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Abstract	

Understanding	how	natural	selection	has	shaped	the	genetic	architecture	of	complex	traits	and	

diseases	is	of	importance	in	medical	and	evolutionary	genetics.	Bayesian	methods	have	been	

developed	using	individual-level	data	to	estimate	multiple	features	of	genetic	architecture,	

including	signatures	of	natural	selection.	Here,	we	present	an	enhanced	method	(SBayesS)	that	

only	requires	GWAS	summary	statistics	and	incorporates	functional	genomic	annotations.	We	

analysed	GWAS	data	with	large	sample	sizes	for	155	complex	traits	and	detected	pervasive	

signatures	of	negative	selection	with	diverse	estimates	of	SNP-based	heritability	and	

polygenicity.	Projecting	these	estimates	onto	a	map	of	genetic	architecture	obtained	from	

evolutionary	simulations	revealed	relatively	strong	natural	selection	on	genetic	variants	

associated	with	cardiorespiratory	and	cognitive	traits	and	relatively	small	number	of	

mutational	targets	for	diseases.	Averaging	across	traits,	the	joint	distribution	of	SNP	effect	size	

and	MAF	varied	across	functional	genomic	regions	(likely	to	be	a	consequence	of	natural	

selection),	with	enrichment	in	both	the	number	of	associated	variants	and	the	magnitude	of	

effect	sizes	in	regions	such	as	transcriptional	start	sites,	coding	regions	and	5’-	and	3’-UTRs.	
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Introduction	

The	joint	distribution	of	SNP	effect	size	and	minor	allele	frequency	(MAF)	is	an	essential	

component	of	the	genetic	architecture	of	human	complex	traits	and	is	influenced	by	natural	

selection1.	A	negative	relationship	between	effect	size	and	MAF	is	a	signature	of	negative	(or	

purifying)	selection2,3,	which	prevents	mutations	with	large	deleterious	effects	becoming	

frequent	in	the	population.	Understanding	how	natural	selection	has	shaped	genetic	variation	

helps	researchers	to	improve	experimental	designs	of	genetic	association	studies4	and	the	

estimation	of	SNP-based	heritability	(the	proportion	of	phenotypic	variance	explained	by	the	

SNPs)5-8.	Inference	on	natural	selection	is	also	a	critical	step	towards	the	understanding	of	the	

genetic	architecture	of	complex	traits.	For	instance,	the	theory	of	negative	selection9	explains	

why	the	effects	of	common	variants	identified	by	genome-wide	association	studies	(GWAS)	are	

unlikely	to	be	large10,11.	

	

We	have	recently	developed	a	Bayesian	method	(BayesS)	to	estimate	the	effect	size-MAF	

relationship,	which	was	considered	as	a	free	parameter	(S)	in	the	model12.	We	detected	negative	

S	for	a	number	of	complex	traits	in	humans,	highlighting	an	important	role	of	negative	selection	

in	shaping	the	genetic	architecture,	consistent	with	the	findings	from	other	studies	based	on	

genome-wide	variance	estimation	approaches7,10,13,14.	The	BayesS	model	also	allows	us	to	

estimate	the	SNP-based	heritability	and	polygenicity	(the	proportion	of	SNPs	with	nonzero	

effects)	to	better	describe	the	genetic	architecture	for	a	trait.	The	application	of	BayesS	has	been	

restricted	to	GWAS	samples	with	individual-level	genotypes	but	for	most	common	complex	

diseases,	only	summary-level	data	are	available.	Moreover,	despite	the	implementation	of	

parallel	computing	strategy12,	it	remains	computationally	challenging	to	run	BayesS	for	a	

biobank-scale	data	set,	as	the	computing	resource	increase	linearly	with	the	number	of	

individuals	or	SNPs.	

	

In	this	study,	we	enhanced	the	BayesS	model	such	that	the	analysis	only	requires	GWAS	

summary	statistics	for	the	trait	of	interest	and	a	sparse	linkage	disequilibrium	(LD)	correlation	

matrix	from	a	reference	sample.	Our	new	method	(referred	to	as	Summary-data-based	BayesS	

or	SBayesS)	opens	an	unprecedented	opportunity	to	simultaneously	estimate	the	genetic	

architecture,	the	parameter	S	(signature	of	natural	selection)	and	joint	SNP	effects	using	

publicly	available	data	sets	of	the	largest	sample	sizes	to	date.	Given	the	GWAS	summary	

statistics	and	the	sparse	LD	matrix,	it	only	takes	a	few	hours	for	analysis	with	over	a	million	

SNPs	regardless	of	the	discovery	sample	size,	merely	a	small	fraction	of	the	computational	

resource	required	for	BayesS.	Furthermore,	we	incorporated	functional	genomic	annotations	

into	the	analysis	by	allowing	the	distributions	of	SNP	effects	to	be	different	among	annotation	
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categories	(e.g.,	coding,	regulatory,	and	conserved	regions).	Compared	to	other	methods	

utilising	functional	annotations,	such	as	S-LDSC15,	BayesRC16	and	RSS-E17,	a	unique	feature	of	

the	annotation-stratified	SBayesS	(referred	to	as	SBayesS-strat)	is	that	it	allows	the	estimation	

of	S	in	each	specific	functional	annotation	category.	We	performed	extensive	analyses	to	

benchmark	between	SBayesS	and	BayesS,	and	applied	the	SBayesS	methods	to	GWAS	summary	

statistics	from	the	full	release	of	the	UK	Biobank18	(UKB)	data	and	other	published	studies19-27,	

followed	by	time-forward	simulations28	to	facilitate	interpretation	of	the	results.		

	

Results	

Method	overview	

BayesS	is	a	method	that	can	estimate	three	key	parameters	to	describe	the	genetic	architecture	

of	complex	traits	by	a	Bayesian	mixed	linear	model12,	namely	SNP-based	heritability	(ℎ"#$% ),	

polygenicity	(&)	and	the	relationship	between	MAF	and	effect	size	(S),	all	of	which	are	defined	

with	respect	to	a	certain	set	of	SNPs	(see	the	definition	of	ℎ"#$% 	as	an	example5).	SBayesS	is	an	

extension	of	BayesS	which	only	requires	GWAS	summary	statistics	of	the	SNPs,	and	LD	

information	from	a	reference	sample.	When	the	LD	values	are	computed	using	all	SNPs	in	the	

GWAS	sample,	SBayesS	model	is	a	linear	transformation	of	the	BayesS	model	without	loss	of	

information	(Methods),	in	which	case	the	two	models	are	equivalent	in	terms	of	posterior	

inference	(Supplementary	Note	and	Supplementary	Fig.	1).	However,	it	is	impractical	to	store	

pairwise	LD	correlations	of	all	genome-wide	SNPs	in	the	computer	memory	and	not	always	

feasible	to	access	individual-level	genotypes	of	the	GWAS	sample.	We	propose	to	compute	

pairwise	LD	correlations	between	SNPs	located	on	the	same	chromosome	from	a	reference	

sample	and	remove	correlations	that	can	be	attributed	to	sampling	variation	by	a	chi-squared	

test,	resulting	in	a	sparse	LD	matrix	(Methods).	In	this	case,	SBayesS	becomes	an	approximation	

to	BayesS.	Assuming	the	LD	reference	sample	is	a	random	draw	from	the	same	population	of	the	

GWAS	sample,	the	discrepancy	between	SBayesS	and	BayesS	arises	from	the	sampling	variance	

of	LD	correlations	used	in	SBayesS.	Ignoring	the	sampling	variance	of	LD	estimates	may	cause	a	

failure	to	converge	in	the	Markov	chain	Monte	Carlo	(MCMC)	sampling	process	or	a	bias	in	

parameter	estimation	(Supplementary	Note).	In	this	study,	we	model	analytically	the	sampling	

variance	of	LD	estimates	as	part	of	the	residual	variance	and	allow	the	estimate	of	residual	

variance	to	vary	across	SNPs	(Methods).	Compared	to	BayesS,	SBayesS	does	not	only	address	

the	barrier	of	data	sharing	as	it	does	not	require	individual-level	data	but	also	substantially	

increases	the	computational	efficiency	because	of	the	use	of	sparse	LD	matrix	and	a	different	

updating	strategy	in	the	MCMC	sampling	(Supplementary	Note).	These	features	allow	SBayesS	

to	be	scalable	to	data	with	millions	of	SNPs	regardless	of	the	discovery	GWAS	sample	sizes.	In	

our	GCTB	software	(URLs)	where	SBayesS	is	implemented,	we	have	developed	a	parallel	
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computing	strategy	to	facilitate	the	computation	of	the	LD	matrix.	Once	the	LD	matrix	is	

computed,	it	can	be	repeatedly	used	in	the	analysis	of	multiple	traits.	To	examine	the	

convergence	of	MCMC,	we	use	the	GCTB-SBayesS	implementation	of	the	Gelman-Rubin	

statistic29	which	compares	the	variation	between	and	within	multiple	chains	with	different	

starting	values	of	the	model	parameters	(Methods).	Convergence	is	only	concluded	if	all	the	

three	key	parameters	converge,	which	may	not	occur	if	the	LD	matrix	from	a	reference	sample	

is	too	divergent	from	that	of	the	GWAS	sample,	or	if	the	summary	statistics	are	generated	from	a	

GWAS	with	low	power	or	contain	uncorrected	population	stratification,	poor	imputation	or	

other	errors	such	as	misreported	per-SNP	sample	size	and	allele	frequency.		

