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Abstract 24 

Adverse drug reactions (ADRs) are one of the leading causes of morbidity and mortality in health 25 

care. Understanding which drug targets are linked to ADRs can lead to the development of safer 26 

medicines. Here, we analyze in vitro secondary pharmacology of common (off) targets for 2134 27 

marketed drugs. To associate these drugs with human ADRs, we utilized FDA Adverse Event 28 

Reports and developed random forest models that predict ADR occurrences from in vitro 29 

pharmacological profiles. By evaluating Gini importance scores of model features, we identify 221 30 

target-ADR associations, which co-occur in PubMed abstracts to a greater extent than expected 31 

by chance. Among these are established relations, such as the association of in vitro hERG 32 

binding with cardiac arrhythmias, which further validate our machine learning approach. Evidence 33 

on bile acid metabolism supports our identification of associations between the Bile Salt Export 34 

Pump and renal, thyroid, lipid metabolism, respiratory tract and central nervous system disorders. 35 

Unexpectedly, our model suggests PDE3 is associated with 40 ADRs. These associations provide 36 

a comprehensive resource to support drug development and human biology studies. 37 

Keywords 38 

Adverse drug reactions, adverse event report, FAERS, secondary pharmacology, machine 39 

learning, statistical modeling, drug discovery & development, drug safety.  40 
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Toxicity is one of the major causes of termination, withdrawal, or labeling of a drug candidate or 41 

drug, other than lack of efficacy 1–3. There is an urgent need to better identify toxic on- and off-42 

target effects on vital organ systems especially for cardiovascular, renal, hepatic and central 43 

nervous system (CNS)-related toxicities; furthermore, there is a desire to reduce cost and labor 44 

in preclinical assays and drug testing on non-human species 4–6. In vitro pharmacological assays 45 

have been widely used to screen for possible off-targets and potential adverse effects and 46 

eliminate compounds that are not safe enough in the drug development stage as early as possible 47 
5,7. However, systematic prediction of compound safety and potential adverse events associated 48 

with a compound is still a challenge for the pharmaceutical industry.  49 

 50 

Machine learning can be very insightful for many different stages of drug discovery and 51 

development, such as automation in pharmacology assays, clinical trials, and basic science 52 

research. Previous studies have focused on predicting structure-function relationships based on 53 

chemical structure of small molecules and potency assays that probe the physicochemical 54 

properties of compounds to estimate associations with off-targets 8. However, the diversity of 55 

structures that interact with targets, even when they are well described like human Ether-a-go-56 

go-related gene (hERG), make it challenging to produce reliable models 9. Several papers provide 57 

small, hand-curated databases providing up to 70 pharmacological targets (i.e. receptors, ion 58 

channels, transporters, etc.) with established links to adverse side effects based on a scientific 59 

literature search 5,7,10,11. Mirams et al. recently described how integration of data from multiple ion 60 

channels (e.g. hERG, sodium, L-type calcium) provided improved in silico prediction of 61 

torsadogenic risk 12. Chen et al. proposed a machine learning approach to predict adverse drug 62 

reaction (ADR) outcomes for given patient characteristics and drug usage 13. Another study 63 

highlights importance of predicting the likelihood of clinical trial side effects using human genetic 64 

studies of drug-targeted proteins 14. From a pharmacogenomics perspective, predicting drug-65 

target interactions using pharmacological similarities of drugs and the US Food and Drug 66 

Administration (FDA) Adverse Event Reporting System (FAERS 15) can be beneficial for drug 67 

repositioning and repurposing 16.  68 

 69 

FAERS is a voluntary, post-marketing pharmacovigilance tool that can be used to monitor the 70 

clinical performance of drugs. In this study, we explore an alternative use of FAERS data to predict 71 

compound safety using Medical Dictionary for Regulatory Activities (MedDRA® 17) terms, which 72 

we envision to be useful for future preclinical studies. Our machine learning approach is different 73 

from the aforementioned approaches because we not only predict adverse drug reaction 74 
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occurrences of drugs but most importantly also extract biologically meaningful target-ADR links. 75 

