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ABSTRACT 

Background: Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic 

marker in gliomas. Currently, reliable IDH mutation determination requires invasive surgical procedures.  

The purpose of this study was to develop a highly-accurate, MRI-based, voxel-wise deep-learning IDH-

classification network using T2-weighted (T2w) MR images and compare its performance to a multi-

contrast network.  

Methods: Multi-parametric brain MRI data and corresponding genomic information were obtained for 214 

subjects (94 IDH-mutated, 120 IDH wild-type) from The Cancer Imaging Archive (TCIA) and The Cancer 

Genome Atlas (TCGA). Two separate networks were developed including a T2w image only network (T2-

net) and a multi-contrast (T2w, FLAIR, and T1 post-contrast), network (TS-net) to perform IDH 

classification and simultaneous single label tumor segmentation. The networks were trained using 3D-

Dense-UNets. A three-fold cross-validation was performed to generalize the networks’ performance.  ROC 

analysis was also performed.  Dice-scores were computed to determine tumor segmentation accuracy.   

Results: T2-net demonstrated a mean cross-validation accuracy of 97.14% +/- 0.04 in predicting IDH 

mutation status, with a sensitivity of 0.97 +/- 0.03, specificity of 0.98 +/- 0.01, and an AUC of 0.98 +/-

0.01.  TS-net achieved a mean cross-validation accuracy of 97.12% +/- 0.09, with a sensitivity of 0.98 +/- 

0.02, specificity of 0.97 +/- 0.001, and an AUC of 0.99 +/- 0.01. The mean whole tumor segmentation Dice-

scores were 0.85 +/- 0.009 for T2-net and 0.89 +/- 0.006 for TS-net. 

 

Conclusion: We demonstrate high IDH classification accuracy using only T2-weighted MRI. This 

represents an important milestone towards clinical translation. 

Keywords – IDH (Isocitrate Dehydrogenase), deep learning, MRI (Magnetic Resonance Imaging), CNN 

(Convolutional Neural Networks), 3D-Dense-UNet, glioma, tumor segmentation, machine learning, brain 

tumor. 

see manuscript DOI for details

WITHDRAWN

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2019. ; https://doi.org/10.1101/757385doi: bioRxiv preprint 

https://doi.org/10.1101/757385
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Keypoints – 1. IDH status is an important prognostic marker for gliomas. 2. We developed a non-invasive, 

MRI based, highly accurate deep-learning method for the determination of IDH status 3. The deep-learning 

networks utilizes only T2 weighted MR images to predict IDH status thereby facilitating clinical translation. 

 

IMPORTANCE OF THE STUDY 

One of the most important recent discoveries in brain glioma biology has been the identification of 

the isocitrate dehydrogenase (IDH) mutation status as a marker for therapy and prognosis.  The mutated 

form of the gene confers a better prognosis and treatment response than gliomas with the non-mutated or 

wild-type form.  Currently, the only reliable way to determine IDH mutation status is to obtain glioma tissue 

either via an invasive brain biopsy or following open surgical resection.  The ability to non-invasively 

determine IDH mutation status has significant implications in determining therapy and predicting 

prognosis. We developed a highly accurate, deep learning network that utilizes only T2-weighted MR 

images and outperforms previously published methods. The high IDH classification accuracy of our T2w 

image only network (T2-net) marks an important milestone towards clinical translation. Imminent clinical 

translation is feasible because T2-weighted MR imaging is widely available and routinely performed in the 

assessment of gliomas.  
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INTRODUCTION 

Isocitrate dehydrogenase (IDH) mutation status has emerged as one of the most important markers 

for glioma diagnosis and therapy. Gliomas with this mutant enzyme have a better prognosis than tumors of 

the same grade with wild-type IDH.  This observation led the World Health Organization (WHO) to revise 

their classification of gliomas in 2016 1. IDH mutated tumors also have different management and 

therapeutic approaches than tumors with wild-type mutation status.  At the present time, the only way to 

definitively identify an IDH mutated glioma is to perform immunohistochemistry or gene sequencing on a 

tissue specimen, acquired through biopsy or surgical resection. Because the differences between IDH 

mutated and IDH wild-type gliomas may have critical treatment implications, there is great interest in 

attempting to distinguish between these two tumor types prior to surgery.  This becomes even more 

important for brain tumors that are inaccessible for biopsy or resection due to a high risk of severe post-

operative complications and impairment. 

