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Abstract 31 

Background. Global positioning systems (GPS) and altimeters are increasingly used to monitor 32 

vertical space use by aerial species, a key aspect of their niche that we need to know to understand 33 

their ecology and conservation needs, and to manage our own use of the airspace. However, there 34 

are various sources of error in flight height data (”height” above ground, as opposed to “altitude” 35 

above a reference like the sea level): vertical error from the devices themselves, error in the ground 36 

elevation below the tracked animals, and error in the horizontal position of the animals and thus the 37 

predicted ground elevation below them. 38 

Methods. We used controlled field trials, simulations, and the reanalysis of raptor case studies with 39 

state-space models to illustrate the effect of improper error management.  40 

Results. Errors of a magnitude of 20 meters appear in benign conditions (expected to be larger in 41 

more challenging context). These errors distort the shape of the distribution of flight heights, inflate 42 

the variance in flight height, bias behavioural state assignments, correlations with environmental 43 

covariates, and airspace management recommendations. Improper data filters such as removing all 44 

negative recorded flight height records introduce several biases in the remaining dataset, and 45 

preclude the opportunity to leverage unambiguous errors to help with model fitting. Analyses that 46 

ignore the variance around the mean flight height, e.g., those based on linear models of flight height, 47 

and those that ignore the variance inflation caused by telemetry errors, lead to incorrect inferences.  48 

Conclusion. The state-space modelling framework, now in widespread use by ecologists and 49 

increasingly often automatically implemented within on-board GPS data processing algorithms, 50 

makes it possible to fit flight models directly to raw flight height records, with minimal data pre-51 

selection, and to analyse the full distribution of flight heights, not just the mean. In addition to basic 52 

research about aerial niches, behaviour quantification, and environmental interactions, we highlight 53 

the applied relevance of our recommendations for airspace management and the conservation of 54 

aerial wildlife. 55 
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Introduction 57 

Describing the distribution of animals in environmental space is fundamental to understanding their 58 

resource requirements, cognitive processes, energetic strategies, and ecological characteristics. The 59 

distribution of animals in horizontal space has dominated ecological studies (Nathan et al. 2008), 60 

however the vertical dimension is also important for flying animals, and for that matter also diving 61 

and tree-climbing animals (Weimerskirch et al. 2005, Kunz et al. 2007, Bishop et al. 2015, Liechti et al. 62 

2018). For example, flight height data could help documenting the vertical niche and community 63 

ecology of aerial foragers (Arlettaz et al. 1997, Siemers and Schnitzler 2004). Flight height data 64 

quantify the behaviour of flying animals and their flight strategies (Pirotta et al. 2018, Murgatroyd et 65 

al. 2018), and their relationships with environmental factors (e.g., Péron et al. 2017). From an applied 66 

perspective, we need an accurate, error-free description of the distribution of birds and other 67 

animals in the aerosphere to avoid collisions with man-made structures, which is key to aircraft 68 

safety and animal conservation, in the current context of increasing human encroachment into the 69 

airspace (Lambertucci et al. 2015, Davy et al. 2017). 70 

However, monitoring vertical airspace use by wildlife remains challenging. Ground-based surveys are 71 

limited in their field of vision and time window. Airborne monitoring (e.g., from glider planes) is 72 

logistically challenging and constrained by weather conditions. Radar-based methodologies are not 73 

usually specific enough to assign records to species (but see Zaugg et al. 2008, Dokter et al. 2013). 74 

Animal-borne tracking methodologies such as global positioning systems (GPS) and altimeters have 75 

therefore become popular to monitor flying species (López-López 2016). They record data even when 76 

the animals are out of sight for ground-based observers, over extensive, potentially uninterrupted 77 

periods of time, and with no uncertainty about which species or individuals are being monitored. For 78 

example, we can record raptors soaring over the high sea at night (Duriez et al. 2018). However, the 79 

data that GPS and altimeters record are not error-free (D’Eon et al. 2002, Frair et al. 2004, Jerde and 80 

Visscher 2005, Brost et al. 2015). Errors are particularly evident in the vertical axis because there are 81 

unpassable barriers, e.g., the ground. Usually, a few unambiguously erroneous positions are 82 

recorded beyond these barriers (Katzner et al. 2012, Ross-Smith et al. 2016, Weimerskirch et al. 83 

2016, Péron et al. 2017, Krone and Treu 2018, Roeleke et al. 2018).  84 

Most of the research into ways to deal with sampling errors in positioning data has focused on  85 

horizontal animal movement (Freitas et al. 2008, Albertsen et al. 2015, Brost et al. 2015, Fleming et 86 

al. 2016). There is very little guidance for ecologists about the challenges specific to vertical space 87 

use data (Poessel et al. 2018). Many practitioners consider that vertical movement data need to be 88 

