bayesian although it is distinct from the approach used 146

to fit many dynamic models, since we assume output variation arises from 147

parameter heterogeneity across cells, with no contribution from measurement 148

noise. The approach is, hence, most suitable when measurement error is 149

minimal. Our method is a two-step Monte Carlo approach, which, for 150

reasons described in §3, we call “Contour Monte Carlo” (CMC). Unlike 151

many existing methods, CMC is straightforward to implement and does not 152

require extensive computation time. In CMC, prior probability distributions 153

are used in place of ansatz densities. It also does not require the number 154

of cell clusters be chosen beforehand, rather, subpopulations emerge as 155

modes in the posterior parameter distributions. Like [19], CMC can fit 156
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multivariate snapshot data and unlike [12], does not use discrete bins to 157

model continuous data. As more experimental techniques elucidating single 158

cell behaviour are developed, interest in models describing measurement 159

snapshots should follow. We argue that due to its simplicity and generality, 160

CMC can be used to perform inference on the proliferation of rich single 161

cell data and, thus, is a useful addition to the modeller’s toolkit. 162

Outline of the paper: In §3, we describe our probabilistic model of the 163

inverse problem and detail the CMC algorithm for generating samples from 164

the posterior parameter distribution. In §4, we use CMC to estimate cell 165

population heterogeneity in three systems of biological interest. 166

3 Method 167

In this section, we first develop a probabilistic framework that describes 168

our inverse problem, before introducing the CMC algorithm in pseudocode 169

(Algorithm 1). We also detail the workflow we have found helpful in 170

using CMC to analyse cell snapshot data (Figure 4), and suggest practical 171

remedies to issues commonly encountered while using this approach. A 172

glossary of variable names used in this paper is included as Table 1. 173

Experimental methods such as flow cytometry measure single cell char- 174

acteristics at a given time. Cells are typically destroyed by the measurement 175

process, so the data consists of cross-sections or “snapshots” of sampled 176

individuals from the population, rather than providing time series for each 177

individual cell (Figure 1). 178

A. Time series

Time
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B. Snapshots

Time
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ity

Figure 1: Data typical of single cell experiments. (A) Time series
data. (B) Snapshot data. In A, note cell identities are retained at each
measurement time (indicated by individual plot markers), whereas in the
snapshot data in B, either this information is lost, or more often, cells are
destroyed by the measurement process, and each observation corresponds
to a distinct cell.

We model the processes of an individual cell using a system of ordinary 179

differential equations (ODEs), where each element of the system typically 180

corresponds to the concentration of a particular species. Our initial value 181

problem is, 182

dx

dt
= f(x(t); θ), f : Rk × Rp 7→ Rk,

x(0) = x0.
(1)

Note that in most circumstances, the initial state of the system, x(0), is 183

unknown, and it can be convenient to include these as elements of θ to be 184

estimated. 185
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3.1 Snapshot data 186

We assume the variation in snapshots arises due to heterogeneity in the 187

underlying parameters, θ, across cells. Therefore, the evolution of the 188

underlying state of cell i is described by an idiosyncratic ODE, 189

dx{i}

dt
= f

(
x{i}(t); θ{i}

)
, f : Rk × Rp 7→ Rk,

x{i}(0) = x0,

(2)

where superscript {i} indicates the ith cell. The traditional (non-hierarchical) 190

state-space approach to modelling dynamic systems supposes that mea- 191

surement error introduces stochastic variation in the output (Figure 2A). 192

Our approach, by contrast, assumes any variation in outputs is solely due 193

to variation in parameter values between cells (Figure 2B). Whether the 194

assumption of “perfect” measurements is reasonable depends on experi- 195

mental details of the system under investigation, but we argue our method 196

nevertheless provides a useful approximation in cases where the signal to 197

noise ratio is high. 198
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Figure 2: Models of variation in observed outputs. (A) State-
space model. (B) Parameter heterogeneity model. (A) For non-
hierarchical state-space models , there is a single “true” latent state, and ob-
servations result from an imperfect measurement process (grey histograms).
(B) For models with parameter heterogeneity, the uncertainty is generated
by differences in cellular processes (black lines) between cells. Note that, in
both cases, individual cells are measured only once in their lifetime.

In an experiment, quantities of interest (QOIs) are measured. Exam- 199

ples of QOIs include concentrations of compounds at different points in 200

time, peak voltages across cell membranes during an action potential, or 201

measurements of cell volume. Here, we suppose m ≥ 1 QOIs are measured, 202

q> = (q1, q2, . . . , qm) ∈ Rm, (3)

with nj observations of each quantity, qj . Distinct QOIs, qj , may cor- 203

respond to different functionals of the solution at the same time or the 204

same functional at different times. The observed data for QOI qj at the 205

corresponding time tj consists of the nj cellular measurements, 206

y(tj)
> =

(
qj(x

{1}(tj)), qj(x
{2}(tj)), . . . , qj(x

{nj}(tj))
)
∈ Rnj . (4)

The raw snapshot data Y is the collection of all measured QOIs, 207

Y = (y(t1),y(t2), . . . ,y(tm)) ∈ Rn1 × Rn2 × ...× Rnm . (5)
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The goal of inference is to characterise the probability distribution p(θ|Y ) 208

representing heterogeneity in cellular processes. The numbers of cells 209

sampled in typical experimental setups is large, and, following previous work, 210

we represent snapshot data Y using probability distributions [12, 15, 18, 19]. 211

In the first step of our workflow (Figure 4(i)), these distributions are 212

approximated by a kernel density model, with support over the space of 213

the QOI vector, q ∈ Rm. We use Φ̂ to denote the parameter estimates of 214

the corresponding kernel density model, p(q|Φ), resultant from fitting it to 215

raw snapshot data. We assume there are enough observational data that 216

the estimated probability distributions are approximate sufficient statistics 217

of the posterior distribution, meaning p(θ|Φ̂) ≈ p(θ|Y ). 218

The aim of our inverse problem, hence, becomes to derive a “posterior” 219

parameter distribution, which, when fed through the deterministic trans- 220

formation described by the model, q(θ), recapitulates the fitted output 221

density, 222

p(θ|Φ̂)
q(θ)−−−→ p(q|Φ̂). (6)