 

MR spectroscopy can potentially be used to determine IDH mutation status.  The mutant IDH 

enzyme catalyzes the production of the oncometabolite 2-hydroxyglutarate (2-HG) 2.  MR spectroscopic 

methods have been developed for identification of 2-HG 3-6 noninvasively in brain tumors. While these 

methods appear to work well in a research setting, in the busy clinical environment, the spectroscopic 

imaging data are frequently uninterpretable due to artifact, patient motion, poor shimming, small voxel 

sizes, non-ideal tumor location, or presence of hemorrhage or calcification affecting measurements.  Even 

in the setting of good quality spectra, reliable clinical implementation using 2-HG spectroscopy is further 

compounded by the recently described high false positive rate of over 20% using this technique in the best 

hands 7. 

 

Early determination of IDH mutation status directly impacts treatment decisions.  Tumors that 

appear to be low-grade gliomas, but are IDH wild-type, are typically treated with early intervention rather 
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than observation.  Specific chemotherapeutic interventions are more effective in IDH-mutated gliomas 

(e.g., temozolomide) 8-12.  Additionally, surgical resection of non-enhancing tumor volume (beyond gross 

total resection of enhancing tumor components) in Grade III-IV IDH-mutated tumors has been 

demonstrated to have a survival benefit 13.  However, the determination of IDH mutation status continues 

to be performed using direct tissue sampling.  Development of a robust non-invasive approach would be 

transformational in the care of these patients. 

 

Advances in deep-learning methods are outperforming traditional machine-learning methods in 

predicting the genetic and molecular biology of tumors based on MRI. For example, Zhang et al. used a 

radiomics approach integrating a support vector machine (SVM)-based model and multimodal MRI 

features with an accuracy of 80% for IDH detection 14. Recent studies by Chang et al., have used deep 

learning techniques to noninvasively determine IDH mutation status based on MRI, with accuracies of 94% 

using the TCIA database 15.  Unfortunately, none of these methods are clinically viable, requiring either 

manual pre-segmentation of the tumor, extensive pre-processing, or multi-contrast acquisitions that are 

frequently affected by patient motion due to the long scan times.  Additionally, these existing methodologies 

use a 2D (slice-wise) classification approach.  A known limitation in designing and developing a slice-wise 

classification model is the data-leakage problem 16,17. 2D slice-wise models working with cross-sectional 

imaging data are particularly prone to data-leakage because they perform slice randomization across all 

subjects to generate the training, validation, and testing slices. As a result, adjacent slices from the same 

subject may be found in the training, validation, or testing data subsets. Because adjacent slices often share 

considerable information, this methodology may artificially boost accuracies by introducing bias in the 

testing phase. The previously reported studies do not appear to adhere to this caveat, potentially resulting 

in artificially boosted accuracies. 

 

The purpose of this study is to develop a highly accurate fully automated deep learning IDH-

classification 3D network using T2-weighted images only and compare its performance to a multi-contrast 
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3D network.  The use of T2 images only provides strong clinical translation capability.  T2 images are 

routinely acquired as part of any MRI brain tumor evaluation.  These images are robust to motion and can 

be obtained within 2 minutes.  On modern MRI scanners available in most clinical settings, high quality 

T2w images can be obtained even in the presence of active patient motion using commonly available motion 

resistant acquisition techniques 18. 

 

MATERIAL & METHODS 

Data and Pre-processing 

Multi-parametric brain MRI data of glioma patients were obtained from the Cancer Imaging 

Archive (TCIA) 19 database. Genomic information was provided from TCGA (the cancer genome atlas) 

database 20. Only pre-operative studies were used.  Studies were screened for the availability of IDH status 

and T2w, T2w-FLAIR, and contrast enhanced T1-weighted (T1c) image series. The final dataset included 

214 subjects (94 IDH-mutated, 120 IDH wild-type). Tumor masks for 87 data sets were available through 

previous expert segmentation 21 and were used as the ground truth for the tumor segmentation in the training 

set. Ground truth whole tumor masks for IDH mutated type were labelled with 1s and the ground truth 

tumor masks for IDH wild-type were labelled with 2s (Figure 1). Tumor masks for the remaining 127 

subjects were manually drawn and validated by in-house neuro-radiologists. Data preprocessing was 

minimal, including (a) N4BiasCorrection to remove RF inhomogeneity, (b) co-registration of the multi-

contrast data to the T1c (for TS-net only), and (c) intensity normalization to zero-mean and unit variance22. 