	

To	better	understand	the	variability	of	regional	genetic	architecture	in	different	parts	of	the	

genome,	we	incorporate	functional	genomic	annotations	into	SBayesS	to	allow	the	three	key	

parameters	to	vary	in	different	annotation	categories	(Methods).	The	functional	annotations,	

such	as	coding,	regulatory	and	repressed	regions,	were	obtained	from	the	LDSC	baseline	

model14	(URLs),	where	the	majority	of	SNPs	(79%)	have	more	than	one	annotation.	To	account	

for	the	overlap	between	annotation	categories,	a	SNP	that	has	multiple	annotations	is	assumed	

to	have	a	mixture	of	effect	distributions,	each	specific	to	an	annotation	category,	with	the	mixing	

probability	a	priori	being	one	divided	by	the	total	number	of	annotations	at	the	SNP.	Note	that	

the	effect	distribution	for	an	annotation	itself	is	a	mixture	distribution	according	to	the	BayesS	

prior.	Thus,	the	annotation-stratified	SBayesS	is	a	double	mixture	model.	During	MCMC	

sampling,	the	enrichment	of	a	parameter	in	an	annotation	category	is	computed	as	the	ratio	of	

the	sampled	value	of	the	parameter	in	the	category	to	that	in	the	whole	genome	(Methods).	In	

addition	to	per-SNP	heritability,	polygenicity	and	S,	we	are	also	interested	in	the	enrichment	of	

per-nonzero-effect	(per-NZE)	heritability	(defined	as	ℎ"#$% 	divided	by	the	number	of	nonzero	

effects	in	the	category),	which	is	helpful	to	understand	whether	the	enrichment	of	ℎ"#$% 	in	a	

genomic	region	is	due	to	the	larger	number	of	associated	variants	or	the	larger	magnitude	of	

effect	size	compared	to	average.		

	

Benchmarking	SBayesS	with	BayesS	

We	used	the	UKB	data	to	evaluate	the	performance	of	SBayesS	by	comparing	the	results	to	those	

from	BayesS	for	common	variants.	We	ran	both	SBayesS	and	BayesS	with	~1.1	million	HapMap3	

SNPs	with	MAF	³	0.01	for	18	quantitative	traits	as	analysed	in	Zeng	et	al.12	(n>100k).	We	used	

the	HapMap3	SNPs	as	they	were	optimised	to	tag	common	genetic	variants30	and	are	widely	

used	in	the	literature	which	improves	the	comparability	of	our	results	with	those	generated	

using	published	GWAS	summary	statistics.	For	ease	of	computation,	we	used	unrelated	

individuals	of	European	ancestry	from	the	interim	release	of	the	UKB	data	for	the	BayesS	
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analysis	(maximum	n=120k	across	traits)	and	the	same	data	to	generate	GWAS	summary	

statistics	for	the	SBayesS	analysis.	In	a	random	sample	of	50k	unrelated	individuals	from	the	full	

UKB	cohort	(n=350k),	we	computed	a	sparse	LD	matrix	for	the	HapMap3	SNPs	with	a	threshold	

chi-squared	value	of	10,	equivalent	to	a	r2	threshold	of	2´10-4	given	the	sample	size	(Methods).	

This	resulted	in	each	SNP,	on	average,	being	in	LD	with	~1,000	SNPs	on	the	same	chromosome.	

We	show	in	Fig.	1	that	the	consistency	between	the	SBayesS	and	BayesS	estimates	for	all	of	the	

three	genetic	architecture	parameters	is	high	across	traits	(Pearson	correlation	r=0.998	for	

ℎ"#$% ,	0.985	for	&	and	0.965	for	S).	The	posterior	standard	error	(p.s.e.)	of	ℎ"#$% 	was	smaller	than	

that	of	&	or	S	in	both	SBayesS	and	BayesS	because	both	&	and	S	are	higher-order	parameters	in	

the	model	(Methods).	

	

We	performed	additional	sensitivity	analyses	to	investigate	the	impact	of	the	chi-squared	

threshold	used	to	filter	LD,	the	SNP	panel,	the	choice	of	reference	sample	and	the	reference	

sample	size	on	the	performance	of	SBayesS.	While	a	chi-squared	threshold	of	10	was	chosen	in	

this	study	to	balance	the	true	nonzero	LD	correlations	and	noise	in	making	the	sparse	LD	matrix	

(Methods),	SBayesS	was	robust	to	different	chi-squared	thresholds	used	for	LD	filtering	because	

the	SBayesS	model	accounts	for	sampling	variance	of	the	estimated	LD	correlation	

(Supplementary	Fig.	2).	Compared	to	the	analysis	using	UKB	Axiom	array	SNPs,	the	analysis	

using	HapMap3	SNPs	tended	to	give	slightly	lower	estimates	of	SNP-based	heritability	and	

polygenicity	but	stronger	signals	of	S	for	both	SBayesS	and	BayesS	(Supplementary	Fig.	3),	

possibly	due	to	the	under-representation	of	low-frequency	SNPs	in	HapMap3	panel	in	

comparison	with	the	UKB	Axiom	array	panel	(Supplementary	Fig.	4).	Nevertheless,	SBayesS	was	

always	consistent	with	BayesS	regardless	of	the	SNP	panel	used	(Supplementary	Fig.	3).	

Regarding	the	LD	reference,	when	the	LD	reference	sample	size	decreased	from	50k	to	20k,	the	

differences	in	parameter	estimates	were	negligible	(Supplementary	Fig.	5).	When	the	LD	

reference	sample	size	further	decreased	to	4k,	we	observed	notable	inflation	in	the	estimates	of	

ℎ"#$% 	and	S,	suggesting	that	the	LD	reference	sample	size	cannot	be	too	small	relative	to	the	

GWAS	sample	size	(Methods).	Given	a	constant	reference	sample	size	(nref=50k),	we	ran	GWAS	

with	sample	sizes	ngwas=120k	and	350k	and	found	good	concordance	between	SBayesS	and	

BayesS	in	both	cases	(Supplementary	Fig.	6).	As	expected,	the	&	estimate	from	either	SBayesS	or	

BayesS	increased	when	a	larger	ngwas	was	used	because	of	the	increased	power	to	detect	small	

effects.	Furthermore,	with	both	nref=50k	and	ngwas=300k	held	constant,	we	benchmarked	BayesS	

and	SBayesS	in	a	few	different	scenarios	where	the	LD	reference	was	a	subset	of	the	GWAS	

sample,	an	independent	sample	from	the	same	population,	or	an	independent	sample	from	a	

slightly	different	population	(i.e.,	the	Genetic	Epidemiology	Research	on	Adult	Health	and	Aging	

(GERA)	cohort;	URLs).	When	the	GWAS	and	LD	reference	samples	were	from	the	same	
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population,	the	differences	between	BayesS	and	SBayesS	were	negligible	(Supplementary	Fig.	

7),	suggesting	that	the	performance	of	SBayesS	is	almost	independent	of	the	overlap	between	

the	GWAS	and	LD	reference	samples	as	long	as	they	are	from	the	same	population.	When	the	

GERA	cohort	was	used	as	the	reference	sample	for	the	UKB	GWAS	data,	a	small	inflation	was	

observed	in	the	estimates	of	S,	likely	because	of	the	difference	in	ancestry	between	the	UKB	and	

GERA.	This	observation	demonstrates	the	importance	of	choosing	a	reference	sample	that	is	

genetically	as	close	to	the	GWAS	sample	as	possible	in	the	analysis	of	summary	data.	Finally,	we	

tested	the	method	in	application	to	ascertained	case-control	data	by	simulation.	The	parameter	

estimates	were	nearly	unbiased	regardless	of	whether	cases	were	oversampled,	although	the	

sampling	variances	of	the	estimates	of	polygenicity	and	S	were	relatively	large	in	some	

simulation	scenarios	where	the	number	of	cases	was	relatively	small	(Supplementary	Fig.	8).	

	

Analyses	of	GWAS	summary	data	from	the	UK	Biobank	and	other	published	studies	

We	applied	SBayesS	to	analyse	the	full	release	of	the	UKB	data	(URLs),	including	26	complex	

traits	and	9	common	diseases	(Supplementary	Table	1).	Although	individual-level	data	are	

available	in	the	UKB,	application	of	the	standard	BayesS	to	~350k	unrelated	individuals	with	

~1.1	million	HapMap3	SNPs	would	require	~1.5TB	memory	and	~420	hours	with	24	cores.	