Using an in vitro secondary pharmacology database of more than 2,000 marketed or withdrawn 76 

drugs (see Methods), we built a random forest model to predict drug-ADR and target-ADR 77 

associations. We validate drug-ADR predictions through systematic Side Effect Resource 78 

(SIDER) drug label analysis and 221 target-ADR predictions through systematic literature co-79 

occurrence analysis. Furthermore, we find canonical target-ADR associations, such as hERG 80 

binding causing cardiac arrhythmias. We also encountered unexpected associations which 81 

warrant further investigations, such as a link between Phosphodiesterase 3 (PDE3) and several 82 

ADRs, including congenital renal and urinary tract disorders. We conclude our study with potential 83 

targets that are associated with cardiovascular and renal ADRs to demonstrate the utility and 84 

possible impact of this method in drug development and preclinical safety sciences by enabling 85 

prediction of ADRs from in vitro pharmacological profiles. 86 

Results 87 

Systematic in vitro pharmacology of marketed and withdrawn drugs 88 

To link gene targets to ADR occurrence, we utilized in vitro pharmacology assay data for 2134 89 

marketed or withdrawn drugs, generated by Novartis, and ADR reports from FAERS (Figure 1A, 90 

Supplementary Table 1). Withdrawn drugs and their assay data are also included due to the fact 91 

that they are associated with a plethora of ADRs, and thereby constitute an important resource 92 

for our predictive approach. Figure 1B summarizes the top 50% of frequently occurring primary 93 

indications, classified by the Anatomical Therapeutic Chemical (ATC) codes, of the 2134 drugs 94 

using a word cloud. The categories that have the highest number of compounds are antibacterial, 95 

ophthalmological, and antineoplastic drugs. The in vitro pharmacology assay data includes AC50 96 

values for each drug at up to 218 different assays for 184 gene targets (see Supplementary Table 97 

2 for a list of target assays). There are 6 classes of these 184 gene targets, with the majority 98 

(47%) of targets falling into G protein-coupled receptors (GPCRs) (Figure 1C), which is a 99 

dominant, widely studied drug target family, broadly represented by marketed drugs 18. Figure 1D 100 

is a heatmap visualization of the in vitro pharmacology assay data, where each row is a drug, 101 

grouped by their ATC anatomical main group terms 19, and each column is a target assay, grouped 102 

by target class. It consists of AC50 values of drugs for target assays. The heatmap is not a 103 

complete data matrix; 70% of drug-assay combinations have not been tested, i.e. these 104 
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combinations have NA value for AC50. Nevertheless, our data indicate relatively uniform assaying 105 

with respect to the different drug classes.  106 

Analysis of adverse event reports from FAERS connects drugs with human ADRs 107 

We queried FAERS 15 using openFDA 20 for 2134 marketed or withdrawn drugs in October 2018 108 

(FAERS Q4_2018 version; covering all reports from January 2004 to October 2018) and retrieved 109 

671143 adverse event reports using our data extraction criteria (Figure 2A). We only included 110 

reports which were submitted by physicians and were annotated as the primary suspect drug 21. 111 

There are 464 drugs that did not have a matching name in FAERS, 341 drugs that did not have 112 

any adverse event reports, and 1329 drugs with at least 1 adverse event report. We developed a 113 

significance test based on a binomial null distribution and false discovery rate (FDR) multiple 114 

testing correction to determine if the observed ADR occurrence was significantly high to be 115 

classified as an association (or alternatively no association) between ADR and drug (see Methods 116 

for detail). The resulting drug-ADR associations corresponded strongly (odds ratio = 11, χ2-test, 117 

p-value < 10-16) with those identified with ERAM (Empirical-Bayes Regression-adjusted Arithmetic 118 