In measure theoretic terms, the intrinsic measure implied by p(θ|Φ̂) is 223

known as the push forward of the measure implied by p(θ|Φ̂) with respect 224

to the model [20]. 225

Variable Definition Dimension

x(t) ODE solution Rk

θ ODE parameters Rp

f(x(t); θ) ODE RHS Rk

x{i}(t) ODE solution for cell i Rk

qj = qj(x(tj);θ) = qj(θ) quantity of interest (QOI) j R1

q> = (q1, . . . , qm) m distinct QOIs Rm

q
{i}
j = qj(x

{i}(tj)) QOI j for cell i R1

y>j =
(
q
{1}
j , . . . q

{nj}
j

)
QOI j for cells 1, . . . , nj Rnj

Y = (y1, ...,ym) “snapshot” of all QOIs Rn1 × Rn2 × ...× Rnm

Φ parameters of output target distribution, p(q|Φ) Rm

Ξ parameters of prior parameter distribution, p(θ|Ξ) Rp

Ψ parameters of prior output distribution, p(q|Ψ) Rp

â estimates of any quantity a -
Ω(z) region of parameter space mapping to q = z R≤p
V(z) volume of Ω(z) R+

V volume of (bounded) parameter space R+

a[n] nth sample of any quantity a -

Table 1: Glossary of variable names used in this paper.

3.2 Theoretical development of CMC 226

We consider the under-determined case where there are fewer QOIs than 227

model parameters (m < p). This means that, provided a given QOI can be 228

generated by the model, it can be produced from any member of a subset 229

of parameter space. Unlike the fully-determined case, these subsets (in 230

general) have non-zero “volume”, and we term them “iso-output contour 231

regions”. Symbolically, we represent the iso-output contour region for a 232

given quantity of interest q̃ (say) by Ω(q̃) = {θ : q(θ) = q̃}. 233
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In general, contour “volumes” V(q̃) depend on the chosen output value 234

q̃ (Figure 3). Further, the interpretation of these “volumes” depends upon 235

their dimensions. For a model with two parameters, iso-output contour 236

regions are one-dimensional lines, whose size is a length; for a model with 237

three parameters, contour regions are surfaces, whose size is an area; for 238

four-dimensional parameter spaces, contour regions are three-dimensional 239

and their size is a volume; and for models with p > 4 parameters, iso-contour 240

regions are p− 1 dimensional manifolds, whose size is a hypervolume. 241

MCMC methods aim to approximate a posterior parameter distribution 242

by sampling from it. In this case, the resultant parameter samples, when 243

pushed through the model, should approximate samples from the desired 244

QOI distribution. Random Walk Metropolis [21] is a “vanilla” MCMC 245

sampler which chooses where next to step based on the ratio of probability 246

densities at the proposed parameter value and current position. Using 247

a vanilla sampler for our case, unfortunately, does not work because the 248

Markov chains are biased towards those regions of parameter space with 249

the largest iso-output contour volumes. This bias means that the stationary 250

parameter distribution obtained, when fed through the model, does not 251

recapitulate the target output distribution [22]. 252

Sampling algorithms, therefore, need to explicitly account for the dif- 253

ferential volume of iso-output contours. In applied problems, however, 254

we do not know the volumes of iso-output contours and they cannot be 255

exactly calculated for all but the simplest models. Instead in CMC, we 256

estimate them. The following analysis provides a brief introduction to a 257

probabilistic formulation of under-determined inverse problems (see our 258

companion paper [22] for a more comprehensive discussion). In doing so, 259

this suggests a sampling based approach for estimating contour volumes, 260

which are then exploited by our CMC algorithm. 261

Figure 3: Left: An example output function q(θ1, θ2) along with iso-
output contours indicated (coloured lines). Right: The “volume”
of output contours as a function of output value. Note that here,
since parameter space is two dimensional, the “volume” of each output
value corresponds to a length of an iso-output contour.

Solving our inverse problem requires determining the posterior distribu- 262

tion of parameter values, p(θ|Φ̂), which, when used as input to the forward 263

map, results in the target distribution, p(q|Φ̂). To derive the posterior 264

parameter distribution, we consider the joint density of parameters and 265

QOIs, p(θ, q|Φ̂). This can be decomposed in two ways using the law of 266

conditional probability, 267

p(θ, q|Φ̂) = p(θ|q, Φ̂)× p(q|Φ̂) = p(q|θ, Φ̂)× p(θ|Φ̂). (7)
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Rearranging eq. (7), we obtain the posterior parameter distribution, 268

p(θ|Φ̂) =
p(θ|q, Φ̂)× p(q|Φ̂)

p(q|θ, Φ̂)
. (8)

Since the mapping from parameters to outputs is deterministic, p(q|θ, Φ̂) = 269

δ(q(θ)), i.e., the Dirac delta function centred at q = q(θ). Thus eq. (8) 270

becomes, 271

p(θ|Φ̂) = p(θ|q(θ), Φ̂)× p(q(θ)|Φ̂). (9)

In the same way that a single output value can be caused by any member of 272

a set of parameter values, a target output distribution p(q|Φ̂) can be caused 273

by any member of a set of parameter distributions. To ensure uniqueness 274

of the “posterior” parameter distributions, we must, therefore, specify 275

“prior” distributions for the parameters, as in more traditional Bayesian 276

inference. In what follows, we assume the conditional distribution p(θ|q, Φ̂) 277

is independent of the data, i.e., p(θ|q, Φ̂) = p(θ|q), and thus represents a 278

conditional “prior” which can be manipulated using Bayes’ rule as, 279

p(θ|q(θ)) =
p(θ)

p(q(θ))
. (10)

This results in the form of the posterior parameter distribution targeted by 280

our sampling algorithm, 281

p(θ|Φ̂) =
p(θ)

p(q(θ))
p(q(θ)|Φ̂). (11)