“filtered” before analysis, i.e., they discard some records before proceeding with the analysis. They 89 
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may discard records that are too far from preceding ones (as often done for horizontal data; Freitas 90 

et al., 2008), too far beyond impassable barriers (Katzner et al. 2012, Krone and Treu 2018), or 91 

obtained from an unreliable configuration of the GPS satellite network (Poessel et al., 2018). Instead 92 

of discarding the more erroneous records, researchers have also sometimes chosen to reset them to 93 

plausible values (Weimerskirch et al. 2016, Roeleke et al. 2018). However, when applied improperly, 94 

such filters can have undesirable consequences. We start by reviewing the sources of error in GPS 95 

and altimeter flight height data (Part 1). In Part 2, we reanalyse case studies into the flight height of 96 

three raptor species (Péron et al. 2017), and complement them with novel data from controlled field 97 

trials and from simulations, in order to illustrate the stakes of proper error-handling in vertical 98 

airspace use data.  99 

  100 

Part 1: Review of the sources of error in flight height data 101 

from GPS and altimeters 102 

Throughout we refer to flight height h, which is the distance to the ground below the bird, different 103 

from flight altitude z. The flight altitude denotes the distance to a reference altitude, often the 104 

ellipsoid, i.e., a geometrically perfect (but simplistic) model of the sea level. Alternatively, some GPS 105 

units may provide the altitude relative to the empirical sea level measured at a reference point over 106 

a reference period (e.g., in France the “NGF-IGN 1969” norm means that altitude is measured 107 

relative to the mean sea level in the port of Marseille between 1884 and 1896), or relative to the 108 

geoid, which is a model of the sea level if it was only influenced by the local gravitational field and 109 

the rotation of the Earth (Fowler 2005). There are databases and simple formulae to convert from 110 

one system of reference to another, but this nevertheless represents a first potential source of error 111 

in flight height data. 112 

Flight height above the ground is computed as � � �– ������, ��, where ������, �� is the ground 113 

altitude predicted by a digital elevation model (DEM) at the recorded horizontal position ��, ��, in 114 

the same system of reference as z. Errors in h can then be caused by errors in any of the three 115 

components: �, ���� , or ��, �� (Fig. 1). Importantly, depending on the application, researchers might 116 

want to study z not h (Pirotta et al. 2018, Murgatroyd et al. 2018). In the list below, sources of error 117 

#3-#5 do not influence z. 118 

1. Error in � when � is given by a GPS.  119 

If recorded by a GPS, z is affected by the “user equivalent range error” (UERE) and the “vertical 120 

dilution of precision” (VDOP) (Parkinson and Spilker 1996, Sanz Subirana et al. 2013).  121 
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The UERE stems from diffusion and diffraction in the atmosphere, reflection from obstacles, and 122 

receiver noise (Parkinson and Spilker 1996, Sanz Subirana et al. 2013). The acronym UERE usually 123 

directly refers to the root mean squared error, but here we will use the notation σ���� instead.  124 

σ���� is usually in the order of a few meters and considered constant over time for a given device. 125 

Some GPS manufacturers specify the horizontal σ����, or alternatively it can be estimated from the 126 

data (Johnson et al. 2008). The σ���� is however reputedly larger in the vertical axis than the 127 

horizontal axes (D’Eon et al. 2002, Bouten et al. 2013), meaning that manufacturer-provided σ���� 128 

should be considered conservative for vertical applications and should be used with appropriate 129 

caution.  130 

The vertical position dilution of precision factor (VDOP) quantifies the effect of changes in the size 131 

and spatial configuration of the available satellite network on the precision of GPS records (Parkinson 132 

& Spilker, 1996; Sanz Subirana et al., 2013; Fig. A1). The more satellites are available and the more 133 

evenly spread apart they are, the more reliable the positioning is.  Some GPS manufacturers do 134 

provide a VDOP value for each record, but many only provide a more generic DOP value.  135 

When σ���� and VDOP are known, the error-generating process can then be approximated by a 136 

Gaussian process with time-varying standard deviation σ��t� � VDOP�t� · σ���� (Eq. 6.45 in Sanz 137 

Subirana et al., 2013). Therefore, the DOP is not a direct index of precision.  The spread of the error 138 

distribution increases with the DOP, but the error on any given record is stochastic. The DOP is 139 

therefore not intended to be used as a data filter (e.g., discard any data with DOP above a given 140 

threshold), but instead it should be used to model the error-generating process. 141 

 142 

2. Error in � when � is given by an altimeter 143 

If recorded using an altimeter, � is computed from the barometric pressure, using the formula 144 

� � � · � · �������	 �⁄ � (Monaldo et al. 1986, Crocker and Jackson 2018). c is a calibration constant 145 

that mostly depends on the composition of the air (e.g., percentage of vapour) and on the 146 

gravitational field. T is the air temperature in Kelvin, P is the air pressure, and PREF is the air pressure 147 

at an elevation of reference (both pressures in mbar or in Pascal). However, this formula only holds 148 

when the atmosphere is at equilibrium.  Changes in temperature, pressure, and air composition, i.e., 149 

the weather, alter the link between z and P. These influences are difficult to control fully because one 150 

would need to measure the weather variables both where the bird is, and at the reference elevation 151 

immediately below the bird. In other words, altimeters can be more accurate than GPS to monitor 152 

flight height, but only over short periods of time when the weather can be considered constant and 153 

the altimeter is calibrated for that weather. One should ideally regularly re-calibrate the altimeters 154 
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using direct observations of flight height and accurate measures of PREF and T. Unfortunately, field 155 

calibrations are rarely feasible in practice (but see Shepard et al., 2016; Borkenhagen et al., 2018). 156 