Mean), an established Bayesian method based on the proportional reporting ratio adjusted for 119 

covariates and concomitant drugs 22,23. Overall, we observe a positive trend between the number 120 

of adverse event reports and the number of ADR associations (Figure 2B). Antineoplastic and 121 

immunomodulatory drugs (Figure 2B, blue, N=155) have many ADR associations while the extent 122 

of ADR association for antihypertensive drugs (Figure 2B, red, N=35) varies more widely. As an 123 

example, we visualized our drug-ADR associations (Figure 2C), in which ADRs are grouped by 124 

MedDRA System Organ Class (SOC) level terms and drugs are grouped by ATC anatomical main 125 

group terms 19, revealing that ADRs are widespread across organs caused by antineoplastic and 126 

immunomodulating agents (Figure 2C, label L), as well as nervous system drugs (Figure 2C, label 127 

N).  128 

  129 

Random forest model learns relationship between in vitro pharmacology and reported 130 

ADRs in humans 131 

We deployed a machine learning approach to predict ADRs for a given drug from their in vitro 132 

secondary pharmacology profiles (Figure 3A). We consider this a multi-label classification 133 

problem because a given drug can cause multiple ADRs based on its possible engagement with 134 

multiple targets and because a single target may be associated with multiple ADRs. We 135 

discretized and one-hot encoded our in vitro pharmacology assay data (AC50 values) into 3 136 
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classes: highly active (AC50 < 3 μM), active (3 μM ≤ AC50 ≤ 30 μM) and inactive (AC50 > 30 μM), 137 

which reflect commonly used ranges in the field 4.  In total, 413 features (assay information) were 138 

used to predict 321 High Level Group Term (HLGT) ADRs or 26 System Organ Class (SOC) 139 

ADRs for each drug. The observed drug-ADR associations from FAERS, as described above, 140 

constitute the dependent variable that the model is learning. We constructed a unifying binary 141 

relevance random forest model, which consists of 321 random forest HLGT ADR models. The 142 

models were first trained and tested, using 5-fold cross validation where each fold is selected 143 

sequentially (Figure 3B). We used 1329 drugs for model construction because these drugs had 144 

at least 1 adverse event report in FAERS Q4_2018. The remaining 805 drugs, which did not have 145 

any ADR reports, were excluded for training or cross-validation. The model predictions are in 146 

probability format, which is used later for target-ADR predictions, and in boolean format (Figure 147 

3A), to enable assessment of model performance via accuracy; macro-precision; macro-recall; 148 

Matthew’s correlation coefficient (MCC), a performance measure that takes class imbalance into 149 

account; and area under the receiver operating characteristic curve (macro-AUROC) (Figure 3B). 150 

The unifying random forest model performance of SOC ADRs and HLGT ADRs using the full 151 

training set (1329 drugs) and the 5-fold cross validation sets (266 drugs, averaged) are depicted 152 

in Figure 3B. Accuracy ranges from 0.82 to 0.98, macro-precision ranges from 0.5 to 0.85, macro-153 

recall ranges from 0.29 to 0.74, MCC ranges from 0.37 to 0.83, and macro-AUROC ranges from 154 

0.80 to 0.96. Compared to SOC level (21 ADR terms), the finer grain HLGT level (321 ADR terms) 155 

had proportionally fewer drug-ADR associations; additionally, the performance of the HLGT and 156 

SOC models are comparable. We therefore proceeded with the HLGT level models for further 157 

investigation. 158 

 159 

For 55 of the 321 HLGT ADRs, the corresponding random forest models simply predicted zero 160 

for all drugs as mostly none (and at most 4) of the 1329 drugs with adverse event reports were 161 

associated with those ADRs (Supplemental Table 3). Since these models were not predictive, we 162 

did not consider them for further analyses. For the remaining 266 ADRs, we could determine 163 

performance metrics (Figure 3C). Accuracy and precision were high, ranging between 0.9 and 1, 164 

whilst the recall and MCC range more widely (Figure 3C). This variability occurs for ADRs that 165 

have only a few drugs associated with them (Figure 3D). As the number of associated drugs 166 

increases, the models learn to better distinguish true positives from false negatives so that their 167 

recall and MCC values increase (Figure 3D). 168 

 169 
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Predictive power of the random forest model for multiple FAERS reporting time periods 170 