Again, we defer to our companion piece [22] for detailed explanation of 282

eqs. (10) and (11) and, instead, here provide brief interpretation when 283

considering a uniform prior on parameter space. In this case, p(θ) = 1
V , 284

where V is the total volume of parameter space. The denominator term of 285

eq. (10) is the prior induced on output space by the prior over parameter 286

space. For a uniform prior on parameter values, this is, 287

p(θ|q(θ)) =
1

V(q(θ))
, (12)

where V(q(θ)) is the volume of parameter space occupied by the iso-output 288

contour Ω(q(θ)) (see Fig. 3 for the meaning of this volume for a two 289

parameter example). Therefore, a uniform prior over parameter space 290

implies a prior structure where all parameter values producing the same 291

output are given equal weighting. 292

3.3 Implementation of CMC 293

Except for some toy examples, the denominator of eq. (10) cannot be 294

calculated, so exact sampling from the posterior parameter distribution of 295

eq. (11) is not, in general, possible. We propose, instead, a computationally 296

efficient sampling method to estimate p(q(θ)), which forms the first step of 297

our so-called “Contour Monte Carlo” (CMC) algorithm (Algorithm 1; Figure 298

4(ii)), where the volume of iso-output contours with each feasible output 299

value is estimated. This step involves repeated independent sampling from 300

the prior distribution of parameters, θ[i] ∼ p(θ|Ξ), where Ξ parameterises 301

the prior probability density. Each parameter sample is then mapped 302
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to an output value, q[i] = q(θ[i]). The collection of output samples is 303

then fitted using a vine copula kernel density estimator (KDE) [23], Ψ̂ = 304

arg maxΨ p
((
q[1], . . . , q[N1]

)
|Ψ
)
. Throughout the course of development of 305

CMC, we have tested many KDE methods and have found vine copula 306

KDE is best suited to approximating the higher dimensional probability 307

distributions required in practice. 308

The second step in our algorithm then uses MCMC to sample from an 309

approximate version of eq. (11), where the estimated density, p(q(θ)|Ψ̂) 310

replaces its corresponding estimand (Algorithm 1; Figure 4(iii)), 311

p(θ|Φ̂,Ξ, Ψ̂) =
p(θ|Ξ)

p(q(θ)|Ψ̂)
p(q(θ)|Φ̂). (13)

The final step in CMC is to compare output samples generated by MCMC 312

with the target distribution (Figure 4(iv)). Asymptotically (in terms of the 313

sample size of both sampling steps), CMC produces a sample of parameter 314

values (θ[1],θ[2], ...) which, when mapped to the output space, corresponds 315

to the target distribution p(q|Ψ̂). In developing CMC, we found that a finite 316

sample of modest size for both steps of CMC results in parameter samples 317

that, when transformed, often represented good approximations of the 318

target. There are, however, occasions when this is not the case, and this final 319

confirmatory step is indispensable since it frequently highlights inadequacies 320

in contour volume estimation or MCMC, meaning more samples from 321

either or both of these steps are required. It may also be necessary to 322

tweak hyperparameters of the KDE in the contour volume estimation step 323

to ensure reasonable approximation of the distribution of output values 324

obtained by sampling the prior density. If the target distribution is sensitive 325

to the contour volume estimates, this may also indicate that the target 326

snapshot distribution is incompatible with the model: here, we make no 327

claims on existence of a solution to the inverse problem, only that, Contour 328

Monte Carlo is a pragmatic approach to approximate it by sampling if one 329

should exist. A useful way to diagnose whether the target distribution can 330

be produced from the model and chosen priors is to plot the output values 331

from the contour volume estimation step of CMC - this is akin to visualising 332

the prior predictive distribution in traditional Bayesian inference [21]. If the 333

bulk of target probability mass does not overlap with the simulated output 334

values, then the model and/or chosen prior are unlikely to be invertible to 335

this particular target. 336

3.4 Workflow and CMC algorithm 337

A graphical illustration of the complete CMC workflow is provided in Figure 338

4. All variables are defined in Table 1. The CMC algorithm is provided in 339

Algorithm 1. In this implementation, MCMC sampling is performed via 340

the Random Walk Metropolis algorithm, but for the examples in §4, we use 341

an adaptive MCMC algorithm [24]. 342
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Figure 4: Workflow for Contour Monte Carlo to estimate cell pop-
ulation heterogeneity. The distribution targeted in (iii) is given by eq.
(13). Here, q̃ is used to represent an output value resultant from applying
the functional q to parameter samples (θ1, θ2).
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Algorithm 1 Pseudocode for the Contour Monte Carlo algorithm for
sampling from the posterior parameter distribution of eq. (13).

procedure CMC(Y ,Ξ, N1, N2) . Sample from posterior parameter distribution

Φ̂ = SnapshotEstimator(Y )

Ψ̂ = ContourVolumeEstimator(Ξ, N1)(
θ[1], ...,θ[N2]

)
= MCMC(Φ̂,Ξ, Ψ̂, N2)

converged = CompareOutputToTarget((θ[1], ...,θ[N2]), Φ̂)
while converged6=1 do . Rerun contour volume estimation (if necessary modify

vine copula KDE hyperparmeters) and/or MCMC, with larger sample sizes if required

Ψ̂ = ContourVolumeEstimator(Ξ, N ′1), N ′1 ≥ N1(
θ[1], ...,θ[N′

2]
)

= MCMC(Φ̂,Ξ, Ψ̂, N ′2), N ′2 ≥ N2

converged = CompareOutputToTarget((θ[1], ...,θ[N′
2]), Φ̂)

N1 ← N ′1, N2 ← N ′2
end while
return

(
θ[1], ...,θ[N2]

)
end procedure

procedure SnapshotEstimator(Y ) . Fit snapshots with kernel density estimator
(KDE)

Φ̂ = arg maxΦ p(Y |Φ)

return Φ̂
end procedure

procedure ContourVolumeEstimator(Ξ, N1) . Estimate volume of contours
for i in 1 : N1 do
θ[i] ∼ p(θ|Ξ) . Sample from prior density

q[i] = q(θ[i]) . Calculate corresponding output value
end for
Ψ̂ = arg maxΨ p

((
q[1], . . . , q[N1]

)
|Ψ
)

. Fit vine copula KDE

return Ψ̂
end procedure

procedure MCMC(Φ̂,Ξ, Ψ̂, N2) . Random Walk Metropolis algorithm targeting
posterior parameter distribution
θ[0] ∼ π(.) . Sample from arbitrary initialisation distribution
for i in 1 : N2 do
θ[i]′ ∼ N (θ[i−1],Σ) . Propose new parameter values