The consequence is that altimeters are often miscalibrated. The degree of miscalibration depends 157 

mostly on the weather. This generates temporally autocorrelation in the error time series. Over a 158 

restricted time period, the error patterns are thus more akin to a bias (a systematic over- or under-159 

estimation of flight height) than to an error in the statistical sense of a zero-mean, identically and 160 

independently distributed random process. Importantly, altimeter data still allow one to compute 161 

the derivative of flight height, i.e., climb rate, because the amount of bias can be considered constant 162 

over short periods of time. In Part 2.1, we will directly compare the errors from GPS and altimeters 163 

using controlled field experiments. 164 

3. GPS horizontal error.  165 

��, �� is also affected by a user equivalent range error and a dilution of precision (Fig. 1). The 166 

horizontal error in ��, �� can thus also be described as a Gaussian process with time-varying standard 167 

deviation: �
���� � 1/√2 · �� ���� · ����� . Note that we use here a horizontal dilution of 168 

precision factor, HDOP. An often-overlooked consequence of errors in the horizontal position is that 169 

they introduce flaws in the link to spatially-explicit environmental covariates (Hays et al. 2001, 170 

Bradshaw et al. 2007). In particular, the ground elevation ����  is extracted from a location ��, �� 171 

that is slightly different from the true location (Katzner et al. 2012). If the terrain is very rough, then 172 

the ground elevation at the recorded location ��, �� may be significantly different from the ground 173 

elevation below the actual location of the bird. In Part 2.2 we will use simulations to quantify the 174 

influence of horizontal errors. 175 

4. Interpolation error in ����.  176 

����  is interpolated from discrete ground elevation measurements (Gorokhovich and Voustianiouk 177 

2006, Januchowski et al. 2010). The ground elevation is measured at a few select locations, but it is 178 

interpolated between them. The result of the interpolation is then rasterized at a set resolution, and 179 

the result is the DEM. This process can be quite imprecise (Gorokhovich and Voustianiouk 2006, 180 

Januchowski et al. 2010). At a cliff, for example, the ground elevation may drop by several hundred 181 

meters within a single pixel of the DEM.  182 

5. Errors in DEM base data.  183 

The original measurements from which DEMs are interpolated are not necessarily error free either. 184 

These errors are assumed small relative to the other sources, however, there is, to our knowledge, 185 
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not much information available about the base datasets from which DEM are interpolated and their 186 

precision.  187 

 188 

Part 2: Field trials, simulations, and reanalysis of raptor 189 

data 190 

Material and Methods 191 

Controlled field trials 192 

To quantify the magnitude of the vertical error in altimeters and GPS devices, we conducted three 193 

controlled trial experiments. 194 

First, we attached an “Ornitrack 25” GPS-altimeter unit (Ornitela) to a drone. We then flew the drone 195 

above the rooftop of the Max-Planck institute in Radolfzell, Germany at heights ranging from 0 196 

(drone landed on the rooftop) to 90m. We conducted 6 flight sessions over two days, each lasting 197 

between 15 and 140min, collecting one record every ten minutes for a total of 30 records. We also 198 

monitored the air pressure and temperature on the rooftop, which we used to recalibrate the 199 

altimeter post-hoc. Lastly, the drone carried a separate, on-board, altimeter.  200 

In a second, separate experiment, we attached two “Gipsy 5” GPS units (Technosmart) to an ultra-201 

light aircraft, with a vertical distance of 1.8m between the two units. We then flew the aircraft near 202 

Radolfzell while the two units simultaneously tracked its flight height, collecting one record per 203 

second for a total of 11.5 hours over 5 days.  204 

Third, we compared the vertical positions recorded by 4 different units from 3 different 205 

manufacturers: Technosmart (AxyTrek and Gipsy 5), Microwave (GPS-GSM 20-70), and Ornitela (GPS-206 

GSM Ornitrack 85). We (RG and OD) carried these units to 21 known geodesic points, of which the 207 

altitude was precisely documented by the French National Geographic Institute. The units recorded 208 

their position once every minute for a total of 894, 934, 560, and 563 data points, keeping only the 209 

unit * location combinations that yielded more than 25 fixes. We computed the bias and root mean 210 

squared error of the vertical measurement by comparing these data to the actual, known altitudes of 211 

the geodesic points. Importantly, the manufacturers do not use the same reference to compute the 212 

altitude: Microwave uses the geoid (WGS 84 EGM-96 norm), whereas the others use the mean sea 213 

level (assumed to correspond to the local reference, meaning the NGF-IGN 1969 norm, but sea 214 

below). We expressed all altitudes in the same norm before computing biases and errors, and 215 

accounted for sampling effort (number of fixes) and location when comparing the performance of 216 

different units. 217 
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Simulations of flight tracks 218 

We simulated flight tracks that followed Ornstein-Uhlenbeck processes (Dunn and Gipson 1977). This 219 

is a class of continuous-time stochastic models, which is not specific to vertical movement or even to 220 

movement (Dunn and Gipson 1977). In the case of vertical movement, the parameters of the 221 

Ornstein-Uhlenbeck processes control the mean flight height, the variance in flight height, and the 222 

temporal autocorrelation in the flight height time series. We transformed the raw Ornstein-223 

Uhlenbeck simulations using an atanh link as described by Péron et al. (2017) to enforce positive 224 

flight height. The time unit was arbitrary. An attractive feature of simulations in the context of this 225 

study is that we know both the true flight height and the recorded flight height, which is the true 226 

flight height plus an independent and identically distributed zero-mean Gaussian error. 227 