Running	SBayesS	only	requires	approximately	15GB	memory	and	8	hours	with	4	cores,	

demonstrating	the	resource-efficiency	and	scalability	of	SBayesS.	Prior	to	running	SBayesS,	we	

carried	out	standard	quality	control	(QC)	of	the	data	(Methods)	and	used	linear	regression	to	

perform	a	GWAS	analysis	in	unrelated	individuals	to	generate	summary	statistics	for	each	trait.	

We	also	applied	SBayesS	to	data	for	9	other	complex	common	diseases	from	published	GWAS	of	

very	large	sample	size	where	only	summary	statistics	are	available	(Supplementary	Table	2).	In	

the	analysis	of	the	UKB	data,	we	used	the	sparse	LD	matrix	computed	from	50k	individuals	(a	

random	subsample	of	all	the	UKB	unrelated	individuals	as	described	above).	For	the	analysis	of	

data	from	published	GWAS	of	which	nearly	all	the	samples	are	of	European	ancestry,	the	GERA	

sample	was	used	as	the	LD	reference.	To	mitigate	the	problem	due	to	inconsistent	LD	between	

the	GWAS	and	reference	samples,	we	excluded	SNPs	in	the	major	histocompatibility	complex	

(MHC)	region.	The	SNP-based	heritability	estimates	for	the	diseases	were	converted	to	those	on	

the	liability	scale	following	the	method	in	Lee	et	al31.	

	

On	average	across	the	44	complex	traits	(including	diseases),	1.8%	of	the	1.1	million	common	

HapMap3	SNPs	explained	18%	of	the	phenotypic	variance	(Fig.	2	and	Supplementary	Table	1-

2).	The	estimate	of	SNP-based	heritability	for	height	was	0.545	(p.s.e.=0.003),	consistent	with	

those	in	previous	studies	using	different	approaches	and	data	sets6,13,32-34.	The	most	polygenic	

traits	(i.e.,	body	fat	percentage,	educational	attainment	and	schizophrenia)	had	about	5%	
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(~55,000)	SNPs	with	nonzero	effects.	The	least	polygenic	traits	were	prostate	cancer,	age	at	

menopause	and	male	pattern	baldness,	which	were	affected	by	about	0.1-0.3%	(1,000-3,000)	

common	SNPs.	The	estimate	of	S	was	significantly	negative	(P<0.001)	in	all	the	traits	analysed,	

suggesting	a	pervasive	action	of	negative	selection	on	the	trait-associated	variants.	

Interestingly,	most	traits	had	an	estimate	of	S	at	about	-0.6	(median=-0.578,	SD=0.096),	which	

motivated	us	to	further	investigate	the	interpretation	of	'(	with	respect	to	natural	selection	(see	

below).	There	were	some	traits	for	which	'(	was	not	significant	in	previous	analysis	based	on	

individual-level	genotypes	and	array	SNPs12	(e.g.,	T2D,	fluid	intelligence	and	neuroticism	score)	

but	became	significant	in	the	current	study,	likely	because	of	the	increased	sample	size	that	

improved	the	detection	power	(Supplementary	Fig.	6).	We	also	re-ran	the	analysis	for	the	9	

public	GWAS	data	sets	with	the	UKB	subsample	as	the	LD	reference	and	found	that	the	results	

were	highly	consistent	with	those	using	LD	from	the	GERA	(Supplementary	Fig.	9).	

	

We	broadly	classified	the	44	traits	into	five	categories	related	to	disease,	fertility,	

cardiorespiratory,	anthropometry	and	cognition.	The	estimates	of	the	genetic	architecture	

parameters	varied	across	traits	and	appeared	to	have	distinct	patterns	in	different	categories	

(Fig.	2).	Anthropometric	traits	had	a	substantially	higher	median	SNP-based	heritability	(0.253)	

than	the	other	categories,	among	which	the	differences	were	small	(0.097–0.151).	The	median	

value	of	the	polygenicity	estimates	was	the	lowest	for	diseases	(0.007)	and	the	highest	for	

cognitive	traits	(0.037).	The	estimates	of	polygenicity	for	psychiatric	disorders	such	as	

schizophrenia	(&)=0.046,	p.s.e.=0.003)	and	bipolar	disorder	(&)=0.034,	p.s.e.=0.009)	were	

substantially	higher	than	that	for	other	types	of	disease	and	comparable	to	those	for	the	

cognitive	traits,	consistent	with	the	high	polygenicity	for	brain-related	traits	reported	in	

previous	studies10,35.	The	estimate	of	|S|	was	the	highest	for	diseases,	especially	cardiovascular	

disease,	and	fertility	traits,	and	the	lowest	for	cognitive	traits,	with	a	relatively	large	variability	

in	'(	for	diseases.	

	

To	investigate	the	diversity	of	genetic	architecture	in	more	traits,	we	applied	SBayesS	to	GWAS	

summary	data	from	the	Neale	Lab	(URLs)	for	274	quantitative	traits	in	the	UKB,	among	which	

130	passed	the	convergence	test	(the	failed	ones	were	mainly	due	to	the	smaller	sample	sizes;	

mean	n	=	231k	for	converged	and	73k	for	not	converged)	and	110	were	not	included	in	the	

analyses	above	(Supplementary	Table	3).	Fig.	3	shows	the	distributions	of	the	estimated	genetic	

architecture	parameters	for	the	total	155	traits	including	137	complex	traits	and	18	common	

diseases	in	the	UKB	and	published	GWAS.	Similar	to	that	for	the	44	traits	analysed	above,	the	

distribution	across	traits	was	relatively	flat	for	ℎ*"#$% ,	skewed	to	the	right	for	&) ,	and	

symmetrically	distributed	with	a	large	mass	around	-0.6	for	'(.	Among	the	155	traits,	79%	had	'(	
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within	the	range	of	-0.7	to	-0.5	(median=-0.576).	In	addition,	'(	was	weakly	correlated	with	ℎ*"#$% 	

(Pearson’s	correlation=-0.191),	and	the	variation	of	'(	decreased	with	increasing	&) ,	suggesting	

some	interrelationship	among	the	genetic	architecture	parameters.	Next,	we	investigated	the	

interplay	of	genetic	architecture	parameters	under	natural	selection	through	simulation.	

	

Projecting	the	real	data	analysis	results	onto	the	genetic	architecture	patterns	observed	

from	simulations	

Although	a	negative	estimate	of	S	is	a	signature	of	negative	selection,	the	numeric	interpretation	

of	'(	is	still	not	clear.	For	example,	our	results	showed	that	most	traits	had	'(	at	about	-0.6;	does	it	

mean	that	negative	selection	acted	on	the	associated	variants	with	similar	selection	strength	

among	traits?	To	answer	this	question,	we	performed	forward	simulations28	given	the	

mutational	target	size	of	the	genome	(&+;	the	proportion	of	DNA	sequence	that	can	produce	

mutations	affecting	the	trait)	and	total	trait	heritability	at	all	the	mutations	(ℎ%).	Note	that	&+ 	

and	h2	are	the	evolutionary	parameters	underlying	&	and	ℎ"#$% .	The	simulations	were	based	on	a	

demographic	model	inferred	by	Gravel	et	al36.	A	normalising	stabilising	selection	model37	was	

used	to	link	phenotype	to	individual	fitness	with	a	given	selection	strength	(Methods).	In	the	

last	generation	of	selection,	we	computed	the	genetic	architecture	parameters	ℎ"#$% ,	&	and	S	at	

all	the	common	causal	variants	(Methods).	Repeating	the	simulation	with	different	values	of	&+ ,	

h2	and	selection	strength	produced	a	landscape	of	the	genetic	architecture	under	different	

scenarios	(Fig.	4).	When	there	was	no	selection	(selection	strength	=	0),	ℎ"#$% 	and	&	closely	

reflected	the	values	of	h2	and	&+ ,	respectively,	with	S=0.	For	given	values	of	h2	and	&+ ,	

increasing	selection	strength	shaped	the	genetic	architecture	on	three	sides.	First,	&	became	

smaller	than	&+ 	because	a	larger	fraction	of	trait	mutations	was	kept	at	MAF<0.01	due	to	the	

action	of	negative	selection.	Second,	a	gap	between	ℎ"#$% 	and	h2	was	present	as	a	result	of	

excessive	rare	trait	mutations	(MAF	<	1%),	one	of	the	explanations	to	the	missing	heritability	

problem38.	Third,	the	magnitude	of	S	increased,	indicating	a	stronger	negative	relationship	

between	effect	size	and	MAF	than	that	under	weaker	selection	given	constant	h2	and	&+ .	It	is	

important	to	note	that	a	high	|S|	could	be	achieved	even	with	a	relatively	low	strength	of	

selection,	when	per-variant	heritability	(in	proportion	of	h2/&+)	was	high,	suggesting	that	we	

cannot	infer	the	strength	of	natural	selection	based	only	on	S	without	taking	the	other	

components	of	the	genetic	architecture	into	account.	Moreover,	the	same	level	of	polygenicity	

(&)	could	be	observed	across	different	values	of	mutational	target	size	and	strength	of	negative	

selection,	indicating	that	polygenicity	is	driven	by	both	factors	rather	than	negative	selection	

alone	(note	that	O’Connor	et	al10	concluded	that	negative	selection	is	responsible	for	

polygenicity,	which	was	defined	depending	on	the	number	of	large	effects).	
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Given	the	evolutionary	parameters	used	in	the	forward	simulation,	we	observed	a	variety	of	

patterns	of	genetic	architecture,	which	can	be	used	as	a	map	to	infer	the	underlying	

evolutionary	parameters	in	real	traits.	We	then	projected	the	observed	genetic	architecture	of	

the	44	complex	traits	and	diseases	onto	the	map	generated	from	the	forward	simulation	(Fig.	4).	