To test if our random forest model framework is sensitively dependent on the FAERS reporting 171 

period, we constructed new random forest models and performed 5-fold cross validations for both 172 

SOC and HLGT levels using FAERS data from 2 different time points: Q4_2014 (including all 173 

reports from January 2004 to December 2014) and Q2_2019 (including all reports from January 174 

2004 to June 2019). For proper comparison, the model constructions and cross validations were 175 

identical to our above described “main” model based on FAERS Q4_2018. Overall, the 176 

performance metrics (accuracy, MCC, macro-precision, macro-recall, macro-AUROC) of both 177 

SOC and HLGT level models are comparable between Q4_2014, Q4_2018 and Q2_2019 178 

(Supplementary Table 4). This analysis demonstrates that our random forest modeling framework 179 

has a comparable predictive power despite changes in the FAERS reporting time period; 180 

therefore, it is not sensitive to different versions of FAERS.  181 

 182 
Chronological validation of predicted drug-ADR associations  183 

To validate the predictive power of our random forest modeling framework further, we performed 184 

a chronological validation analysis, through identification of initial false predictions (false positives 185 

and false negatives) from the random forest model trained on FAERS Q4_2014 that become 186 

validated in the subsequent time period 2015-2019. The random forest model trained on Q4_2014 187 

data has 421 (0.1% of a total of N=433671 model predictions) false positive drug - ADR 188 

associations, i.e. based on a drug’s pharmacology profile the model predicted a probability > 0.5 189 

(Figure 3A) for an ADR even though there was no association observed from the adverse event 190 

reports up until 2014. However, when compared to the observed Q2_2019 FAERS data, which 191 

also include adverse event reports from the time period 2014-2019, 3.1% (13) of the false 192 

positives turned into (true positive) observed drug-ADR associations, which is 4.4-fold more than 193 

expected by chance (𝜒2-test: p-value = 2x10-5). Similarly, the Q4_2014 random forest model made 194 

8519 false negative predictions, of which 2.2% (184), 40-fold more than expected by chance (𝜒2-195 

test: p-value < 10-16), turned into true negative predictions when compared to the Q2_2019 196 

observed drug-ADR associations. This analysis indicates that significant proportions of our model 197 

predictions on drug-ADR associations that were initially “false predictions” are chronologically 198 

validated through accumulation of new adverse events reports over time.  199 

 200 

Random forest model predicts expected ADR profiles for anti-hypertensive drugs 201 

As another demonstration of model validation, we analyzed the ADR profiles of 6 subclasses of 202 

antihypertensive drugs: adrenergic alpha, adrenergic beta, ACE inhibitors, angiotensin AT2 203 
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inhibitors, calcium channel blockers and diuretics (Supplementary Table 5). The signature of the 204 

anti-hypertensive drug subclass represents a set of ADRs that were common to all drugs in this 205 

subclass. Each antihypertensive drug subclass has a unique ADR fingerprint in the Q4_2018 206 

FAERS version which was closely predicted by our random forest model (Figure 3E).  The 207 

accuracy ranged from 0.984 to 1, with perfect specificity and precision (Supplementary Table 6). 208 