Simulations of synthetic landscapes 228 

The objective was to quantify the influence of horizontal errors. We generated synthetic landscapes 229 

of varying complexity and roughness (Fig. A2). We then transposed the flight track of a lesser kestrel 230 

Falco naumanni over these synthetic landscapes. The individual originally flew over extremely flat 231 

terrain (the Crau steppe in France). The data (Pilard and OD, unpublished) were collected every 3 232 

minutes using a Gipsy 5 GPS unit from Technosmart, and processed through the state-space model of 233 

Péron et al. (2017) to account for real sampling errors before use. We then added simulated random 234 

telemetry noise of controlled standard deviation. 235 

Raptor case studies 236 

We reanalysed the data from Péron et al. (2017), where the field procedure, data selection, and data 237 

analysis procedures are described in full. Briefly, we studied three species of large soaring raptors: 238 

Andean condors Vultur gryphus (five juveniles, 1,692 individual.days of monitoring, 15 minute 239 

interval), Griffon vultures Gyps fulvus (eight adults, 2,697 individual.days, 1-5 minute interval), and 240 

Golden eagles Aquila chrysaetos (six adults, 3,103 individual.days, 6-10 minute interval). After 241 

applying the analytical procedure, for each data point, we could compare the corrected position, an 242 

estimate of the true position, to the recorded position, which was affected by the sources of errors 243 

we listed in Part 1.  244 

We selected the period between 11:00 and 15:00, which concentrates condor activity and therefore 245 

flight time, and discarded other records. For the vultures, we selected the period between 09:00 and 246 

16:00. For the eagles, we selected the period between 08:00 and 17:00 and, because a lot of time is 247 

spent motionless in this species even during their core activity period, we further removed all the 248 

records that were less than 15 meters from the previous record. We acknowledge the arbitrary 249 

nature of this data selection and emphasize that it is not necessary or even recommended to apply 250 
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such filters before analysis. We however stress that in the context of the present study, the case 251 

studies perform an illustrative function, meaning that we use them to highlight the effect of 252 

improper error-handling, at least during the particular time periods that we selected for analysis 253 

because we consider them relevant for biological inference, and that the same analytical procedures 254 

can indiscriminately be applied to other time frames.  255 

Collision risk 256 

In several instances, we will illustrate the potential effect of improper data-handling on management 257 

recommendations by estimating the risk of collision with wind turbines as the proportion of records 258 

between 60 and 180m above ground (assuming no behavioural adjustment in the presence of wind 259 

turbines). Collision risk estimated from GPS tracks is increasingly used to make recommendations 260 

about the choice of locations for new turbines, or to schedule the operation of existing ones. We 261 

expected that the estimated collision risk would depend on flight parameters (mean flight height, 262 

variance in flight height), on the magnitude of errors, and on error-handling. For example, a large 263 

variance in flight height might lead to a high collision risk even if the mean flight height is beyond the 264 

collision zone. Improperly handled errors may lead to positions being erroneously recorded in the 265 

collision zone when the birds actually flew outside of it, and vice versa. The same type of thinking 266 

could be applied to other types of collision risk, e.g., antennas, utility lines, buildings with bay 267 

windows, except that the collision zone would be at a different height. 268 

Part 2.1: The magnitude of vertical errors in GPS and altimeters 269 

During the first controlled field trial (with the drone), DOP values between 1.2 and 1.6 indicated that 270 

the configuration of the satellite network was reliable throughout. Nevertheless, 6.7% of the GPS 271 

flight height records were below the rooftop height, i.e., obviously erroneous. For the altimeter, with 272 

default settings, 10% of the records were below the rooftop height. The default settings of the 273 

altimeter therefore did not correspond to the atmospheric conditions during the experiment. The 274 

standard deviation of the difference between the recalibrated altimetry and the GPS data was 22m, 275 

between the recalibrated altimetry and default-setting altimetry it was 14m, and between the 276 

recalibrated altimetry and the on-board drone altimeter it was 19m. This means that, with default 277 

settings, the altimeters had approximately the same precision as the GPS.  278 

During the second controlled field trial (with two GPS units attached to the same aircraft), in 35% of 279 

cases, the lower unit was erroneously recorded above the higher unit. The standard deviation of the 280 

difference between the height recorded by the two units was 7.1m. The highest of the two units 281 

recorded 3% of negative flight heights. The lowest unit recorded 13% of negative flight heights.  282 
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During the third controlled field trial (with GPS units carried to a geodesic point of precisely known 283 

altitude), the mean absolute bias of the vertical measurement was 27m on average across units and 284 

locations. The root mean squared error ranged from 14m to 42m depending on the unit, with a small 285 

effect of location. However, the within-session standard deviation ranged only to 28m, suggesting 286 

that a bias in the sea level reference point (probably incorrectly assumed to follow the French norm) 287 

inflated the RMSE.  The average bias ranged between -17m and +12m depending on the unit, after 288 

correcting for significant location effect, but without effect of altitude. This means that different 289 

brands of GPS unit yield different rate of error in their altitude measurements, which can impair the 290 

comparison of datasets collected by different units. Further investigation or communication with 291 

manufacturers should decipher whether this stems from different fix acquisition procedures (e.g., 292 

satellite detection) or different post-processing algorithms, and should also make clear which sea 293 

level reference point different manufacturers are using. 294 

These controlled field trials, along with other similar reports (Bouten et al., 2013; Ross-Smith et al., 295 