The	projection	was	done	by	minimizing	the	sum	of	the	differences	in	internal	angles	between	

the	two	“triangles”	(the	observed	versus	the	simulated	genetic	architecture)	(Methods).	Our	

projection	shows	that	although	the	variation	of	'(	was	small	among	traits,	different	traits	had	

diverse	strength	of	negative	selection	on	the	associated	variants.	No	trait	was	projected	to	the	

bottom	left	of	the	map	where	both	per-variant	heritability	and	strength	of	selection	were	

relatively	low,	or	the	top	right	of	the	map	where	the	selection	was	so	strong	that	most	causal	

variants	were	rare	or	had	been	removed	from	the	population.	As	a	result,	there	was	a	negative	

correlation	between	per-variant	heritability	and	strength	of	selection	from	the	projected	genetic	

architecture.	This	inverse	relationship	is	reasonable	given	S,	because	variants	of	larger	per-

variant	heritability	are	expected	to	receive	higher	selection	pressure	such	that	a	strong	

signature	would	manifest	itself	even	if	the	selection	on	the	trait	is	not	as	strong	as	that	on	a	trait	

with	a	higher	polygenicity	and/or	lower	heritability.	According	to	the	projection,	SNPs	

associated	with	brain-related	traits	including	cognition	and	psychiatric	disorders	were	under	

relatively	strong	selection,	and	most	common	diseases	tended	to	have	relatively	small	

mutational	target	size.	When	we	projected	the	median	estimates	of	the	genetic	architecture	

parameters	for	each	trait	category	onto	the	map,	we	found	relatively	strong	selection	on	genetic	

variants	associated	with	cardiorespiratory	and	cognitive	traits	and	relatively	small	mutational	

target	size	for	diseases	and	fertility	traits	(Fig.	5a).	As	a	result,	common	variants	associated	with	

diseases	showed	the	largest	estimated	effect	variance,	and	those	associated	with	

cardiorespiratory	and	cognitive	traits	showed	the	smallest	estimated	effect	variance	(Fig.	5b),	

consistent	with	the	GWAS	results	where	the	average	marginal	effect	size	(in	SD	units)	decreased	

from	disease-	to	cognition-associated	SNPs	(Fig.	5c,d).	We	further	performed	projections	based	

on	the	simulations	with	a	constant	effective	population	size	of	10,000	and	did	not	observe	a	

qualitative	change	on	the	conclusions	(Supplementary	Fig.	10	and	11),	suggesting	a	limited	

impact	of	demography	on	the	formation	of	genetic	architecture.	

	

Analyses	incorporating	functional	genomic	annotations	

The	functional	annotation	categories	used	in	our	analysis	were	from	the	LDSC	baseline	model14.	

We	excluded	continuous	annotations	and	annotations	with	flanking	windows,	resulting	in	21	

annotation	categories	such	as	the	coding,	regulatory,	repressed	and	conserved	regions	

(Supplementary	Table	4),	with	a	large	proportion	of	overlap	between	categories	

(Supplementary	Fig.	12).	We	applied	SBayesS-strat	to	the	35	UKB	traits	(including	9	diseases),	
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and	combined	the	parameter	estimates	across	traits	for	each	functional	category	based	on	a	

method	that	accounts	for	the	phenotypic	correlations	between	traits	(Methods).	In	general,	the	

fraction	of	ℎ"#$% 	explained	by	each	functional	category	was	proportional	to	the	size	of	the	

category	(correlation=0.987;	Supplementary	Fig.	13).	Repressed	regions	appeared	to	be	an	

outlier	with	the	estimated	ℎ"#$% 	significantly	lower	than	its	expectation.	The	correlation	was	

even	higher	between	the	polygenicity	and	the	size	of	functional	category	(correlation=-0.999),	

suggesting	that	a	functional	category	that	explains	a	greater	fraction	of	heritability	tends	to	have	

a	larger	number	of	causal	variants,	consistent	with	the	findings	of	O'Connor	et	al10	with	a	

different	approach.	The	average	value	of	'(	was	-0.607,	ranging	from	-0.662	in	repressed	regions	

(s.e.m.=0.010)	to	-0.555	in	transcription	start	sites	or	TSS	(s.e.m.=0.032).		

	

To	better	distinguish	the	contributions	of	the	number	and	the	magnitude	of	the	nonzero	effects	

to	ℎ"#$% ,	we	estimated	per-NZE	heritability	,ℎ#-.% = 0123
4

+5
6	in	each	category,	and	computed	the	

fold	enrichment	by	comparing	the	per-category	estimate	to	the	genome-wide	estimate	

(Methods	and	Supplementary	Table	5).	The	per-NZE	heritability	showed	the	highest	enrichment	

at	TSS,	followed	by	coding,	5’-UTR,	3’-UTR	and	conserved	regions,	and	remarkable	depletion	in	

the	repressed	regions	(Fig.	6a).	In	addition,	the	enrichment	in	per-NZE	heritability	was	

proportional	to	the	enrichment	in	polygenicity	(correlation=0.982),	suggesting	that	the	larger	

per-SNP	heritability	in	a	functional	category	was	not	only	because	of	the	larger	number	of	

causal	variants	but	also	the	larger	effect	sizes,	confirmed	by	forward	simulation	(Supplementary	

Fig.	14).	The	parameter	S	was	enriched	in	the	repressed,	coding,	5’-UTR	and	conserved	regions	

despite	a	large	sampling	variation	in	the	estimated	fold	enrichment	(Fig.	6b).	There	was	a	

negative	correlation	of	-0.290	between	the	enrichments	of	S	and	per-NZE	heritability,	and	the	

correlation	decreased	to	-0.788	when	the	apparent	outliers	(i.e.,	the	coding,	5’-UTR	and	

conserved	regions)	were	removed.	The	presence	of	a	negative	correlation	could	be	because	for	

biologically	important	regions,	a	fraction	of	the	genetic	variants	has	been	under	positive	

selection,	which	to	some	extent	offsets	the	signature	of	negative	selection.	To	test	if	the	negative	

correlation	was	driven	by	any	artificial	effect,	we	applied	the	method	to	simulated	data	sets	

under	the	null	model	(no	enrichment	in	genetic	architecture	parameters)	and	did	not	observe	a	

significant	correlation	(Supplementary	Fig.	15).	Although	the	coding	and	repressed	regions	had	

similar	'(,	the	variance	of	effect	sizes	were	different	regardless	of	MAF	(Fig.	6c,d),	suggesting	

different	distributions	of	effect	sizes	for	SNPs	in	different	functional	genomic	regions.	
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Discussion	

We	have	developed	an	efficient	summary-data-based	method	to	estimate	the	joint	distribution	

of	effect	sizes	and	MAF	as	well	as	SNP-based	heritability,	polygenicity	and	joint	SNP	effects.	By	

analysing	GWAS	summary	statistics	from	the	public	domain,	we	detected	pervasive	signatures	

of	negative	selection	in	the	genetic	architecture	of	a	wide	range	of	complex	traits	including	

common	diseases	(Fig.	2	and	3).	This	means,	assuming	that	most	mutations	are	deleterious	to	

fitness,	mutations	with	larger	effects	on	fitness	are	more	likely	to	be	eliminated	or	kept	at	lower	

frequencies	in	the	population	by	negative	selection.	Interestingly,	most	traits	had	'(	at	about	-0.6	

with	diverse	estimates	of	ℎ"#$% 	and	polygenicity,	implying	that	the	S	=	-1	model	originally	used	

in	the	GREML	method39	is	more	appropriate	than	the	S	=	0	model	for	most	complex	traits.	

Schoech	et	al7	linked	the	S	parameter	(denoted	as	7	in	their	infinitesimal	model	using	profile	

maximum	likelihood	estimation	with	individual-level	data)	to	the	8	parameter	in	Eyre-Walker’s	

model3	and	further	drew	inference	on	the	average	genome-wide	selection	coefficient.	However,	

our	forward	simulations	have	shown	that	inference	regarding	the	strength	of	selection	cannot	

solely	be	made	based	on	S	but	should	take	other	genetic	architecture	parameters	into	account.	