. Calculate Metropolis acceptance ratio

r = p(θ[i]′ |Ξ) p(q(θ[i−1])|Ψ̂) p(q(θ[i]′ )|Φ̂)/
[
p(θ[i−1]|Ξ) p(q(θ[i]′ )|Ψ̂) p(q(θ[i−1])|Φ̂)

]
u ∼ U(0, 1) . Sample from uniform distribution
if r > u then
θ[i] = θ[i]′ . Accept proposal

else
θ[i] = θ[i−1] . Reject proposal

end if
end for
return

(
θ[1], ...,θ[N2]

)
end procedure

procedure CompareOutputToTarget((θ[1], ...,θ[N2]), Φ̂) . Check output
distribution close to target

for i in 1 : N2 do
q̃[i] = q(θ[i]) . Compute QOIs for each parameter sample

end for
if p(q̃) ≈ p(q̃|Φ̂)? then . Compare sampled output distribution with target

return 1 . If sufficiently close then converged
else

return 0
end if

end procedure
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To generate our results in §4, we assumed for the contour volume 343

estimation step sample sizes were sufficient if the output samples from 344

MCMC provided a reasonable approximation to the target, although we 345

recognise that future work should refine this process further. For the MCMC 346

step, we used adaptive covariance MCMC (see SOM of [24]) to sample from 347

the target distribution, as it typically provides a considerable speed-up 348

over Random Walk Metropolis [21, 25]. We also used the Gelman-Rubin 349

convergence statistic, R̂, to diagnose convergence [21,26], with a convergence 350

threshold of R̂ ≤∼ 1.1. 351

To solve the forward model of each differential equation, we used Julia’s 352

inbuilt “solve” method for ODE models, which automatically chooses an 353

efficient inbuilt solver [27]. To replicate the results in this section, we 354

recommend readers execute the corresponding Julia scripts (one for each re- 355

sult section) at https://github.com/ben18785/inverse-sensitivity/ 356

tree/master/examples. Note that, these scripts use the “RCall” library 357

for Julia [28], which calls R from Julia. This package was necessary to use 358

the “kdevine” R package for vine copula kernel density estimation [29]. 359

4 Results 360

In this section, we use CMC to estimate posterior parameter distributions for 361

three biological systems. In all but one of the examples, we assume that the 362

first step of CMC (“SnapshotEstimator” within Algorithm 1) has already 363

been completed, and we are faced with inferring a parameter distribution 364

which, when mapped to outputs, recapitulates the target density. To 365

accompany the text, we provide the Julia notebook used to generate the 366

results. A table of priors used for each example is provided in Table 3. 367

4.1 Growth factor model 368

We first consider the “growth factor model” introduced by [12], which
concerns the dynamics of inactive ligand-free cell surface receptors, R, and
active ligand-bound cell surface receptors, P , modulated by an exogenous
ligand, L. The governing dynamics are determined by the following system,

dR

dt
= RT kdeg + k1LR(t) + k−1P (t)− kdegR(t) (14)

dP

dt
= k1LR(t)− k−1P (t)− k∗degP (t), (15)

with initial conditions,

R(0) = 0.0, P (0) = 0.0,

where θ = (RT , k1, k−1, kdeg, k
∗
deg) are parameters to be determined. In this 369

example, we use measurements of the active ligand-bound receptors P to 370

estimate cellular heterogeneity in these processes. We denote the solution 371

of eq. (15) as P (t;θ, L) and seek to determine the parameter distribution 372

consistent with an output distribution, 373

q =

(
q1

q2

)
=

(
P (10;θ, 2)
P (10;θ, 10)

)
∼ N

[(
2× 104

3× 104

)
,

(
1× 105 0

0 1× 105

)]
.

(16)
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4.1.1 Uniform prior 374

To start, we specify a uniform prior for each of the five parameters, with 375

bounds given in Table 3, and use CMC to estimate the posterior parameter 376

distribution. In Figure 5A, we show the sampled outputs (blue points) 377

versus the contours of the target distribution (black solid closed curves), 378

illustrating a good correspondence between the sampled and target densities. 379

Above and to the right of the main panel, we also display the marginal target 380

densities (solid black lines) versus kernel density estimator reconstructions 381

of the output marginals from the CMC samples (dashed blue lines), which 382

again highlights the fidelity of the CMC sampled density to the target. 383

A.
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)
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Figure 5: Growth factor model. Target joint output distribution
(solid contour lines) and target marginal distributions (solid lines;
above and to the right of each figure) versus outputs sampled by
CMC (blue points) and reconstructed marginals (dashed lines).
(A) uniform priors. (B) Gaussian priors. In CMC, 100,000 indepen-
dent samples were used in the “ContourVolumeEstimator” step and 10,000
MCMC samples across each of 4 Markov chains were used in the second
step, with the first half of the chains discarded as “warm-up” [21]. For
the reconstructed marginal densities in the plots, we use Mathematica’s
“SmoothKernelDistribution” function specifying bandwidths of 100 with
Gaussian kernels [30].

In Figure 6A, we plot the joint posterior parameter distribution for k1, 384

the rate of ligand binding to inactive receptors and k−1, which dictates 385

the rate of the reverse reaction. A given level of bound ligands can be 386

generated in many different ways. Not surprisingly, it is the ratio of the 387

forward and reverse reaction rates, k1 and k−1 respectively, that is of 388

greatest importance, and because of this, the distribution representing cell 389

process heterogeneity contains linear positive correlations between these 390

parameters. 391

In Figure 6B, we show the posterior parameter distribution for kdeg, the 392

rate of degradation of ligand-free cell surface receptors and RT , the rate 393

of introduction of ligand-free cell surface receptors. This plot shows more 394

concentrated posterior mass than in Figure 6A. Why do our measurements 395

allow us to better resolve (kdeg, RT ) compared to (k1, k−1)? To answer 396

this, it is useful to calculate the sensitivity of P (t;θ, L) to changes in 397
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each of the parameters. To account for the differing magnitudes of each 398

parameter, we calculate elasticities, the proportional changes in measured 399

output for a proportional change in parameter values, using the forward 400

sensitivities method described in [31], and these are shown in Figure 7. 401

When the exogenous ligand is set at L = 2, these indicate the active 402

ligand-bound receptor concentration is most elastic to changes in RT and 403

kdeg. This higher elasticity means that their range is more restricted by 404

the output measurement than for k1 and k−1, which have much smaller 405

elasticities at t = 10. In Table 2, we show the posterior quantiles for 406

the estimated parameters, and in the last column, indicate the ratio of 407

the 25%-75% posterior interval widths to the uniform prior range for each 408

parameter. These were strongly negatively correlated with the magnitude of 409

the elasticities for each parameter (ρ = 0.95, t = −5.22, df = 3, p = 0.01 for 410