2016), highlight that even in benign conditions, GPS and altimeter data are sufficiently error-prone to 296 

tamper with ecological inference in many cases (range of the standard deviation of the error: 4 – 297 

50m). The issue is only suspected to be more acute in operational conditions when the DOP is larger, 298 

the terrain rougher, the weather more variable, and there are more obstacles to signal diffusion than 299 

in controlled field trials. Furthermore, the rate of error depended on the brand of the unit and on the 300 

location, which can be of importance when comparing across studies. 301 

Part 2.2: Horizontal errors can cause vertical errors  302 

In the synthetic landscape simulations, the frequency of negative flight height records increased with 303 

the standard deviation of both the horizontal and vertical telemetry error (Fig. A2a), and with the 304 

landscape roughness and complexity (Fig. A2b). However, the various sources of errors acted in a 305 

multiplicative way, so that even when the telemetry noise was small (SD of 1m), the error in h could 306 

be large (SD of 20m; Fig. A2c; darkest grey curve). Perhaps unexpectedly, when the horizontal error 307 

was large, the error in the height above ground tended to be independent of the vertical error in the 308 

GPS (on average across all simulations; Fig. A2c; lightest grey curve). This means that the effect of the 309 

horizontal error in the GPS can supersede the effect of the vertical error, if the terrain is rough. Even 310 

in the absence of any vertical error, the horizontal error was indeed routinely sufficient to cause 10-311 

20% of the data points to be below ground (Fig. A2a). 312 

Part. 2.3: Errors inflate the recorded variance in flight height 313 

In the simulations of flight tracks, errors in h inflated the variance in the distribution of recorded 314 

flight heights, i.e., the variance in the true flight height was consistently lower than the variance in 315 
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the recorded flight height (Fig. 2). In the raptor case studies, we obtained the same result, with the 316 

caveat that we did not access to the true flight height, but we could instead use the corrected flight 317 

heights (Fig. 2).  318 

Indeed, if the movement and error processes are independent, the total variance in flight height is 319 

theoretically exactly the sum of the movement and sampling variances (e.g, Auger-Méthé et al., 320 

2016; see also Gould & Nichols, 1998 and references therein). If the movement and error processes 321 

are not independent, the total variance is still larger than the movement variance. Yet, what we need 322 

for biological inference is the movement variance. In a naïve analysis of the raptor case studies that 323 

would confound telemetry errors with rapid movements, the birds would therefore have appeared 324 

more vertically mobile and with a more spread-out distribution in the aerosphere than they actually 325 

were. This type of issue is potentially quite widespread in movement ecology, e.g., in behavioural 326 

assignment exercises that use movement variances (daily displacements, turning angles, etc.) to 327 

determine the behavioural state of animals.  328 

 329 

Part 2.4: Negative flight height records provide useful information 330 

In this section we focus on negative records, i.e., unrealistically low records, but the same logic can 331 

be applied to unrealistically high records. Negative flight height records are more likely to occur 332 

when animals are near the ground, either perched or flying. If we remove the negative records 333 

(Poessel et al. 2018), perching and low flight are under-sampled in the final dataset (Roeleke et al. 334 

2018). To illustrate this point, we used a flight track from a migrating juvenile osprey (Pandion 335 

haliaetus) as it crossed the sea between the Italian mainland and Corsica (Duriez et al. 2018). During 336 

a portion of that sea crossing, its Ornitela GPS unit recorded flight heights that oscillated between -337 

2m and -7m below the sea level (Fig. A3, inset). The amplitude of the oscillation suggested that the 338 

bird followed the swell of the waves. The complete sequence (Fig. A3) depicts a progressive loss of 339 

altitude as the bird glided towards firm ground, and a period of active flapping flight (as per the 340 

accelerometery record) very low above the waves once the bird had lost all of its accumulated 341 

potential energy before reaching firm ground. These negative flight height records documented a 342 

critical time period. First, the risk of having to make a sea landing were clearly much greater in the 343 

few minutes when the osprey was flying low over the waves, compared to the rest of the sea 344 

crossing when the bird was often soaring high (Duriez et al. 2018). In addition, when flying low, the 345 

bird had no other choice than to flap and therefore expend energy; whereas when higher above the 346 

sea, the bird had the option to soar and therefore spare energy. It is critical that negative flight 347 

height records like these are maintained, even if, instead of a fully interpretable high-resolution 348 
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sequence like in this example, there are just a few isolated negative flight height records in a low-349 

resolution dataset.  350 

In addition, if we only kept the records with positive flight height, we would obtain a biased sample 351 

of the distribution of flight height. Both in simulations and in the raptor case studies, discarding 352 

negative flight height records led to the overestimation of the mean flight height in the remaining 353 

dataset, the underestimation of the variance in flight height, the introduction of a right skew in the 354 

distribution of flight height, and the overestimation of the collision risk (Fig. 3). The latter result was 355 

because negative records mostly occurred when the bird was flying below the collision zone, and 356 

thus removing negative records led to under-sample safe periods of time. Note that this particular 357 

result pertains to the wind turbine application case only; in other types of collision risk, e.g., buildings 358 