Our	projection	results	show	that	despite	the	narrowly	distributed	'(,	the	strength	of	selection	

varied	substantially	across	traits	(Fig.	4),	assuming	stabilising	selection	in	action	(as	suggested	

by	previous	work11,40,41).	In	general,	diseases	showed	the	smallest	mutational	target	sizes,	while	

cardiorespiratory	and	cognitive	traits	showed	the	strongest	selection	on	the	associated	variants	

(Fig.	5a).	As	a	result,	common	variants	associated	with	diseases	(heart,	lung,	and	brain	function)	

presented	the	largest	(smallest)	effect	sizes	(Fig.	5b-d).	

	

Our	annotation-stratified	analysis	further	revealed	that	negative	selection	has	acted	

differentially	on	the	genome,	resulting	in	non-identical	distributions	of	effect	sizes	between	

functional	categories.	The	biologically	important	categories,	such	as	the	TSS,	coding	and	5’-UTR	

regions,	had	the	highest	enrichment	in	per-NZE	heritability	and	polygenicity,	whereas	the	

repressed	regions	were	depleted	in	both	per-NZE	heritability	and	polygenicity	(Fig.	6).	Previous	

studies	have	attributed	the	enrichment	in	per-SNP	heritability	to	the	larger	number	of	causal	

variants	in	functional	regions10.	Here,	we	further	highlighted	the	contribution	of	differences	in	

effect	sizes	to	the	per-SNP	heritability	enrichment.	The	repressed	regions	were	evidently	

enriched	in	'(	and	had	smallest	effect	variance	for	common	SNPs	(Fig.	6),	suggesting	an	apparent	

role	of	negative	selection	in	constraining	the	frequency	of	mutations	with	large	effect	sizes	in	

the	repressed	regions.	This	observation	should	not	be	too	surprising	given	that	chromatin	

repression	represents	a	higher	order	functional	domain	and	is	enriched	for	evolutionarily	

conserved	non-exonic	sequences42.	Coding	and	5’-UTR	regions	were	enriched	for	'(	yet	had	

largest	effect	variance	for	common	SNPs.	Our	explanation	is	that	in	addition	to	negative	
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selection,	positive	selection	may	have	also	played	a	role	in	these	regions	to	drive	the	evolution	

of	protein-coding	genes	such	that	SNPs	with	relatively	large	(favourable)	effects	could	be	

common.	Unfortunately,	our	method	cannot	distinguish	negative	from	positive	selection	when	

both	types	of	selection	are	in	action.	

	

There	are	several	limitations	in	this	study.	First,	we	used	HapMap3	common	SNPs	for	analysis	

and	extrapolated	our	inference	on	negative	selection	to	unobserved	rare	variants.	We	expect	

that	the	signature	that	natural	selection	left	in	common	variants	would	remain	in	rare	variants.	

Because	the	rare	sequence	variants	are	not	fully	available	in	the	UKB,	we	investigated	this	

hypothesis	by	forward	simulation.	As	expected,	the	selection	signature	in	rare	variants	followed	

similar	patterns	as	that	in	common	variants,	but	the	magnitude	of	S	was	weaker	

(Supplementary	Fig.	16).	This	is	because	the	very	rare	variants	were	mostly	new	mutations	

whose	relationship	between	effect	size	and	MAF	had	not	yet	been	shaped	by	selection,	which	

diluted	the	selection	signals	from	the	variants	under	selection	(Supplementary	Fig.	17),	

suggesting	that	the	true	S	parameter	is	allelic	age	dependent	and	subject	to	the	combined	effect	

of	mutation,	selection	and	genetic	drift.	An	apparent	change	in	the	effect	size-MAF	relationship	

when	moving	toward	low	MAF	was	also	reported	by	Schoech	et	al7.	Second,	we	projected	the	

parameter	estimates	onto	the	patterns	observed	from	evolutionary	simulations	under	a	model	

of	stabilising	selection	with	a	constant	trait	heritability.	A	violation	of	the	assumption	that	only	

stabilising	selection	is	in	action	could	complicate	the	comparison	of	evolutionary	parameters	

between	traits.	For	example,	according	to	our	projection,	genetic	variants	associated	with	BMI	

are	under	stronger	negative	selection	than	those	associated	with	height,	which	may	not	be	true	

if	there	is	a	relatively	strong	positive	selection	in	height	(see	Supplementary	Fig.	18	for	a	

simulation	study).	The	strong	negative	selection	on	BMI-associated	variants	inferred	from	our	

result	is	nevertheless	consistent	with	a	recent	study43	which	showed	a	large	proportion	of	

variance	explained	by	very	rare	variants	(0.01%<MAF<0.1%)	for	BMI	although	the	SE	was	

large.	We	also	performed	a	set	of	simulations	with	fixed	environmental	variance	allowing	the	

heritability	to	reach	a	mutation-selection-drift	equilibrium.	The	results	(Supplementary	Fig.	19	

and	20)	were	comparable	to	those	from	the	simulations	with	fixed	heritability	and	variable	

environmental	variance	presented	above	(Fig.	4	and	5a).	Third,	independence	of	chromosomes	

is	assumed	in	our	model.	This	may	not	hold	if	there	was	non-random	mating	in	the	ancestral	

population.	For	example,	assortative	mating	would	introduce	positive	correlations	between	

trait-increasing	alleles	located	on	different	chromosomes,	and	therefore	increase	heritability	in	

the	equilibrium	population,	e.g.	for	height44.	Our	estimate	of	SNP-based	heritability	accounts	for	

intra-chromosomal	LD	but	ignored	inter-chromosomal	LD	so	that	it	is	expected	to	be	between	

the	base	and	equilibrium	population	estimates.	Further	improvement	is	possible	if	the	correct	
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correlation	matrix	is	used.	Despite	these	limitations,	our	study	highlights	the	impact	of	negative	

selection	on	the	genetic	architecture	across	complex	traits	and	in	different	functional	genomic	

regions.	In	addition	to	better	understanding	of	the	genetic	architecture,	our	methods	can	also	be	

applied	to	genetic	mapping	and	polygenic	risk	prediction	through	the	use	of	the	joint	SNP	effect	

estimates	or	the	characterised	underlying	distributions	of	effect	sizes	as	prior	knowledge	for	

other	methods45.	
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Methods	

SBayesS	

Let	us	consider	an	individual-level	data-based	multiple	regression	model	for	a	GWAS	cohort:	

9 = :; + =																																																																											(1)	

where	y	is	the	vector	of	phenotypes	adjusted	for	all	fixed	effects,	X	is	the	column-centred	

genotype	matrix,	β	is	the	vector	of	SNP	effects,	and	e	is	the	vector	of	residuals	with	BCD(=) =

EFG%	for	a	cohort	of	unrelated	individuals.	Assuming	Hardy-Weinberg	equilibrium	(HWE),	the	

variance	of	genotype	dosage	(0,	1,	2)	of	SNP	j	is	ℎH = 2JHKH ,	where	JH	is	MAF	and	KH = 1 − JH .	Let	

D	be	a	diagonal	matrix	with	MHH = :HN:H = ℎHOH,	where	nj	is	per-SNP	sample	size.	Multiplying	

both	sides	of	the	model	by	PQR:N	gives	

PQR:N9 = PQR:N:; + PQR:N=	

Note	that	PQR:N9 = S,	the	vector	of	least	squares	estimates	of	SNP	marginal	effects	from	GWAS,	

and	PQR:N: = PQ
T
4UP

T
4,	where	U = PQ

T
4:N:PQ

T
4	is	the	LD	correlation	matrix	among	all	SNPs	

(ref46).	Let	V = PQ
T
4UP

T
4		and	W = PQR:N=.	Then,	the	above	equation	can	be	written	as	

S = V;+ W																																																																											(2)	

In	contrast	to	the	identity	structure	of	residual	variance	in	model	(1),	the	residuals	in	model	(2)	

are	dependent	of	LD,	as	

BCD(W) = PQ
R
%UPQ

R
%FG% = XFG%																																																												(3)	

This	is	a	generic	form	of	summary-data-based	Bayesian	regressions,	which	is	similar	to	Zhu	and	

Stephens's	RSS	model33.	As	in	BayesS,	we	assume	the	effect	size	is	related	to	MAF	through	a	

parameter	S:	

ZH	~	\]0, ℎH"F̀%a& + 	b(1 − &)																																																											(4)	

where	b	is	a	point	mass	at	zero,	and	S	(the	relationship	between	MAF	and	effect	sizes),	F̀%	(the	

effect	variance	factor	common	to	all	SNPs)	and	π	(the	proportion	of	SNPs	with	nonzero	effects,	

i.e.,	the	polygenicity)	are	considered	as	unknown,	with	prior	distributions	of	a	standard	normal,	

a	scaled	inverse	chi-squared	distribution	(Supplementary	Note),	and	a	uniform	distribution	

between	zero	and	one,	respectively.	Specifying	a	different	prior	distribution	to	ZH	gives	a	form	of	

other	summary-data-based	Bayesian	alphabet	models47.		