The pre-processing was developed using the Advanced Normalization Tools (ANTS) software routines23.  

 

Network Details 

Two separate networks were developed.  These included a T2w image only network (T2-net) 

trained only on the T2w images (Figure 2A), and a 3-sequence network (TS-net) trained on multi-contrast 

MR data including T2w images, T2w-FLAIR, and T1c. A 3D 32×32×32 patch-based training and testing 
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approach was implemented for both networks. Dense-UNets were designed and trained for a voxel-wise 

dual-class segmentation of the whole tumor with Classes 1 and 2 representing IDH-mutated and IDH-wild-

type, respectively. The schematics for the network architecture is shown in Figure 2B. Each network 

consisted of seven dense blocks: three transition down blocks, three transition up blocks, an initial 

convolution layer, and a final convolution layer followed by an activation layer at the end. Each dense block 

was made up of five layers. Each layer was connected to every other layer in that particular dense block. 

This dense connection was implemented by concatenating the feature maps from one layer with feature 

maps from every other layer of that dense block. The input to a dense block was also concatenated with the 

output of that dense block. Every dense block on the encoder part of the network was followed by a 

transition down block, while every dense block on the decoder part of the network was preceded by a 

transition up block. The bottleneck block was used to keep the convolution layers to a smaller number in 

order to avoid having large convolution layers. With these connecting patterns, all feature maps were reused 

such that every layer in the architecture received a direct supervision signal 24. A detailed description of the 

network is given in the supplemental material section. 

 

Training Details  

70 subjects were used for training (40 IDH mutated, 30 IDH wild-type), 17 subjects for in-training 

validation (8 IDH mutated, 9 IDH wild-type), and 127 held-out subjects were used for testing (46 IDH 

mutated, 81 IDH wild-type). To avoid the data leakage problem, no patch from the same subject was mixed 

with the training, validation or testing datasets. 16,17. The data augmentation steps included horizontal 

flipping, vertical flipping, random and translational rotation.  Data augmentation provided a total 0f 150,000 

patches for training and 37,000 patches for validation. Networks were implemented using Keras and 

Tensorflow 25 with an Adaptive Moment Estimation optimizer (Adam) 26. The initial learning rate was set 

to 10-5 with a batch size of 4 and maximal iterations of 100. Training was implemented on Tesla P100, P40 

and K80 NVIDIA-GPUs.  
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Testing Details 

Each network yields two segmentation volumes. Volume 1 provides the voxel-wise prediction of 

IDH mutated tumor and Volume 2 identifies the predicted IDH wild-type tumor voxels. A straightforward 

dual-volume fusion (DVF) approach was developed to combine the 2 segmentation volumes. Both the 

volumes were combined and the largest connected component was obtained using a 3D connected 

component algorithm in MATLAB(R). Majority voting over the voxel-wise classes of IDH-mutated or IDH-

wild-type provided a single IDH classification for each subject. The IDH classification process is fully 

automated, and a tumor segmentation map is a natural output of the voxel-wise classification approach. The 

combined volumes provided a single tumor segmentation map. Testing was performed on either K80 or 

P40 NVIDIA-GPUs. 

 

Cross-validation  

To evaluate the reliability of the networks, a 3-fold cross-validation was performed on the 214 

subjects by randomly shuffling the dataset and distributing it into training, validation and testing 

(approximately 70 subjects in training, 70 subjects in validation, and 70 subject in testing). Majority voting 

over the voxel-wise classes of IDH-mutated or IDH-wild-type provided a single IDH classification for each 

subject.  