and utility lines, the collision zone starts closer to the ground. 359 

The simulations nicely complemented the raptor case studies by 1) eliminating any debate about 360 

whether the corrected flight heights in the raptor case studies were trustworthy or not (in the 361 

simulations, the true flight heights are exactly known) and 2) increasing the range of flight 362 

behaviours, since the raptors tended to exhibit lower percentage of time near the ground (in part 363 

because we purposely tried to exclude time spent perched) and different distributions of the 364 

sampling error. The amount of bias appeared highly dependent on the underlying flight behaviour 365 

and error distribution, and therefore not easy to predict and account for without appropriate error-366 

handling methodology. 367 

Additionally, there are many other major consequences of discarding negative flight heights. One is 368 

the disruption of the expected balance of positive and negative errors in the remaining data. 369 

Negative flight height records only arise when the error is negative, and so removing them 370 

introduces a bias towards positive errors, thereby disrupting the shape of the distribution of errors in 371 

the remaining data. Yet, we need the full range of errors to fit the models in Part 3. Another, 372 

unrelated consequence is the disruption of the sampling schedule of the remaining data. Many 373 

movement analyses are critically sensitive to the sampling schedule, and therefore their outcome will 374 

not be the same after removing the negative records. Lastly, and perhaps most importantly, negative 375 

flight height records can help fit the models that separate the error and movement processes, 376 

because they are unambiguously erroneous and can be informed as such in the model-fitting 377 

procedure (cf. Part 3). Some authors have applied less stringent filters, such as removing only the 378 

most negative flight height records and removing an equal amount of extremely positive flight height 379 

records. While the effect on the remaining distribution, and on the balance of negative and positive 380 

errors is supposedly weaker than if removing all of the negative records, we warn that the remaining 381 
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records are still affected by the same error process that generated the records that were deemed too 382 

erroneous to keep, thus the issues in Part 2.3 still need to be addressed. In addition, these extremely 383 

erroneous records are potentially the most informative regarding the shape of the error distribution 384 

(cf. Part 3). 385 

 386 

Part 2.5: The mean flight height is not sufficient to describe the 387 

distribution of flight heights 388 

Flight height datasets are often reduced to a single summary metric, the mean flight height and its 389 

variation with environmental and individual covariates (Walter et al. 2012, Cleasby et al. 2015, 390 

Poessel et al. 2018, Tikkanen et al. 2018, Balotari-Chiebao et al. 2018). This decision is mostly based 391 

on the ease of implementing spreadsheets, linear models, moving averages, or spline models. In this 392 

section we instead call for approaches that describe the full distribution of flight heights in the 393 

aerosphere, not only the mean flight height. To justify this call, we again focus on collision risk 394 

estimation. Indeed, if the variance in flight height is large enough, a proportion of time may be spent 395 

in the collision zone even if the mean flight height is outside the collision zone. In simulations, the 396 

proportion of time spent in the collision zone indeed depended on both the mean and the variance in 397 

flight height (Fig. 4a-b). In the raptor datasets, the estimated probability of flying in the collision zone 398 

did not decrease much for the individuals whose mean flight height was estimated above the 399 

collision zone (Fig. 4c). Similarly, the individuals that had an estimated mean flight height well below 400 

the collision zone were predicted to spend about 20% of their time in the collision zone (Fig. 4c). We 401 

strongly recommend that collision risk forecasts should not be based on the fixed effects of linear 402 

models, but instead on the full distribution of flight heights – a recommendation that will likely hold 403 

for all studies into vertical airspace use.  404 

Part 3: Statistical solutions 405 

The state-space model framework (de Valpine & Hastings, 2002; Fig. 5) has a structure that is 406 

naturally aligned with the challenges of sampling errors in vertical space-use data. A state-space 407 

model is a stochastic model describing the changes over time in a state variable (here, the true flight 408 

height), when that variable is imperfectly observed (here, the recorded flight height). There is a 409 

“state process”, separated from an “observation process” (Fig. 5). State-space models are routinely 410 

used to correct for positioning errors in satellite-tracking data (chap. 6 in Sanz Subirana et al., 2013), 411 

including in wildlife studies (Patterson et al. 2008, Johnson et al. 2008, Albertsen et al. 2015, Brost et 412 

al. 2015, Buderman et al. 2015, Fleming et al. 2017). Importantly, these applications are not to be 413 

confused with another application of state-space models to movement data, when the focal state 414 
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variable is a “behavioural state” whose Markovian transitions drive changes in movement rates 415 

(Gurarie et al. 2016, Pirotta et al. 2018, Murgatroyd et al. 2018). Instead, when the objective is to 416 

correct for positioning errors, the state variable is the position itself.  417 

In studies of flight height, the movement model can be set up such that the state variable always 418 

stays above zero. Then, if the recorded flight height is -7m, the model “knows” that the error was at 419 

least 7m (Ross-Smith et al., 2016; cf. Part 2.4). Actually, the presence of unambiguously erroneous 420 

records makes flight height studies better-suited to apply state-space models than many studies into 421 

horizontal space use by animals. Indeed, even when in theory the model is estimable, sometimes 422 

only a subset of the parameters of a state-space model are separately estimable, a phenomenon 423 

called “weak identifiability” that occurs when the sampling variance largely exceeds the process 424 

variance. An example of weak identifiability is when the difference between two classes of 425 

individuals are larger than the differences within the classes (Garrett and Zeger 2000). In addition, 426 

there are large statistical correlations between variance parameters in a movement model (Fleming 427 

et al. 2017), making it extra difficult to accurately separate movements and errors in sparse datasets. 428 