Pearson’s product-moment correlation), indicating the utility of sensitivity 411

analyses for optimal experimental design. We suggest, however, that CMC 412

can also be used for this purpose. If an experimenter generates synthetic 413

data for various choices of QOIs, they can use CMC to derive the posterior 414

parameter distributions in each case. They then, simply, select the particular 415

QOI producing the narrowest posterior for key parameters. 416

U
ni
fo
rm

G
au

ss
ia
n

Figure 6: Growth factor model. Joint posterior distributions es-
timated by CMC. Top row (A-B): (k1, k−1) and (kdeg, RT ) using
uniform priors. Bottom row (C-D): (k1, k−1) and (kdeg, RT ) using
Gaussian priors. See Figure 5 caption for CMC details and Table 3 for the
priors used. Red (blue) indicates areas of relatively high (low) probability
density.
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Figure 7: Growth factor model. Elasticities of the active ligand-
bound receptors P with respect to each parameter as a function
of time. When calculating the elasticities of each parameter, the other
parameters were set to their posterior medians given in Table 2 and L = 2.

4.1.2 Gaussian prior 417

For an under-determined model, the number of QOIs, m, is less than the 418

number of parameters, p, and there typically exists a non-singular set of 419

parameter distributions mapping to the same target output distribution. 420

To uniquely identify a posterior parameter distribution, it is, therefore, 421

necessary to specify a prior parameter distribution. By incorporating priors, 422

this allows pre-existing biological knowledge to be included, leading to 423

reduced uncertainty in parameter estimates. CMC allows any prior with 424

correct support to be used. Changes to priors affect both the “ContourVol- 425

umeEstimation” and “MCMC” steps of CMC (Algorithm 1), so that the 426

(changed) posterior parameter distribution still maps to the target. 427

We now use CMC to estimate the posterior parameter distribution, 428

when using Gaussian priors (prior hyperparameters shown in Table 3), 429

which are more concentrated than the uniform priors used in §4.1.1. As 430

desired, the target output distribution appears virtually unaffected by 431

the change of priors (Figure 5B) although with substantial changes to 432

the posterior parameter distribution (Figure 6C and 6D). In particular, 433

the marginal posterior distributions obtained from the Gaussian prior are 434

narrower compared to the uniform case (rightmost column of Table 2). 435

As in traditional Bayesian inference, prior choice has a greater influence 436

on the posterior distribution when data provide less information on the 437

underlying process. This is readily apparent in comparing the dramatic 438

change from Figure 5A to 5C for (k1, k−1), which have low sensitivities, 439

with the more nuanced change from Figure 5B to 5D for (kdeg, RT ), which 440

have high sensitivities. 441

4.2 Michaelis-Menten kinetics 442

In this section, we use CMC to invert output measurements from the 443

Michaelis-Menten model of enzyme kinetics (see, for example, [32]) - il- 444

lustrating how CMC can determine resolve population substructure from 445

a multimodal output distribution. The Michaelis-Menten model of en- 446

zyme kinetics describes the dynamics of concentrations of an enzyme, E, a 447
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Posterior
Parameter Quantiles 25%-75%

2.5% 25% 50% 75% 97.5% conc.

Uniform prior

RT 441,006 548,275 606,439 677,055 772,484 23%
k1 0.90 1.69 2.17 2.56 2.95 32%
k−1 4.35 8.35 11.23 14.23 18.71 33%
kdeg 0.013 0.019 0.021 0.024 0.029 20%
k∗deg 0.20 0.34 0.40 0.44 0.49 27%

Gaussian prior

RT 408,396 487,372 529,558 577,970 678,632 16%
k1 0.39 0.49 0.54 0.60 0.70 4%
k−1 1.39 1.92 2.26 2.63 3.35 4%
kdeg 0.016 0.020 0.022 0.024 0.027 16%
k∗deg 0.22 0.29 0.33 0.38 0.46 21%

Table 2: Growth factor model. Estimated quantiles from CMC
samples with uniform and Gaussian priors. The last column indicates
the proportion of the uniform prior bounds occupied by the 25%-75%
posterior interval in each case. The prior hyperparameters used in each
case are given in Table 3.

substrate, S, an enzyme-substrate complex, C, and a product, P , 448

dE

dt
= −kfE(t)S(t) + krC(t) + kcatC(t),

dS

dt
= −kfE(t)S(t) + krC(t),

dC

dt
= kfE(t)S(t)− krC(t)− kcatC(t),

dP

dt
= kcatC(t),

(17)

with initial conditions, 449

E(0) = E0, S(0) = S0, C(0) = C0, P (0) = P0, (18)

where kf is the rate of the forward reaction E + S → C, kr is the rate of 450

the reverse reaction C → E + S, and kcat is the catalytic rate of product 451

formation by the reaction C → E + P . 452

4.2.1 Bimodal output distribution 453

When subpopulations of cells, each with distinct dynamics, are thought 454

to exist, determining their characteristics - the proportions of cells in 455

each cluster, their distinct parameter values, and so on - is often of key 456

interest [15, 19]. Before formal inference occurs, an output distribution 457

with multiple modes may signal the existence of fragmented subpopulations 458

of cells, and to exemplify this, we target a bimodal bivariate Gaussian 459

distribution for measurements of the level of enzyme and substrate at t = 1 460
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and t = 2 respectively, 461

q =

(
q1

q2

)
=

(
E(2.0;θ)
S(1.0;θ)

)
∼ p(q;µ1,Σ1,µ2,Σ2)

=
1

2
(N (q;µ1,Σ1) +N (q;µ2,Σ2)) ,

(19)

where θ = (kf , kr, kcat). The parameters of the Gaussian mixture compo-
nents are,

µ1 =

(
2.2
1.6

)
, Σ1 =

(
0.018 −0.013
−0.013 0.010

)
,

µ2 =

(
2.8
1.0

)
, Σ2 =

(
0.020 −0.010
−0.010 0.020

)
.