 

Statistical Analysis  

Statistical analysis was performed in MATLAB(R) and R for T2-net and TS-net separately. The 

accuracy of the two networks was evaluated with majority voting (i.e. voxel-wise cutoff of 50%). This 

threshold was then used to calculate the accuracy, sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV) of the model. A logistic regression model was applied to the subject 

IDH classification and the Receiver Operating Characteristic (ROC) curve was derived. To evaluate the 
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performance of the networks for tumor segmentation, the Dice-score was used. The Dice-score determines 

the amount of spatial overlap between the ground truth segmentation and the network segmentation.  

 

RESULTS  

T2-net  

The T2-net achieved a mean testing accuracy of 96.1% by majority voting with sensitivity of 

97.8%, specificity of 95.1%, PPV of 91.8%, NPV of 98.8% and an area under the curve (AUC) of 0.973  

(goodness of fit p-value 8.9*10-30). T2-net segmented the whole tumor with a Dice-score of 0.84. The 

confusion matrix is provided in Table 1.  T2-net misclassified 1 IDH-mutated subject (out of 46) and 4 IDH 

wild-type subjects out of 81.   

 

Multi-contrast TS-net  

The multi-contrast TS-net achieved a mean testing accuracy of 96.8% by majority voting with 

sensitivity of 100%, specificity of 95.1%, PPV of 92.0%, NPV of 100% with AUC of 0.975 (goodness of 

fit p-value: 1.2*10-28). TS-net segmented the whole tumor with a Dice-score of 0.89. The confusion matrix 

for TS-net is provided in Table 1.  TS-net classified all IDH-mutated subjects correctly.  It misclassified 4 

IDH wild-type subjects out of 81.  These 4 subjects were not the same 4 subjects that T2-net misclassified. 

 

ROC analysis  

The network output classifies voxels in the tumor as IDH mutated or IDH wild-type.  The percent 

of IDH-mutated voxels was computed for the network output for each subject in the test set by dividing the 

predicted IDH mutated voxels by the total number of predicted voxels in each tumor.  The percent mutated 

voxels can be viewed as a network output prediction likelihood of the tumor being IDH-mutated.   Note 

that, the majority voting (the 50% threshold) was used to determine IDH prediction.  For the ROC analysis, 

the percent of IDH mutated voxels was sorted and used as separate thresholds (cut-points) to determine 
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IDH mutation status for the subjects across the test set for each new cut-point. The resulting predicted IDH 

class membership was compared to the ground truth values to determine sensitivity (true positive rate) and 

1- specificity (false positive rate) at each threshold.  The resulting values were plotted using Matlab to 

obtain an ROC curve (true positive rate against false positive rate).  Matlab routines were used to fit the 

curves and determine the area under the curve (AUC).  

 

Voxel-wise classification 

Since these networks are voxel-wise classifiers, they perform a simultaneous tumor segmentation.  

Figures 3A and 3B show examples of the voxel-wise classification for an IDH wild-type, and IDH mutated 

case using T2-net. The DVF procedure was effective in removing false positives to increase accuracy.  

 

Cross validation results  

The cross-validation subject-wise accuracy for T2-net and TS-net were nearly identical.  T2-net 

achieved a mean cross-validation testing accuracy of 97.14% across the 3 folds (97.18%, 97.14%, and 

97.10%, standard dev=0.04).  Mean cross-validation sensitivity, specificity, PPV, NPV and AUC for T2-

net was 0.97 ±0.03, 0.98 ±0.01, 0.98 ±0.01, 0.97 ±0.01 and 0.98 ±0.01, respectively. The mean cross-

validation Dice-score for tumor segmentation was 0.85 ± 0.009.  (Table 2).  The multi-contrast TS-net 

achieved a mean cross-validation testing accuracy of 97.12% across the 3 folds (97.22%, 97.10%, and 

97.05%, standard dev=0.09).  Mean cross-validation sensitivity, specificity, PPV, NPV and AUC for TS-

net was 0.98 ±0.02, 0.97 ±0.001, 0.97 ±0.002, 0.97 ±0.001 and 0.99 ±0.01, respectively. The mean cross-

validation Dice-score for tumor segmentation was 0.89 ± 0.006 (Table 2). 