In that context, unambiguously erroneous records, such as negative flight heights, represent an 429 

additional source of information (Brost et al. 2015). They can help separate the process and sampling 430 

variances (Péron et al. 2017) and solve issues of weak identifiability.  431 

As a perspective, we stress that there are also ways to obtain unambiguously correct records. These 432 

records could in theory perform a role similar to that of unambiguously erroneous records. For 433 

example, sometimes the position of the animals can be confirmed, e.g., at a documented feeding 434 

site, a nest, or by an incidental ground-based sighting.  Those records can then be matched to the 435 

GPS track, yielding an exact measure of the local error. Animal-borne devices may also include a 436 

transponder designed to signal passage near strategically-placed emitters (e.g., Rebke, Coulson, 437 

Becker, & Vaupel, 2010). This type of validation data is routinely used in other applications of the GPS 438 

technology (Sanz Subirana et al. 2013). Lastly, the state-space framework is naturally conducive to 439 

the joint analysis of multiple sources of error-prone data (e.g., Péron, Nicolai, & Koons, 2012). In 440 

flight height studies, it is therefore possible to jointly analyse GPS and altimeter data, or multiple GPS 441 

streams coming from the same animal. This double-data approach is expected to help with statistical 442 

covariance issues, but cannot be expected to fully resolve all identifiability issues (Besbeas & Morgan, 443 

2017), which only error-free validation data can do. 444 

We should eventually stress that several wildlife GPS manufacturers already use a state-space model 445 

as part of the onboard data pre-processing algorithm, i.e., the released data have already been 446 

corrected by a proprietary state-space algorithm which may furthermore rely on proprietary 447 
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validation data (Ornitela staff, pers. comm.). From our experience, in wildlife applications, these pre-448 

processing algorithms are only applied during “bursts” of high-frequency data acquisition, not when 449 

the users request a more traditional low-frequency data acquisition schedule. Importantly, the data 450 

may not be pre-processed across bursts. The error from the first location of a burst is then carried 451 

over the entire burst sequence. Flight height tracks affected by this issue would exhibit a staircase-452 

shaped profile. Overall, this type of data pre-processing trades a lower error variance against a larger 453 

error autocorrelation. Additional state-space modelling of the released pre-processed data can deal 454 

with this type of error autocorrelation, but the models need to be custom-made, i.e., are not 455 

routinely implemented in software. Perhaps more worryingly, some commercially-available GPS units 456 

apparently simply truncate the recorded height at zero above sea level (pers. obs.). We call for a 457 

more open approach to these data manipulations, including making the raw, unprocessed GPS 458 

records available, in addition to any pre-processed data, and with a formal description of the pre-459 

processing algorithm. 460 

We also acknowledge that the fitting of state-space models to vertical space use data still requires 461 

relatively rare statistical skills. Nevertheless, there are already several free, open-source computing 462 

environments to fit state-space models to vertical (and horizontal) movement data, and thereby 463 

estimate the most likely movement track as a by-product of the estimated parameters, similarly to 464 

how the individual values would be computed in a generalized mixed model with individual random 465 

effects: 466 

-  The crawl (Johnson et al. 2008) and ctmm (Calabrese et al. 2016) packages for R. These compute 467 

the likelihood of the state-space model using a Kalman filter. This algorithm is fast but requires all the 468 

model processes to be Gaussian or approximately Gaussian (no truncation or constraint, no excess 469 

extreme values, no excess kurtosis or skew). 470 

- The TMB package for R (Kristensen et al. 2014) approximates the likelihood of the state-space 471 

model using the automatic differentiation algorithm with Laplace approximation. That approach 472 

makes computing times shorter than the next option, while still allowing for flexible modelling such 473 

as non-Gaussian errors (Albertsen et al. 2015), custom link functions (Péron et al. 2017), or multiple 474 

data streams.  475 

- The Monte Carlo Markov Chain Bayesian framework (Plummer 2003, Spiegelhalter et al. 2003, 476 

Csilléry et al. 2010) generates parameter distributions that iteratively converge towards the solution. 477 

This option is the most flexible in terms of nonlinearities and non-Gaussian features, such as 478 

truncated distributions (Brost et al. 2015), but the computing time can be prohibitive large for 479 

datasets.  480 
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 481 

Conclusion 482 

Improper error-handling methodologies yield a flawed picture of aerial niches. For example, 483 

discarding negative flight height records artificially truncates the observed distribution of flight 484 

heights (Fig. 3), and focusing on the mean flight height alone (for example when using linear models) 485 

does not fully describe the aerial niche (Fig. 4). While these observations are quite intuitive, bad 486 

practices remain common enough that it was important to stress these issues and illustrate them 487 

thoroughly. On the other hand, not addressing the occurrence of errors at all would artificially 488 

spread-out the observed distribution of flight heights (Fig. 2), leading for example to increased 489 

observed vertical overlap between species and individuals, which can modify the inference about 490 

community processes. Improper error handling procedures would also tamper with the 491 

quantification of behaviour and flight strategies, by increasing or decreasing the observed vertical 492 

velocity, and interfere with behavioural state assignments. Lastly, errors may covary with 493 

environmental covariates such as terrain roughness and wind speed, e.g., GPS positioning precision 494 

decreases with terrain roughness (D’Eon et al. 2002) and wind speed decreases near the ground 495 