	

We	show	in	the	Supplementary	Note	that	models	(1)	and	(2)	are	equivalent	in	terms	of	

posterior	inference.	This	is	because	the	GWAS	estimates	of	SNP	effects	(b)	and	LD	correlation	

matrix	(B)	are	sufficient	statistics	for	the	joint	posterior	distribution	of	β,	i.e.,	under	BayesS	

prior	(assuming	π=0	for	simplicity),	

;|S, efge	~	hB\(iQRj, iQRFG%)																																																									(5)	
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where	i = VNXQRV+lQRm = P
T
4UP

T
4 + lQRm = :N: + lQRm,	and	G	is	a	diagonal	matrix	with	

nHH = ℎH"	and	m = FG%/F̀%,	and	j = VNXQRS = PS = :N9.	Compared	to	model	(1),	model	(2)	

allows	us	to	incorporate	LD	information	from	a	different	reference	sample	from	the	GWAS	

sample	for	which	the	individual-level	data	are	often	not	accessible.	Further,	it	is	often	not	

practical	to	compute	and	store	the	entire	LD	matrix	in	the	memory.	Therefore,	we	used	a	sparse	

LD	matrix	that	ignores	the	small	LD	correlation	estimates	that	are	due	to	sampling	variation,	but	

still	accounted	for	the	sampling	variance	of	LD	correlation	in	the	model	(see	below).	Once	the	

LD	matrix	is	computed,	it	can	be	used	repeatedly	in	the	GWAS	summary-data	analysis	for	

different	traits.	

	

We	used	MCMC	algorithm	to	generate	50,000	posterior	samples	(the	first	20,000	discarded	as	

burn-in)	from	the	joint	posterior	distribution	of	model	parameters,	based	on	which	statistical	

inference	was	made.	Details	of	the	MCMC	sampling	scheme	are	shown	in	the	Supplementary	

Note.	The	posterior	mean	was	used	as	the	point	estimator,	with	the	statistical	uncertainty	

quantified	by	the	posterior	variance	or	its	square	root	(posterior	standard	error),	as	shown	

below.	We	ran	4	parallel	chains	with	different	starting	values	of	the	parameters	randomly	

sampled	from	their	prior	distributions.	Following	the	method	proposed	by	Gelman	and	Rubin29,	

we	estimated	the	posterior	variance	by	

BCDp (q|r) =
s − 1
s t +

1
su	

where	T	is	the	chain	length,	W	is	the	within-chain	variance,	and	B	is	the	between-chain	variance.	

To	assess	convergence	in	MCMC,	we	computed	the	potential	scale	reduction	statistic	

v* = wBCD
p (q|r)
t 	

for	each	of	the	model	parameters.	As	suggested	by	Gelman	and	Rubin,	v* < 1.2	generally	

indicates	good	convergence.	Thus,	we	concluded	convergence	for	a	trait	analysis	when	all	of	the	

three	genetic	architecture	parameters	had	v* < 1.2.	

	

Sparse	LD	matrix	

For	computational	efficiency,	we	used	a	sparse	LD	matrix	in	the	analysis	where	LD	due	to	

sampling	variation	were	set	to	be	zero.	To	this	end,	we	tested	whether	the	LD	between	each	pair	

of	SNPs	on	the	same	chromosome	is	zero	in	the	population	when	computing	the	LD	correlation	

matrix	using	a	reference	sample.	Under	the	null	hypothesis	that	the	true	LD	in	the	population	is	

zero,	we	assume	(ref48)	
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uzH{%

BCD]uzH{% a
= O|H{uzH{% ~}R%	

(tilde	denotes	quantities	computed	from	the	reference	sample)	and	reject	the	null	if	the	chi-

squared	statistic	>	10	(P<0.0016).	This	is	equivalent	to	a	r2	threshold	of	2×10-4	given	a	sample	

size	of	50,000.	We	set	uzH{ 	to	be	zero	if	the	null	hypothesis	is	not	rejected	or	if	the	two	SNPs	are	

on	different	chromosomes,	leading	to	a	sparse	LD	matrix.	The	chi-squared	threshold	of	10	is	

chosen	in	order	to	balance	the	type	I	and	II	error	rates.	If	a	type	I	error	occurs,	i.e.,	the	true	

correlation	ρjk=0	but	uzH{ 	is	not	set	to	be	zero,	then	as	explained	below,	gH{% = ~|�ÄÅ~�Ä
~|�Ä~�Ä

]1 − uzH{% a
%
,	

which	is	very	likely	to	be	larger	than	the	true	sampling	variance	of	1/njk.	This	would	inflate	the	

residual	variance	and	therefore	deflate	the	heritability	estimate.	If	a	type	II	error	occurs,	i.e.	

ρjk≠0	but	uzH{ 	is	set	to	be	zero,	then	gH{% = R
~�Ä
,	which	is	very	likely	to	be	larger	than	the	true	

sampling	variance	of	
~|�ÄÅ~�Ä
~|�Ä~�Ä

]1 − ÇH{% a
%
.	This	would	deflate	the	residual	variance	and	therefore	

inflate	the	heritability	estimate.	Since	the	consequence	of	type	II	errors	is	worse,	we	use	a	not-

too-stringent	threshold	to	eliminate	the	LD	due	to	sampling.	This	also	suggests	that	LD	

reference	sample	size	cannot	be	too	small,	otherwise,	type	II	error	rate	would	increase	due	to	

the	loss	of	power.	Since	we	only	include	non-zero	elements	in	the	LD	matrix,	it	is	faster	by	folds	

to	run	the	summary-level	data	analysis	with	substantially	less	amount	of	memory	needed.		

	

Modelling	LD	sampling	variance	

The	use	of	a	sparse	LD	matrix	from	a	reference	sample	will	result	in	two	sources	of	sampling	

variation.	The	first	is	the	difference	in	sampling	variance	between	the	reference	and	GWAS	

samples	for	the	LD	correlations	included	in	the	sparse	LD	matrix.	The	second	is	the	sampling	

variance	of	LD	correlations	that	are	set	to	be	zero.	As	shown	in	the	Supplementary	Note,	

ignoring	these	sampling	variations	will	result	in	a	bias	in	the	mean	of	the	full	conditional	

distribution	of	βj	and	thereby	biases	in	the	estimation	of	other	model	parameters.	Here,	we	

account	for	both	sampling	variations	in	the	model,	as	described	below.	

	

Suppose	that	the	observed	LD	correlation	between	SNP	j	and	k	equals	to	the	true	population	LD	

plus	a	deviation,	i.e.,	uH{ = ÇH{ + ÉH{ ,	or	in	the	reference	sample,	uzH{ = ÇH{ + ÉÑH{ .	Then,	the	LD	

correlation	in	the	GWAS	sample	is	

uH{ = Öu
zH{ + ]ÉH{ − ÉÑH{a, ÇH{ ≠ 0
ÉH{,																																					 ÇH{ = 0	

Let	Δjk	denote	the	unobserved	quantity	above,	i.e.,	
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∆H{= ÖÉH{ − É
ÑH{, ÇH{ ≠ 0

ÉH{,																 ÇH{ = 0	

In	Eq.	(2),	we	can	write	

V =VÅ +VQ	

where	VÅ = PQ
T
4UàP

T
4	is	the	observed	data,	and	VQ = PQ

T
4∆P

T
4	is	not	observed.	Substituting	W	

in	Eq.	(2)	by	VÅ	gives	

S = VÅ; + â	

where	â = VQ; + W	are	the	new	residuals	that	contain	the	differences	in	sampling	deviations	of	

LD	between	GWAS	and	reference	samples	when	the	population	LD	are	not	zero,	and	the	

sampling	deviations	of	LD	in	the	GWAS	sample	when	the	population	LD	are	zero.	Conditional	on	

Δ,	the	residual	variance	is	

BCD(â|∆) = VQNlVQF̀% + XFG%	

with	X = PQ
T
4UàPQ

T
4.	However,	this	cannot	be	computed	because	Δ	is	not	observed.	As	shown	in	

the	Supplementary	Note,	unconditional	on	Δ,	the	marginal	residual	variance	and	covariance	are	

BCD]äHa = MHQR ãå
OH
ç gH% +

çH
é

ç èFê% + FG%ë																																											(6)	

ìîï]äH, ä{a = vH{FG% = ìîï]ñH, ñ{a	

where	çH
é	is	the	number	of	SNPs	not	in	LD	with	SNP	j,	Fê%	is	the	trait	genetic	variance,	and	

gH% = óò
]1 − ÇH{% a

%

OH
+
]1 − ÇH{% a

%

O|H
− 2ìîï]ÉH{, ÉÑH{aô

+�

{öR

	

is	the	total	sampling	variance	for	non-zero	LD	(with	ρjk	approximated	by	uzH{ 	in	practice).	In	the	

absence	of	sample	overlap	between	the	LD	reference	and	GWAS	samples,	ìîï]ÉH{, ÉÑH{a = 0.	In	

the	case	of	complete	sample	overlap,	gH% = 0.	We	therefore	have	the	following	observations:	

1. The	LD	sampling	variance	only	affects	the	variance	but	not	covariance	of	the	model	residuals.	

Thus,	accounting	for	the	LD	sampling	variance	in	the	Gibbs	sampling	of	βj	is	straightforward,	

as	shown	in	the	Supplementary	Note.	