The sensitivity ranged from 0.882 to 1, except for the diuretics sub-class, which had a sensitivity 209 

of 0.167. This may be because diuretics target the kidney, and not the cardiovascular system as 210 

the rest of the anti-hypertensive drugs do. Of note, the adrenergic alpha and adrenergic beta 211 

receptor subclasses maintain distinct profiles in the predicted data. Specifically, the model 212 

correctly predicts that adrenergic alpha receptor drugs are associated with suicidal and self 213 

injurious behaviors, which has been reported in the literature 24,25. 214 

 215 

Random forest model validation through comparison with drug label ADRs 216 

To demonstrate the predictive power of our random forest model on a test set of drugs that were 217 

not used for model construction, we utilized the model to predict drug-ADR associations for 805 218 

drugs that did not have any reported ADRs in the FAERS Q4_2018 version, either because there 219 

was no match with the drug name or there were no ADR reports for that drug submitted to FAERS. 220 

For validation, we queried the Side Effect Resource (SIDER) database 26, which is independent 221 

from FAERS and contains drug-ADR pairs extracted from FDA drug labels by text mining 26.  For 222 

these 805 drugs, we obtained 95 drug matches, which were further reduced to 75 drugs that did 223 

not share active ingredients with drugs in the training set. Overall, 57% of positive drug-ADR pairs 224 

(i.e. drugs where the model predicts ADRs) were reported in SIDER, compared to 9% of negative 225 

pairs (N = 24075; 𝜒2-test: p-value < 10-16; Supplementary Table 7).  For instance, methysergide, 226 

a 5-HT receptor antagonist used to treat migraine and cluster headaches, has predicted ADRs 227 

from 6 HLGT categories, all of which are supported by specific ADRs from SIDER (Figure 3F). 228 

"Cardiovascular disorders with murmurs” appears in the Warnings and Precautions section of the 229 

label.  Other adverse events under gastrointestinal symptoms and CNS symptoms from SIDER 230 

were confirmed in the Adverse Events section.  Oxprenolol, a lipophilic beta blocker used for 231 

treating angina pectoris, abnormal heart rhythms and high blood pressure, has predicted ADRs 232 

from 3 HLGT categories.  The specific SIDER ADRs of bradycardia, dizziness and asthenia were 233 

also confirmed in the label from the Electronic Medicines Compendium 234 

(https://www.medicines.org.uk/emc/product/3235; accessed 09/11/2019).  Overall, our random 235 
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forest model proves to be a powerful tool to predict both on- and off-target related drug-ADR 236 

associations from in vitro pharmacological drug profiles.  237 

 238 

Random forest model predicts 221 target-ADR associations  239 

To predict which target genes are associated with which ADRs, we utilized the Gini importance 240 

score to rank features for their importance in random forest models for each ADR (Figure 4A). 241 

For a given ADR, we selected assays that had multiple AC50 features represented in the top 5% 242 

of Gini scores ranking (see Methods for detail). We then generated ADR probability predictions 243 

for an in silico compound that is assumed to target only the selected assay with an AC50 value 244 

corresponding to a represented feature. We also assumed no available data for all other assays. 245 

Using this in silico AC50 profile as an input to the ADR model, we could generate the ADR 246 

probability. By assessing differences in ADR probabilities (two sample t-test, FDR corrected p-247 

value < 0.1) between different AC50 classes, e.g. highly active (0-3 μM) vs inactive (>30 μM), we 248 

predict positive or negative correlations, collectively termed associations, between the selected 249 

target assay and ADR. Unsurprisingly, some ADRs did not generate any target associations.  250 

 251 

To find biologically meaningful associations, we first filtered out HLGT terms belonging to SOC 252 

classes that are not specific to human body parts or only procedural or intervention related (see 253 

Methods for detail). Secondly, we filtered out terms that fall under the SOC class neoplasms, 254 

since genes are often severely misregulated in cancers and therefore not representative of 255 

neoplasm-related ADRs in the organ where the tumor resides. After filtering, we found 221 256 

statistically significant target-ADR associations (Figure 4B, full details including p-values in 257 

Supplementary Table 8); 51 out of 184 target assays and 132 out of 321 ADRs are represented 258 

(Figure 4B). In the following sections we investigate these associations in more detail. 259 