 

Training and segmentation times:  

Each network took approximately 2 weeks to train. The trained networks took approximately three 

minutes to segment the whole tumor, implement DVF and predict the IDH mutation status for each subject. 
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DISCUSSION: 

We developed two deep-learning MRI networks for IDH-classification of gliomas. Both our T2-

network and the multi-contrast network outperformed IDH classification algorithms previously reported in 

the literature 14,15,27,28.  When comparing the T2-network with the multi-contrast network, our results suggest 

that similar performance can be achieved by using T2-weighted images only. The ability to use only T2-

weighted images makes clinical translation much more straightforward and less prone to failures from 

image acquisition artifacts.  The preprocessing used to prepare the data is also minimal. The time required 

for T2-net to segment the whole tumor, implement DVF, and predict the IDH mutation status for one subject 

is approximately 3 minutes on a K80 or P40 NVIDA-GPU.      

 

There are several factors that may explain the higher performance achieved by our networks when 

compared to previously published results. First and foremost is the use of 3D networks, compared to 

previously reported 2D networks. Additionally, the 3D network architecture is advantageous as the dense 

connections carry information from all the previous layers to the following layers 24. These types of 

networks are easier to train and can reduce over-fitting 29. The Dual Volume Fusion (DVF) post-processing 

step also helps in effectively eliminating false positives while increasing the segmentation accuracy. It 

essentially excludes extraneous voxels that are not connected to the tumor.  The 3D networks interpolate 

between slices to maintain inter-slice information more accurately. The networks use minimal 

preprocessing without any requirement for extraction of pre-engineered features from the images or 

histopathological data 27.  

 

The 3D networks used here are voxel-wise classifiers, providing a classification for each voxel in 

the image.  This provides a simultaneous single-label tumor segmentation (e.g. the sum of voxels classified 

as IDH mutated and non-mutated provide the tumor label).   The single label whole tumor segmentation 

performance for these networks provided excellent Dice-scores of 0.84 and 0.89 for T2-net and the multi-
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contrast TS-net, respectively.  These tumor segmentation Dice-scores are similar to the top performers from 

BraTS2017 tumor segmentation challenge 29.   

 

Both T2-net and TS-net achieved similar overall subject classification accuracies.  For the IDH 

wild-type tumors, both networks incorrectly classified 4 subjects from the test set.  These 4 subjects were 

not the same between the networks.  In reviewing these cases, there were no discriminating imaging 

features.  All these cases were enhancing tumors, with mixed T2 and FLAIR signal, and with significant 

edema.   

 

Since these networks are voxel-wise classifiers, there are portions within each tumor that are 

classified as IDH mutated, and other areas as IDH-wild-type.  Heterogeneous genetic expression can occur 

in gliomas over time and result in varied tumor biology 15,30. Immunohistochemistry (IHC) evaluations use 

monoclonal antibodies to detect the most frequent IDH mutations (e.g. IDH1-R132H). Different cutoff 

values have been proposed to determine the IDH status of a tissue sample. While some advocate staining 

of more than 10% of tumor cells to confer IDH positivity, others suggest that one “strongly” staining tumor 

cell is sufficient31.  Heterogeneity of staining with IHC has been reported where up to 46% of subjects 

showed partial uptake32.  In 2011 Perusser et al. reported that IDH1-R132H expression may occur in only 

a fraction of tumor cells33. Heterogeneity of the sample can also affect the sensitivity of genetic testing 34. 

IDH heterogeneity and reported false negativity in some gliomas have been explained by monoallelic gene 

expression, wherein only one allele of a gene is expressed even though both alleles are present. According 

to Horbinski, sequencing may not always be adequate to identify tumors that are functionally IDH1/2 

mutated 33,35. Although heterogeneity of IDH status has been reported in histochemical and genomic 

evaluations of gliomas, we do not make the claim that the deep learning networks are detecting 

heterogeneous IDH mutation status in these tumors. Rather, the morphologic expression of the IDH 

mutation status is likely heterogeneous and reflected in the mixed classification outputs of IDH-mutated 
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and IDH-wild-type within a particular tumor. Regardless, the accuracies using this voxel-wise approach 

well outperform other methods. 