2. The	LD	sampling	variation	has	two	components,	one	due	to	the	use	of	a	different	reference	

sample	for	LD	information	and	the	other	due	to	the	use	of	a	sparse	LD	matrix,	both	of	which	

are	proportional	to	the	genetic	variance.	If	LD	are	estimated	from	the	GWAS	sample,	

BCD]äHa = MHQR õ
+�
ú

+
Fê% + FG%ù.	Further,	if	the	genome-wide	full	LD	matrix	is	used,	BCD]äHa =

MHQRFG%,	the	same	as	that	in	Eq.	(3).		
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3. If	SNP	j	is	independent	of	all	other	SNPs,	çH
é = ç − 1	and	gH% = 0.	Therefore,	BCD]äHa =

MHQR ,
+QR
+

Fê% + FG%6 = MHQR]Fû% − FH%a =
ü�
†T,9°9Qü�¢£

46

~�
,	which	is	the	residual	variance	under	a	

single-SNP	GWAS	model.		

4. Under	some	conditions,	e.g.,	small	O|H 	but	large	OH ,	gH%	can	be	greater	than	1.	Thus,	in	the	

presence	of	LD	sampling	variance,	the	total	residual	variance	(in	the	square	brackets	of	Eq.	

6)	can	be	greater	than	the	phenotypic	variance	of	the	trait.		

	

SNP-based	heritability	estimation	

In	BayesS12,	we	computed	the	genetic	variance	Fê%	as	the	variance	of	genetic	values	across	

individuals	given	the	sampled	values	of	;	in	each	MCMC	iteration.	As	described	in	Zhu	and	

Stephens33,	this	is	equivalent	to	the	following	quadratic	term	of	;	given	the	LD	correlation	

matrix:	

Fê% =
∑ (:•′;)

2O
•=1

O =
ßDC®e[(:;)(:;)′]

O = ;′
:′:
O ; = ;′U; 

Given	the	right-hand-side	updating	strategy	in	MCMC	(Supplementary	Note),	this	quadratic	

term	can	be	computed	efficiently	as	the	difference	of	two	vector-by-vector	products:	

;NU; = ;Nj − ;Nj́ ¨H 	

where	r	is	defined	as	in	Eq.	(5)	and	radj	is	the	adjusted	r	for	;.	The	residual	variance	(FG%)	is	

sampled	from	a	scaled	inverse	chi-squared	distribution	with	the	mean	mainly	driven	by	

=N=
O =

9N9 − ;′j − ;′jC≠Æ
O 	

where		9N9	is	estimated	by	the	median	value	of	MHH]OH'ØH% + ∞H%a	across	SNPs,	where	SEj	is	the	

standard	error	of	bj.	Conditional	on	Fê%	and	FG%,	we	computed	ℎ"#$% = ¢±4

¢±4Å¢≤4	
	in	each	MCMC	

iteration,	and	used	the	mean	over	MCMC	samples	as	the	point	estimator	of	the	SNP-based	

heritability.	

	

Annotation-stratified	SBayesS	

To	accommodate	annotation	overlaps,	each	SNP	effect	is	assumed	to	have	a	mixture	distribution	

with	respect	to	the	functional	categories	annotated	at	the	SNP.	Suppose	there	are	Γ	categories	in	

the	genome	in	total,	and	K	categories	overlapped	at	SNP	j.	Then,	the	prior	distribution	for	the	

effect	is	

¥]ZHa = óJ{¥µ]ZH{a
∂

{öR
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where	J{ = 1/∑	is	the	prior	probability	with	the	effect	following	a	distribution	specific	to	the	kth	

category	(e.g.,	category	∏ = 1,… , �).	According	to	the	BayesS	prior	(Eq.	4),	¥µ]ZH{a	itself	is	a	

mixture	distribution	

¥µ]ZH{a = &µ\ ,0, ℎH
"∫Fµ%6 + ]1 − &µab	

with	independent	standard	normal,	scaled	inverse	chi-squared	and	uniform	priors	for	'µ ,	Fµ%	

and	&µ ,	respectively.	Our	main	interest	was	to	estimate	the	genetic	architecture	parameters	'µ ,	

&µ 	and	ℎµ%	for	each	category,	whose	full	conditional	distributions	only	depend	on	the	effects	of	

SNPs	in	the	corresponding	category.	Apart	from	the	per-SNP	heritability,	we	also	defined	per-

nonzero-effect	(per-NZE)	heritability	(ℎ#-.% )	as	the	total	heritability	explained	in	a	category	

divided	by	the	number	of	nonzero	effects	in	the	category.	In	addition	to	the	category-specific	

parameters,	we	estimated	the	global	parameters	S,	&,	ℎ"#$% 	and	ℎ#-.% 	empirically	conditional	on	

the	sampled	value	of	;	in	each	iteration	of	MCMC.	The	fold	of	enrichment	for	each	parameter	in	

each	trait	was	then	computed	as	Øªºqµª/qªΩ	over	T	MCMC	iterations.	The	estimation	variation	of	

the	enrichment	fold	was	quantified	by	the	posterior	variance	as	described	above.	

	

We	further	combined	the	information	across	traits	by	calculating	the	mean	fold	enrichment	for	

each	functional	category.	To	account	for	the	phenotypic	correlation	among	the	traits,	we	

estimated	the	effective	number	of	traits	(ne)	by	performing	an	Eigen	decomposition	on	the	

phenotypic	correlation	matrix,	following	the	method	described	in	ref49:	

OG =
(∑ mææ )%

∑ mæ%æ
	

where	mæ	is	the	ith	eigenvalue	of	the	phenotypic	correlation	matrix.	Then,	the	posterior	standard	

error	of	the	mean	was	computed	as	

g. e.ç.=
'Mp(q|r)

øOG
	

where	'Mp(q|r)	is	the	standard	deviation	of	the	parameter	estimate	across	traits.		

	

GWAS	summary	statistics	

We	performed	GWAS	analyses	for	26	quantitative	traits	and	9	common	diseases	in	the	full	

release	of	the	UKB	data	using	PLINK	1.90	(URLs).	We	used	348,501	unrelated	individuals	of	

European	ancestry	(estimated	genetic	relatedness	from	GCTA	(URLs)	<	0.05)	and	the	imputed	

HapMap3	SNPs	(URLs)	provided	by	the	UKB	team18.	We	filtered	SNPs	with	MAF<0.01,	HWE	test	

P	value	<	1×10-6,	missing	genotype	rate	>	0.05,	or	imputation	info	score	<	0.3.	We	further	

excluded	SNPs	in	the	Human	Major	Histocompatibility	Complex	(MHC)	region,	resulting	in	a	

total	of	1,124,198	common	SNPs	for	the	analysis.	The	LD	correlations	in	the	reference	samples	
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were	estimated	based	on	the	effect	alleles	in	the	GWAS	summary	data.	For	quantitative	traits,	

we	standardised	phenotypes	to	mean	zero	and	variance	one	and	performed	rank-based	inverse	

normal	transformation	(RINT)	within	each	sex	group.	Prior	to	GWAS,	we	pre-adjusted	

phenotypes	by	age,	sex	and	first	10	principal	components	(PCs)	provided	by	the	UKB	team.	For	

the	publicly	available	summary	statistics,	we	downloaded	the	data	and	matched	the	SNPs	with	

those	in	the	UKB	data	after	excluding	the	strand	ambiguous	SNPs	(i.e.	A/T	or	C/G	SNPs)	in	

addition	to	the	quality	control	procedures	above.	For	the	Neale	Lab	GWAS	summary	data	

(URLs),	we	extracted	274	quantitative	traits	for	which	the	GWAS	was	performed	based	on	RINT	

phenotypes	with	their	analysis	pipeline.	