 260 

Systematic literature validation of target-ADR associations 261 

To validate our ADR-target predictions, we performed a systematic literature co-occurrence 262 

analysis. First, we mapped all genes corresponding to the assays and HLGT level ADRs to their 263 

respective MeSH terms (Supplementary Table 9). Next, we queried PubMed for the publication 264 

identifiers linked to these MeSH terms and determined the number of publications that 265 

corresponded to both a gene and HLGT term (i.e. co-occurrence). We found at least one co-266 
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occurrence publication for 66% (145) of 219 predicted unique gene-HLGT Mesh pairs, which was 267 

higher (Fisher Exact test: odds ratio=1.8, p-value=6x10-5) than for all possible negative unique 268 

gene-HLGT pairs (N=26705). In order to control for the fact that some ADRs and genes are 269 

studied more intensively than others, we also compared our set of positive predictions to a 270 

negative control set (N=4890) formed by permuted pairs from the positive set and obtained similar 271 

results (Fisher Exact test: odds ratio=1.5, p-value=3x10-3). Furthermore, as quantified by the co-272 

occurrence “lift” over the reporting probability when assuming independence,  273 

(see Methods for details), we found 4-fold higher co-occurrence median lift values for our 274 

predictions compared to all negative pairs (Mann Whitney U-test: p-value=2x10-5), and 3-fold 275 

higher lift than permuted negative pairs (Mann Whitney U-test: p-value=3x10-4). We conclude that 276 

our target-ADR identification method provides association predictions that are supported by the 277 

literature in higher proportion than random selection of target-ADR pairs.  278 

 279 

Evidence for targets that are predicted to cause cardiovascular-related ADRs 280 

To further validate our model’s ability to predict target-ADR associations, we investigated a group 281 

of cardiovascular ADRs. We found that hERG binding was associated with cardiac arrhythmias 282 

and heart failure (Table 1). hERG encodes for a subunit of the cardiac potassium ion channel and 283 

contributes to cardiac electrical activity, which is necessary to regulate the heartbeat. The 284 

mechanism of action for drug-induced arrhythmias by blocking hERG has been described in 285 

numerous human 27 and animal studies 28, as well as structural modeling 29 studies (Table 1). 286 

Consistently, our systematic PubMed queries found 753 co-occurrence publications in support of 287 

this predicted association and 6 co-occurrences for hERG binding increasing the risk of heart 288 

failure. We did not find an ADR probability associated within the range of  0-3 μM AC50 of hERG 289 

binding, likely because such strong binding to hERG is a common reason for deprioritizing drug 290 

candidates in development 30.  291 

 292 

The model predictions also suggest that PDE3 inhibition is associated with cardiac valve disorders 293 

(Table 1, 3 co-occurrence publications). PDE3 inhibition is used clinically to treat dilated 294 

cardiomyopathy 31, which encapsulates valvular heart disorder. However, the PDE3 therapeutic 295 

window is narrow, partially due to complex signaling networks 32, and careful dosing is required 296 

to avoid increased mortality in response to treatment. 297 

 298 
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Furthermore, our model predicts that adenosine transporter (AdT) inhibition increases the risk of 299 

pericardial disorders (Table 1). For this scenario, we did not find direct supporting evidence in the 300 

literature, however there is evidence that disturbed adenosine homeostasis in pathological 301 

cardiac conditions could result  in pericardial effusion or pericarditis 33.  302 

 303 

The model suggests that glucocorticoid receptor (GR) binding is more likely to lead to myocardial 304 

disorders if the drug has high affinity for GR (Table 1, 8 co-occurrence publications). This is 305 

supported by the finding that glucocorticoid treatment of patients with rheumatoid arthritis 306 

increased the risk of myocardial infarction 34. Furthermore, it is known that dysregulation of 307 

glucocorticoids can give rise to cardiotoxicity 35. 308 

 309 

Taken together, this investigation of genes associated with cardiovascular ADRs confirms the 310 

well-known association of hERG with cardiac arrhythmia, and also highlights ADR associations 311 

that would merit further experimental investigation. 312 

 313 

COX-2, PDE3, and hERG associations with kidney related ADRs 314 

Another important class of ADRs are related to the kidney (Figure 4B, label: renal). We found 315 