In what follows, we specify uniform priors on each element of θ (see Table 462

3). Using a modest number of samples in each step, CMC provides a 463

close approximation to the output target distribution (Figure 8A). Without 464

providing a priori information on the subpopulations of cells, two distinct 465

clusters of cells emerged from application of CMC (orange and blue points 466

in Figure 8B) - each corresponding to distinct modes of the output distri- 467

bution (corresponding coloured points in Figure 8A). It is worth noting, 468

however, that the issues inherent with using MCMC to sample multimodal 469

distributions similarly apply here. So, whilst adaptive MCMC [24] sufficed 470

to explore this posterior surface, it may be necessary to use MCMC methods 471

more robust to such geometries in other cases (for example, population 472

MCMC [33]). 473
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Figure 8: Michaelis-Menten model. (A) Bimodal target distribu-
tion q (solid contour lines) versus output samples (points). (B)
posterior parameter samples (points). The solid and dashed lines
above and to the side of panel A indicate the target and estimated marginal
output distributions, respectively. In B, only estimated parameter marginals
are shown as the exact solutions are unknown. The orange (blue) points
in A were generated by the orange (blue) parameter samples in B. See
Figure 5 caption for CMC details. Mathematica’s “SmoothKernelDistribu-
tion” function [30] with Gaussian kernels was used to construct marginal
densities with: (A) default bandwidths, and (B) bandwidths of 0.3 (horizon-
tal axis) and 0.03 (vertical axis). Mathematica’s “ClusteringComponents”
function [30] was used to identify clusters in B.
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4.2.2 Four-dimensional output distribution 474

Loos et al. (2018) consider a multidimensional output distribution, with 475

correlations between system characteristics that evolve over time. Our 476

approach allows arbitrary covariance structure between measurements, and 477

to exemplify this, we now target a four-dimensional output distribution, 478

with paired measurements of enzyme and substrate at t = 1 and t = 2, 479

q =


q1

q2

q3

q4

 =


E(1.0;θ)
S(1.0;θ)
E(2.0;θ)
S(2.0;θ)



∼ N




0.5
2.8
0.9
1.4

 ,


0.02 −0.05 0.04 −0.05
−0.05 0.30 −0.15 0.20
0.04 −0.15 0.12 −0.17
−0.05 0.20 −0.17 0.30


 .

(20)

Since this target has four QOIs, and the Michaelis-Menten model has three 480

rate parameters (kf , kr, kcat), the system is over-identified and so CMC 481

cannot be straightforwardly applied. Instead, we allow the four initial 482

states (E0, S0, C0, P0) to be uncertain quantities, bringing the total number 483

of parameters to seven. We set uniform priors on all parameters (see 484

Table 3). In order to check that the model and priors were consistent 485

with the output distribution given by eq. (20), we plotted the output 486

measurements used to estimate contour volumes (obtained from the first 487

step of the “ContourVolumeEstimator” method in Algorithm 1) against the 488

target (Figure 9). Since the main support of the densities (black contours) 489

lies within a region of output space reached by independent sampling of the 490

priors (blue points), this indicated the target could feasibly be generated 491

from this model and priors, and we proceeded to estimation by CMC. 492

t = 1 t = 2

Figure 9: Michaelis-Menten model. QOIs (blue points) obtained
by independently sampling the priors versus the target distribu-
tion (black solid contours). Left: (q1, q2). Right: (q3, q4). We show
20,000 output samples, where each set of four measurements was obtained
from a single sample of all parameters. The output target distribution
shown by the contours corresponds to the marginal densities of each pair of
enzyme-substrate measurements given by eq. (20).
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Figure 10 plots the output samples of enzyme and substrate from the 493

last step of CMC for t = 1 (blue points) and t = 2 (orange points) versus 494

the contours (black lines) of the joint marginal distributions of eq. (20). 495

The distribution of paired enzyme-substrate samples illustrates that the 496

CMC output distribution closely approximates the target density, itself 497

representing dynamic evolution of the covariance between enzyme and 498

substrate measurements. Target marginal distributions (solid lines) along 499

with their approximations from kernel density estimation (dashed lines) 500

are also shown above and to the right of the main panel of Figure 10 and 501

largely indicate correspondence. 502

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

E(t;θ)

S(
t;θ

)
t = 1

t = 2

Figure 10: Michaelis-Menten model. Posterior output samples
from CMC (coloured points) versus contour plots (black solid
lines) of the joint marginal distributions of eq. (20). Enzyme
and substrate measurements are given by the horizontal and vertical axes,
respectively. Output functionals for (q1, q2) and (q3, q4) are given by blue
and orange points, respectively. The solid and dashed coloured lines outside
the panels indicate exact target marginals of eq. (20) and those estimated
by CMC, respectively. In the “ContourVolumeEstimator” step, 200,000
independent samples were used, and in the MCMC step, 10,000 samples
across each of 4 Markov chains were used, with the first half of the chains
discarded as “warm-up” [21]. Mathematica’s “SmoothKernelDistribution”
function, using Gaussian kernels [30] and bandwidths ranging from 0.1 to
0.4, was used to reconstruct marginal densities.