 

The multi-contrast input required by previous approaches can be compromised due to patient 

motion from lengthier examination times, and the need for gadolinium contrast. High quality T2-weighted 

images are almost universally acquired during clinical brain tumor diagnostic evaluation. Clinically, T2w 

images are typically acquired within 2 minutes at the beginning of the exam and are relatively resistant to 

the effects of patient motion. On modern MRI scanners, high quality T2w images can even be obtained in 

the presence of patient motion 18.  As such, the ability to use only T2w images is a significant advantage 

when considering clinical translatability. This method was inspired by a similar approach used for the 

identification of the O6–methylguanine-DNA methyltransferase (MGMT) methylation status and 

prediction of 1p/19q chromosomal arm deletion (15). Furthermore, our preprocessing steps preserve native 

image information without the need for any region-of-interest or tumor pre-segmentation procedures. 

Previous deep learning algorithms for MRI-based IDH classification use explicit tumor presegmentation 

steps.  These were accomplished either by manual delineation of the tumor, or by adding a separate deep 

learning tumor segmentation network.  The use of these presegmentation steps adds unnecessary 

complexity to the classification process, and in the case of manual presegmentation, makes them 

unworkable as a robust automated clinical workflow. Our network uniquely performs a simultaneous tumor 

segmentation as a natural consequence of the voxel-wise segmentation process. 

 

LIMITATIONS 

Deep learning studies typically require a very large amount of data to achieve good performance.  

The number of subjects available from the TCIA dataset is relatively small compared to the sample-sizes 

typically required for deep learning.  Despite this caveat, the data are representative of real-world clinical 

experience, with multi-parametric MR images from multiple institutions and represents one of the largest 

publically available brain tumor databases.  Additionally, the acquisition parameters and imaging vendor 
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platforms are diverse across the imaging centers contributing data to the TCIA dataset. Although our results 

show promise for expeditious clinical translation, our algorithms performance will need to be replicated in 

an independent dataset.  

 

CONCLUSION 

We developed two deep-learning MRI networks for IDH-classification of gliomas: i) a T2-network 

and ii) a multi-contrast network with high accuracy. Both networks outperformed the state-of-the-art 

algorithms. We also demonstrate similar performance when comparing the T2-network with the multi-

contrast network. The high accuracy and use of only T2-weighted images will facilitate imminent clinical 

translation for this approach. 
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 TABLES 

Table 1: Confusion matrix for T2-net and TS-net. 

        No. of testing  

subjects = 127 

Ground Truth 

IDH-mutated 

Ground Truth 

IDH Wild-type 

T2-net IDH-mutated 45 4 

T2-net IDH wild-type 1 77 

   
TS-net IDH-mutated 46 4 

TS-net IDH wild-type 0 77 

 

Table 2: T2-net and TS-net Cross validation results. 

Fold Description T2-net  TS-net 

Fold Number %Accuracy Dice-score  %Accuracy Dice-score 

Fold 1 97.18  0.843  97.22 0.88 

Fold 2 97.14  0.86  97.10 0.883 

Fold 3 97.10  0.857  97.05 0.892 

AVERAGE 97.14 +/- 0.04 0.853 +/- 0.009  97.12 +/- 0.08 0.885 +/- 0.006 
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Figure 1: Ground truth whole tumor masks. Red voxels represent IDH mutated (values of 1) and green voxels represent IDH 

wild-type (values of 2). 
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Figure 2: (A) T2-net overview. Voxel-wise classification of IDH mutation status is performed to create 2 volumes (IDH mutated and 

IDH wild-type).  Volumes are combined using dual volume fusion to eliminate false positives and generate a tumor segmentation 

volume. Majority voting across voxels is used to determine the overall IDH mutation status. (B) Network architecture for T2-net 

and TS-net. 3D-Dense-UNets were employed with 7 dense blocks, 3 transition down blocks, and 3 transition up blocks. 
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A 

B 

Figure 3: (A) Example voxel-wise segmentation for an IDH mutated tumor. Native T2 image (a). Ground truth segmentation (b). 

Network output without DVF (c) and after DVF (d). Yellow arrows in (C) indicate false positives. Red voxels correspond to IDH 

mutated class and green voxels correspond to IDH wild-type. (B) Example voxel-wise segmentation for an IDH wild-type tumor. 
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Figure 4: ROC analysis for T2-net and TS-net. Red line shows TS-net and Blue line shows T2-net ROC analysis results.  
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