COX-2 associated with nephropathies (Table 2), which has been well recognized (398 co-316 

occurrence publications) and evidenced previously 36–38. Interestingly, another model prediction 317 

is PDE3 sensitivity correlating with congenital renal and urinary tract disorders (Table 2). 318 

According to a mouse model study 39, PDE3 inhibition could be a contributing factor in Polycystic 319 

Kidney Disease (PKD), as PDE3 protein levels are already lower in PKD than WT kidneys. Lastly, 320 

we found an unexpected association between hERG and renal disorders (excluding nephropathy) 321 

(Table 2). One study has found a loss of hERG function in renal cell carcinoma 40. In humans, 322 

hERG expression in the kidney is much lower than in the heart 41. Therefore, we conclude that a 323 

link between hERG and renal disorders remains a prediction that warrants further investigation. 324 

 325 

PDE3 and nuclear hormone receptors AR, ERa, and PR are overrepresented in ADR 326 

associations 327 

To investigate if the number of different drugs tested for a target assay is predictive to the number 328 

of ADRs associated with that target (Figure 4C), we calculated their Spearman correlation 329 
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coefficient and found a moderate correlation (ρ=0.5; Figure 4C). However, some targets had 330 

considerably more associated ADRs than other targets that were tested a similar number of times, 331 

indicating that more frequently performed assays do not necessarily result in a higher number of 332 

associated ADRs (Figure 4C). Out of all target assays, PDE3 was associated with the most ADRs 333 

(40) (Figure 4C), falling in a wide range of SOC classes (Figure 4B, Supplementary Table 8). 334 

Furthermore, nuclear hormone receptors for androgen (AR), estrogen (ERa) and progesterone 335 

(PR) binding assays also have disproportionately many ADR associations, compared to their 336 

frequency of testing (Figure 4C). As expected, AR (7/14 ADRs), ERa (9/10 ADRs) but not PR 337 

(0/17 ADRs) are associated with sexual reproductive organ and pregnancy-related ADRs (Figure 338 

4B, Supplementary Table 8). Androgen is produced in the adrenal gland 42 and we predict a link 339 

between AR with adrenal gland disorders, with evidence in mouse studies 43. Interestingly, the 340 

model predicted 6 ocular ADRs associated to PR, including vision disorders, anterior eye 341 

structural change (deposit and degeneration), infections, irritations and inflammations and 342 

structural changes (Figure 4B, Supplementary Table 8), for which we could find supporting 343 

evidence 44.  344 

 345 

GABAA receptor associations with psychoactive ADRs 346 

GABAA receptor is the primary target of benzodiazepines (BZD), a drug class known to be 347 

psychoactive with potential of addiction 45. Consistently, our model predicts that this ligand-gated 348 

chloride ion channel assay is associated with 14 ADRs, 13 of which are neurologically and 349 

psychiatrically related, including disturbances in thinking and perception, sleep disorders, 350 

depression and suicidal behaviors (Figure 4B, Supplementary Table 8). 351 

 352 

Bile salt export pump BSEP associations with ADRs in various organs 353 

BSEP, encoded by ABCB11 and a member of the superfamily of ATP-binding cassette (ABC) 354 

transporters, is most highly expressed in the liver 41. Drugs that target BSEP are often associated 355 

with hepatotoxicity 46. However, initially, we did not find a BSEP association with hepatic and 356 

hepatobiliary disorders. To investigate this false negative prediction, we noted that the dynamic 357 

range of the BSEP assay specifically extends up to 300 μM because the first pass effect for orally 358 

delivered drugs results in high concentrations in the liver 47; as a result, most of our data falls into 359 