4.3 TNF signalling pathway 503

We now illustrate how CMC can be applied to an ODE system of larger size: 504

the tumour necrosis factor (TNF) signalling pathway model introduced 505

in [34] and used by [15] to illustrate a Bayesian approach to cell popula- 506

tion variability estimation. The model incorporates known activating and 507

inhibitory interactions between four key species within the TNF pathway: 508

active caspase 8, x1, active caspase 3, x2, a nuclear transcription factor, x3 509
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and its inhibitor, x4, such that 510

dx1

dt
= −x1(t) +

1

2
[β4(x3(t))α1(u(t)) + α3(x2(t))]

dx2

dt
= −x2(t) + α2(x1(t))β3(x3(t))

dx3

dt
= −x3(t) + β2(x2(t))β5(x4(t))

dx4

dt
= −x4(t) +

1

2
[β1(u(t)) + α4(x3(t))] ,

(21)

with initial conditions, 511

x1(0) = 0.0, x2(0) = 0.0, x3(0) = 0.29, x4(0) = 0.625. (22)

The functions αi and βj represent activating and inhibitory interactions 512

respectively, 513

αi(z) =
z2

a2
i + z2

, i = 1, . . . , 4,

βj(z) =
b2j

b2j + z2
, j = 1, . . . , 5,

(23)

and the parameters ai for i ∈ (1, 2, 3, 4) and bj for j ∈ (1, 2, 3, 4, 5) represent 514

activation and inhibition thresholds. The function u(t) represents a TNF 515

stimulus represented by a top hat function, 516

u(t) =

{
1, if t ∈ [0, 2].

0, otherwise.
(24)

4.3.1 Recovering parameter values in under-determined systems 517

In under-determined models, a set of parameters of non-zero volume can
produce the same output values. A consequence of this unidentifiability
is that we cannot perform “full circle” inference: that is, using a known
parameter distribution to generate an output distribution does not result in
that parameter distribution being recovered through inference. We illustrate
this idea by generating an output distribution by varying a single parameter
value between runs of the forward model (21) and performing inference on
all nine system parameters, whilst collecting only two output measurements.
Specifically, we randomly sample a1 ∼ N (0.6, 0.05) for each simulation of
the forward model, whilst holding the other parameters constant,

(a2, a3, a4, b1, b2, b3, b4, b5) = (0.2, 0.2, 0.5, 0.4, 0.7, 0.3, 0.5, 0.4),

and measure q1 = x1(2.0) and q2 = x2(1.0) in each case. In doing so, we 518

obtain an output distribution well-approximated by the bivariate Gaussian 519

distribution, 520

q =

(
q1

q2

)
=

(
x1(2.0)
x2(1.0)

)
∼ N

[(
0.26
0.07

)
,

(
2.1× 10−4 5.9× 10−5

5.9× 10−5 1.8× 10−5

)]
.

(25)

We now apply CMC to the target output distribution given by eq. (25) to 521

estimate a posterior distribution over all nine parameters of eq. (21). Apart 522
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from a few cases, the priors for each parameter were chosen to exclude the 523

values that were used to generate the output distribution (see Table 3), 524

to illustrate how the recovered posterior distribution and data generating 525

distribution differ. In Figure 11A, we plot the actual parameter values 526

(horizontal axis) used to generate the data versus the estimated values 527

(vertical axis). This illustrates that, due to the chosen priors, there is a 528

disjunction between actual and estimated parameter values in all cases apart 529

from a1. Though because the model is under-determined, the corresponding 530

output distribution closely approximates the target despite these differences 531

(Figure 11B). 532
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Figure 11: TNF signalling pathway model. (A) Actual parameter
values versus estimated quantiles for the output distribution of
eq. (25). (B) Marginal output targets (solid lines) and sampled
output distributions (histograms). In A, in the vertical direction,
red points indicate 50% posterior quantiles and upper and lower whiskers
indicate 97.5% and 2.5% quantiles, respectively; in the horizontal direction,
with the exception of a1, red points indicate the parameter values used
to generate the data; for a1, the red point indicates the mean of the
Gaussian distribution used to generate the data and the whiskers indicate
its 95% quantiles. In CMC, 10,000 independent samples were used in the
“ContourVolumeEstimator” step, and 5,000 MCMC samples across each of
4 Markov chains were used in the second, with the first half of the chains
discarded as “warm-up” [21].

4.3.2 Bimodal output distribution 533

The dynamics of all cells can often be modelled by assuming cells exist in 534

subpopulation clusters, which evolve differently over time. A hint that such 535

subpopulation structure may exist is output distributions with multiple 536

modes. We now apply CMC to investigate a bimodal output distribution 537

for the TNF signalling pathway model similar to that investigated by [15]. 538

We aim to estimate the posterior parameter distribution mapping to the 539

following output distribution, 540

q =

q1

q2

q3

 , (26)
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where, 541

q1 = x2(1.0) ∼ N (0.06, 0.01)

q2 = x2(2.0) ∼ 1

2
(N (0.1, 0.01) +N (0.14, 0.01))

q3 = x2(4.0) ∼ 1

2
(N (0.1, 0.01) +N (0.20, 0.01)) ,

(27)

where the target distributions for q2(2.0) and q2(4.0) indicate mixtures 542

of univariate Gaussians, and the priors used are given in Table 3. This 543

target distribution, along with the unique trajectories obtained by applying 544

the CMC algorithm, are shown in Figure 12. This figure illustrates that a 545

bimodal output distribution causes CMC to sample clusters of parameter 546

values, without the need for subpopulation information to be provided 547

ahead of estimation. 548
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Figure 12: TNF signalling pathway model. Target output distribu-
tion (dashed plots with grey filling) and unique trajectories (black
solid lines) obtained from the posterior parameter distribution.
In CMC, 10,000 independent samples were used in the “ContourVolumeEs-
timator” step, and 5,000 MCMC samples across each of 4 Markov chains
were used in the second, with the first half of the chains discarded as
“warm-up” [21].
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Model Target Parameter Prior Prior Prior
density density p1 p2

Growth 2D RT uniform 2.5× 105 8× 105

factor Gaussian k1 uniform 0.25 3.0
k−1 uniform 2.0 20.0
kdeg uniform 0.005 0.03
k∗deg uniform 0.1 0.5

Growth 2D RT Gaussian 5× 105 1× 105

factor Gaussian k1 Gaussian 0.5 0.1
k−1 Gaussian 3.0 1.0
kdeg Gaussian 0.02 0.005
k∗deg Gaussian 0.3 0.1

Michaelis- bimodal kf uniform 0.2 15
Menten Gaussian kr uniform 0.2 2.0

kcat uniform 0.5 3.0

Michaelis- 4D kf uniform 0.2 15
Menten Gaussian kr uniform 0.2 2.0

kcat uniform 0.2 3.0
E0 uniform 3.0 5.0
S0 uniform 5.0 10.0
C0 uniform 0.0 0.2
P0 uniform 0.0 0.2