	

Projection	based	on	forward	simulations	

We	used	SLiM328	to	run	forward	simulations.	A	10	Mb	sequence	was	simulated,	with	a	

proportion	of	new	mutations	(&+)	had	causal	effects	sampled	from	a	standard	normal	

distribution,	and	the	rest	being	neutral.	The	mutation	rate	was	set	to	1.65×10-8	per	base	pair	per	

individual	per	generation50,	and	the	recombination	rate	was	set	to	1×10-8.	A	demographic	

model36	with	population	bottleneck,	expansion	and	migration	was	used	to	simulate	a	population	

undergone	selection	for	11,000	generations.	In	each	generation	(t),	we	computed	the	

aggregated	genotypic	value	of	all	segregating	causal	variants	and	calculated	the	genetic	variance	

across	individuals	(B¿ª).	The	phenotype	was	generated	by	adding	a	random	normal	deviate	with	

a	variance	of	(B¿ª − ℎ%B¿ª)/ℎ%	to	the	genetic	value	given	a	trait	heritability	(ℎ%).	A	normalising	

stabilising	selection	model37	was	used	to	link	the	variance-standardised	phenotype	(y)	to	fitness	

(f):	

¥ = exp å−
r%

2ƒ%è	

where	w2	controls	the	decreasing	rate	in	fitness	when	phenotype	deviates	from	the	optimum	(at	

point	zero),	so	the	higher	1/ƒ%	the	stronger	strength	of	selection.	The	input	parameters	for	the	

simulation	were	mutation	target	size	(&+),	total	trait	heritability	(ℎ%),	and	strength	of	

stabilising	selection	(ƒ%).	We	set	&+=0.025	or	0.05,	h2=0.025	or	0.05,	and	1/w2=0,	0.1,	0.2,	0.5,	

1,	2	or	5	to	obtain	a	map	of	genetic	architecture	of	the	simulated	trait.	In	the	last	generation,	we	

estimated	the	SNP-based	heritability,	polygenicity	and	S	based	on	the	common	causal	variants	

(MAF>0.01).	Since	we	have	observed	the	true	effect	size,	the	S	parameter	was	estimated	using	a	

linear	regression	

log]ZH%a = 7é + 7Rlog]ℎHa + »H 	

where	the	slope	7R	is	an	estimate	of	S	according	to	the	BayesS	model,	and	the	residuals	…	are	

independent.	We	repeated	this	simulation	process	30	times	and	computed	the	mean	of	each	

genetic	architecture	parameter	in	each	of	the	scenarios.	
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To	facilitate	the	projection	of	real-trait	genetic	architecture,	we	first	mapped	the	genetic	

architecture	parameters	estimated	from	the	simulated	traits	in	a	polar	coordinate,	with	the	

estimates	scaled	by	the	respective	maximum	values	across	simulation	scenarios	to	give	the	

same	range	between	zero	and	one	for	each	parameter.	Connecting	the	values	in	the	polar	

coordinate	manifested	a	triangle	that	was	unique	to	a	simulation	scenario.	Similarly,	we	mapped	

the	estimated	genetic	architecture	parameters	for	the	real	traits	and	formed	a	triangle	by	

scaling	each	parameter	estimate	by	the	maximum	value	across	traits.	For	each	real	trait,	we	

then	sought	to	project	it	onto	the	simulation	scenario	that	had	the	most	similar	triangle	by	

minimising	the	sum	of	the	differences	in	internal	angles	between	the	two	triangles.	Although	the	

point	estimates	of	the	genetic	architecture	parameters	were	used	to	form	the	triangle,	it	can	be	

seen	that	the	estimation	variation	did	not	have	substantial	effect	on	the	shape	of	the	triangle	

(Supplementary	Fig.	21).	Finally,	we	computed	the	median	values	of	the	parameter	estimates	

for	each	trait	category,	and	projected	them	onto	the	map	of	genetic	architecture	using	the	same	

method.	

	

	

URLs	

UK	Biobank:	https://www.ukbiobank.ac.uk		

GERA:	https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000674.v2.p2	�	

UKB	GWAS	summary	data	from	the	Neale	Lab:	http://www.nealelab.is/uk-biobank		

PLINK	1.90:	https://www.cog-genomics.org/plink2		

SLiM3:	https://messerlab.org/slim		

GCTA:	https://cnsgenomics.com/software/gcta		

GCTB:	https://cnsgenomics.com/software/gctb		

HapMap3:	https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html		

baseline-LD	annotations:	https://data.broadinstitute.org/alkesgroup/LDSCORE		
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Figures	

	

	
Figure	1	Benchmarking	SBayesS	with	BayesS	using	the	same	data	for	18	UKB	traits.	Three	

genetic	architecture	parameters	were	compared,	i.e.,	SNP-based	heritability,	polygenicity	and	S,	

based	on	the	unrelated	individuals	of	European	ancestry	in	the	interim	release	of	the	UKB	data	

(max	n=120k)	and	~1.1	million	HapMap3	common	SNPs	(MAF>0.01).	The	sparse	LD	matrix	

used	in	SBayesS	was	computed	from	a	random	sample	of	50k	unrelated	individuals	from	the	full	

UKB	cohort	at	a	chi-squared	threshold	of	10	(corresponding	to	a	LD	r2	threshold	of	2´10-4).	

Each	bar	represents	the	posterior	standard	error	of	the	estimate.	Colours	with	acronyms	

indicate	different	traits,	whose	full	names	are	shown	at	the	bottom	of	the	figure.	 	
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Figure	2	Estimation	of	the	three	genetic	architecture	parameters	for	44	complex	traits	

(including	diseases)	in	UKB	(max	n=350k)	and	9	common	diseases	from	published	GWAS	

(labelled	with	publications).	Shown	are	the	posterior	means	(dots)	and	standard	errors	

(horizontal	bars)	of	the	parameters	for	each	trait.	The	colour	indicates	the	category	that	the	

trait	belongs	to.	The	vertical	bar	shows	the	median	of	the	estimates	across	traits	in	each	

category.	 	
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Figure	3	Estimation	of	the	genetic	architecture	parameters	for	155	complex	traits	(summary	

data	for	130	quantitative	traits	from	the	Neale	Lab	and	25	traits	and	diseases	from	our	GWAS	

analyses	and	published	studies).	The	estimated	S	is	plotted	against	the	estimated	SNP-based	

heritability	with	the	corresponding	posterior	standard	errors	(bars)	as	well	as	the	marginal	

distributions	of	the	estimates.	Colour	indicates	the	estimate	of	polygenicity	for	each	trait	where	

the	scale	and	distribution	are	shown	in	the	inset	graph.	
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Figure	4	Projection	of	real	data	analysis	results	onto	a	map	of	genetic	architecture	patterns	observed	in	simulations.	Both	x	and	y	axes	are	input	

values	in	the	simulation,	where	x-axis	is	the	strength	of	selection	denoted	as	one	over	the	variance	(w2)	of	the	phenotypes	surrounding	at	the	

optimum	fitness	value	(a	classic	model	for	stabilizing	selection),	and	y-axis	is	the	ratio	of	the	heritability	at	all	causal	variants	(h2)	over	the	

proportion	of	mutational	targets	(!"),	which	is	proportional	to	the	per-mutation	heritability.	Each	circle	consists	of	the	values	of	SNP-based	
heritability,	polygenicity	and	S,	scaled	by	the	maximum	values	across	simulated	or	real	traits	such	that	the	three	parameters	are	on	the	same	scale	

from	zero	to	one.	The	green	shadow	indicates	the	computed	values	of	the	three	genetic	architecture	parameters	at	the	common	causal	variants	

(MAF>0.01)	in	the	last	generation	of	the	forward	simulation	given	the	input	values	on	x	and	y	axes.	The	hollow	triangle	shows	the	estimated	genetic	

architecture	for	each	UKB	trait.	A	demographic	model	proposed	by	Gravel	et	al	(2011)	was	used	in	the	simulation.
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Figure	5	Differentiated	signatures	of	negative	selection	in	the	genetic	architecture	of	different	
trait	categories.	a)	Projection	of	observed	genetic	architecture	averaged	over	each	trait	category	
onto	a	map	of	patterns	from	forward	simulation.	b)	The	expected	variance	of	SNP	effect	as	a	

function	of	MAF	based	on	the	model	!"# = %2'"(1 − '"+,
-!.#,	with	/0	and	!1.#	being	the	mean	

estimates	from	SBayesS	across	traits	for	each	category.	c)	The	mean	squared	effect	size	as	a	
function	of	MAF	for	genome-wide	significant	(GWS)	SNPs	from	GWAS	in	the	5	trait	categories.	
d)	The	overall	mean	squared	effect	size	of	the	GWS	SNPs	regardless	of	MAF.	In	b-d),	The	SNP	
effects	are	in	standard	deviation	units	of	liability	for	diseases	or	phenotype	for	quantitative	
traits.	 	
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Figure	6	Characterisation	of	the	genetic	architecture	in	21	functional	genomic	annotation	
categories	using	the	SBayesS-strat	model.	a)	Fold	enrichment	of	per-NZE	heritability	against	
that	of	polygenicity.	b)	Fold	enrichment	of	per-NZE	heritability	against	that	of	S.	Each	dot	is	the	
mean	across	35	UKB	traits	(including	diseases).	Each	bar	indicates	the	estimated	standard	error	
of	the	mean.	c)	Shown	is	the	expected	variance	of	effect	sizes	as	a	function	of	MAF	based	on	the	

model	!"# = %2'"(1 − '"+,
-!.#,	with	/0	and	!1.#	being	the	mean	estimates	across	traits	for	each	

annotation	category.	d)	The	area	under	the	curve	(AUC)	of	the	expected	effect	variance	over	
MAF	for	each	annotation	category,	as	shown	in	c).	
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