(Sachs 2005). Thereby, selectively discarding records based on the number of available satellites or 496 

the dilution of precision would lead to imbalanced sampling of terrain roughness, and discarding 497 

negative flight height records (that predominantly occur near the ground) would lead to 498 

misrepresent the relationship to wind speed. 499 

Regarding applied consequences, we focused on demonstrating how improper methods would 500 

imperfectly quantify the time spent by GPS-tracked raptors in the rotor-swept zone of wind turbines 501 

(Fig. 3b). There are many other human-wildlife conflicts for the use of the aerosphere, for example 502 

bird strikes near airports and disturbance of wildlife by drones and other recreational aircraft. 503 

Regarding bird strikes, GPS-based predictive models of bird flight height (e.g., Péron et al. 2017) 504 

might help plan ahead the operation of airports. The state-space class of model that we advocate is 505 

actually already used, in real time, to exploit bird activity data from radar monitors and generate a 506 

warning system for airport managers (Bruder 1997). Regarding recreational aircraft and drones, 507 

analysing bird-borne GPS tracks may help reveal the effect of the disturbance, which is expected to 508 

increase in frequency as drones in particular become more popular (Rebolo-Ifrán et al. 2019). The 509 

recommendations we made about the effect of errors on the estimation of aerial niche overlaps and 510 

the quantification of behaviours seem particularly relevant in this context. 511 

In conclusion, the issue of properly handling errors in flight height data is key to any aeroecology 512 

study. We strongly advise against ad-hoc “data quality” filters, and against statistical tools that only 513 
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document variation in the mean flight height instead of the full distribution of flight height. Our 514 

proposed statistical framework based on state-space models and the analysis of the full distribution 515 

of flight heights requires interdisciplinary work between experts in flight behaviour and experts in 516 

data analysis, and the emergence of interface specialists, but the insights and the applied decisions 517 

based on those insights are expected to be more reliable.  518 

 519 

List of abbreviation: h: flight height above ground; z: flight altitude (relative to the same reference as 520 

the DEM, e.g., the ellipsoid); DEM: digital elevation model; UERE: user equivalent range error; DOP: 521 

dilution of precision; SD: standard deviation. 522 
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Figure legends 722 

Fig. 1: Illustration of the difference between true and recorded flight height. A: True flight height 723 

above ground (htrue), and true elevation above ellipsoid (ztrue). B: Adding the five sources of error, with 724 

circled numbers referring to headings in Part 1. DEM stands for Digital Elevation Model. C: Two tracks 725 

with the same amount of error. The bird of track 1 is flying high so all the recorded flight height data 726 

remain positive despite the errors. The bird of track 2 is flying low, so some of the recorded data fall 727 

below the digital elevation model. 728 

 729 

Fig. 2: Comparison between the standard deviation of the recorded flight height (y-axis) and of the 730 

corrected flight height (x-axis), assumed to represent the true flight height, in three species of large 731 

soaring raptors. Each point stands for one bird over its entire monitoring period. The state-space 732 

model that we used to correct the flight heights, and in particular its robustness to variation in 733 

sampling resolution across populations, is explained in Péron et al. (2017). The diagonal line shows 734 

where the points should be if the recorded flight heights were error-free.  735 

 736 

Fig. 3: Removing the negative recorded flight heights introduces biases in the distribution of the 737 

remaining flight heights. Left group of panels: in simulations, where the true flight height is known. 738 

Right group of panels: in the raptor case studies, where the corrected flight height is assumed to 739 

represent the true flight height. In all panels, the x-axis features the variance in the true (or 740 

corrected) flight height. The y-axis features the percentage bias in (a) mean flight height; (b) collision 741 

risk (proportion of time spent between 60 and 180m above ground); (c) variance in flight height; and 742 

(d) skewness of the distribution of flight height. A percentage bias of +10% means that the focal 743 

quantity is 10% larger after we remove the negative records.  744 

 745 

Fig. 4. The variance in flight height influences the percentage of time spent in the collision zone of a 746 

wind farm (grey area, between 60 and 180 m). (a) Four simulated tracks (where the true flight height 747 

is known) with the same mean flight height (200m) but different variances (10, 50, 100, and 250m²). 748 

(b) More extensive simulations. Each point corresponds to one simulated track with a different mean 749 

flight height. (c) Same as (b) but using real datasets collected from three raptor species, where the 750 

corrected flight height is assumed to represent the true flight height. Each symbol stands for an 751 

individual over its entire monitoring period.  752 
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 753 

Fig. 5: Schematic overview of the principles of a state-space model as applied to the correction of 754 

sampling errors in flight height data. The movement (or state) process accounts for the distribution 755 

of true flight heights. The observation process introduces sampling errors of various origins (Part 1) 756 

and yields the recorded flight heights. It also accounts for the sampling schedule. By fitting this model 757 

to recorded flight height time series, we can retrospectively compute the corrected flight height, an 758 

estimate of the true flight height. 759 

 760 
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