TNF bivariate a1 uniform 0.4 0.8
signalling Gaussian a2 uniform 0.1 0.7

a3 uniform 0.3 0.7
a4 uniform 0.1 0.3
b1 uniform 0.5 0.7
b2 uniform 0.4 0.6
b3 uniform 0.4 0.6
b4 uniform 0.2 0.4
b5 uniform 0.2 0.4

TNF bimodal a1 uniform 0.5 0.7
signalling Gaussian a2 uniform 0.1 0.3

a3 uniform 0.1 0.3
a4 uniform 0.4 0.6
b1 uniform 0.3 0.5
b2 uniform 0.6 0.8
b3 uniform 0.2 0.4
b4 uniform 0.4 0.6
b5 uniform 0.3 0.5

Table 3: Priors used for each example in §4. The parameters p1 and
p2 indicate the prior hyperparameters: for uniform priors, these correspond
to the lower and upper limits; for Gaussian priors, they correspond to the
mean and standard deviation.

5 Discussion 549

Determining the cause of variability in cellular processes is crucial in many 550

applications, ranging from bioengineering to drug development. In this 551
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paper, we introduce a Bayesian method for estimating cellular heterogeneity 552

from “snapshot” measurements of cellular properties, taken at discrete 553

intervals during experiments. Our approach assumes what we call a “het- 554

erogeneous ordinary differential equation” (HODE) framework, in which 555

biochemical processes in all cells are governed by a common ODE. In 556

HODEs, each cell has different rate parameter values, causing a variety of 557

measurements to be obtained across cells. In this framework, estimating 558

heterogeneity in cellular processes amounts to determining the probability 559

distributions of parameter values of the governing ODE. Our method of 560

estimation is a two-step Monte Carlo sampling process we term “Contour 561

Monte Carlo” (CMC), which does not require the number of cell clusters 562

to be provided before estimation, unlike for other approaches. CMC can 563

be used to process high volumes of individual cellular measurements since 564

the framework involves fitting a kernel density estimator to raw experi- 565

mental data and using these distributions rather than data as the target 566

outcome. CMC can handle arbitrary multivariate structure in measured 567

outputs, meaning it can capture correlations between the same cellular 568

species at different timepoints or, for example, contemporaneous correla- 569

tions between different cellular compartments. Being a Bayesian approach, 570

CMC uses prior distributions over parameter values to ensure uniqueness 571

of the posterior distribution, allowing pre-experimental knowledge to be 572

used to improve estimation robustness. The flexible and robust framework 573

that CMC provides means it can be used to perform automatic inference 574

for wide-ranging systems of practical interest. 575

Our approach also provides a natural way to test that the process is 576

working satisfactorily. Feeding posterior parameter samples obtained by 577

CMC into forward model simulations results in a distribution of output 578

values which can be compared to the target. Indeed, we have found this 579

comparison indispensable in applying CMC in practice and include it as 580

the last step in the CMC algorithm (Algorithm 1). Discrepancies between 581

the target output distribution and its CMC approximation can occur either 582

as a result of poor estimates of the “contour volume distribution” in the 583

first stage of the algorithm or due to insufficient MCMC samples in the 584

second. Either of these issues are often easily addressed by increasing 585

sample sizes or changing hyperparameter settings for the kernel density 586

estimator. Although kernel density estimation in high dimensional spaces 587

remains an open research problem, we have found vine copula kernel density 588

estimation works well for the dimensionality of output measurements we 589

investigate here [23]. 590

Failure to reproduce a given output distribution can also indicate that 591

the generating model (the priors and the forward model) are incongruent 592

with experimental results. This may either be due to misspecification of the 593

ODE system or because the assumption of a deterministic forward model 594

is inappropriate. Our approach currently assumes that output variation is 595

dominated by cellular variation in the parameter values of the underlying 596

ODE, with measurement noise making a negligible contribution. Whether 597

this is a reasonable assumption depends on the system under investiga- 598

tion and, more importantly, on experimental details. We recognise that 599

neglecting measurement noise when it is, in fact, important in determining 600

observed data means CMC will overstate cellular variation. It may also 601

mean that some output distributions cannot be obtained by our model 602

system (i.e. HODEs without noise). Future work incorporating a stochastic 603

noise process or, more generally, including stochastic cellular mechanisms 604
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is thus likely to be worthwhile. 605

We have labelled our approach as Bayesian since it involves explicit 606

estimation of probability distributions and requires priors. We recognise, 607

however, that it is not of the form used in traditional Bayesian inference. 608

This is because, rather than aiming to formulate a model that describes 609

output observations, our approach aims to recapitulate output distributions. 610

Others [20], (including us [22]), have considered similar problems before; 611

perhaps most notably by Albert Tarantola in his landmark work on inverse 612

problem theory (see, for example, [35]). In Tarantola’s framework, a joint 613

input parameter and output space is considered, where prior knowledge and 614

experimental theory combine elegantly to produce a posterior distribution 615

whose marginal output distribution is a weighted “conjunction” of various 616

sources of information. This work has seen considerable interest in areas 617

such as the geosciences [36, 37], and we propose that Tarantola’s approach 618

may prove useful for the biosciences. 619

The natural world is rife with variation, and mathematical models 620

represent frameworks for understanding its causes. Typically, the state of 621

biological knowledge is such that one effect - a given pattern of variation - 622

has many possible causes. Observational or experimental data can be used 623

to apportion weight to each cause, in a process that amounts to solving 624

an inverse problem. The approach we describe here follows the Bayesian 625

paradigm of inverse problem solving where uncertainty in potential causes 626

(i.e. parameter values) is described using probability distributions. Here, 627

we illustrate the worth of our method by using it to estimate cellular 628

heterogeneity in biochemical processes. However, it could equally be used to 629

invert other classes of under-determined systems arising elsewhere. Contour 630

Monte Carlo provides an automatic framework for performing inference on 631

such under-determined systems, and the use of priors allows for robust and 632

precise parameter estimation unattainable through the data alone. 633
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