the ‘inactive’ (>30 uM class). Consistently, the BSEP inactive feature had the highest Gini score 360 

for this HLGT term, while its two active features had much lower Gini scores, falling outside of the 361 
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top 5%. To take the extended dynamic range into account, we altered the BSEP assay class 362 

boundaries to 0-30 μM, 30-300 μM and >300 μM and retrained the random forest model. In this 363 

case, we did find BSEP associated with hepatic and hepatobiliary disorders (Table 3, 354 364 

publication co-occurrences), according to our association criteria (Figure 4A). We repeated this 365 

procedure whilst replacing the first class boundary (30 μM) with 100 μM and found the same 366 

association again, indicating the robustness of our results. Interestingly, with our original AC50 367 

discretizations (Figure 1D), we found BSEP associated with 7 other ADRs from various organ 368 

classes (Table 3), much more than other targets that were assayed at a similar frequency (Figure 369 

4C). This suggests that compounds potent against BSEP (AC50 < 30 μM) could cause adverse 370 

effects in addition to hepatotoxicity, which already occurs at lower potency. We found BSEP 371 

associated with urolithiasis and with disorders of the thyroid gland, upper respiratory tract 372 

disorders (excl infections), lipid metabolism and central nervous system (Table 3). Since BSEP 373 

expression is much lower in these organs 41, we searched the literature for evidence including a 374 

substrate of BSEP, bile acid. We could find previous studies linking bile acid to these disorders 375 

(Table 3), which suggests an indirect relation between BSEP and these ADRs through bile acid 376 

metabolism. Lastly, we found BSEP associated with foetal complications and pregnancy 377 

conditions (Table 3), both supported through prior studies that link BSEP with transient neonatal 378 

cholestasis and intrahepatic cholestasis of pregnancy, respectively 48,49.  379 

 380 

Discussion 381 

In this study we have taken a machine learning approach to predict human ADRs from the in vitro 382 

secondary pharmacology profiles of a large number of marketed and withdrawn drugs. Several 383 

prior studies focus on predicting ADRs directly from chemical drug structure 50,51. However, 384 

utilizing functional information such as in vitro pharmacological targeting of common (off) targets 385 

represents a viable alternative to bridge the complex relationship between drugs and their effects 386 

in the human body 4.  387 

 388 

Our random forest model performance metrics are good considering the sparse coverage (2134 389 

drugs) over a large input space (3184 possibilities) and partial overlap with ADR reporting for these 390 

drugs, making ADR occurrence prediction effectively a one shot learning task. Importantly, 391 

optimizing test performance was not the main objective of this study. Instead, we endeavored to 392 

find biologically meaningful target-ADR associations. To achieve this without relying on test 393 

performance, we trained on all data and made use of Gini scores to robustly select relevant 394 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2019. ; https://doi.org/10.1101/750950doi: bioRxiv preprint 

https://doi.org/10.1101/750950
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

features for ADR probability predictions. Our novel method for target-ADR associations was able 395 

to recapitulate well recognized causal relations, such as hERG with cardiac arrhythmias. For 396 

others, we were able to find literature evidence in animal or in vitro studies but our study is, to our 397 

knowledge, a first in human report. Another fraction of target-ADR associations represents 398 

predictions of novel, unexpected or little known associations, such as Adenosine Transporter 399 

(AdT) and pericardial disorders, for which we could find little evidence other than our analysis of 400 

adverse event reports. Similar to genome-wide association studies, our quantitative methodology 401 

extracts statistically significant relations from human population data. With this framework in mind, 402 

our 221 associations form a rich resource that can be used for further mechanistic studies in the 403 

drug discovery process.  404 

 405 

Our random forest model is agnostic to molecular mechanisms; therefore, resulting associations 406 

could arise from indirect regulation. A likely example is the bile transporter BSEP, which is 407 

associated with numerous ADRs, although it is most highly expressed in the liver and kidney. We 408 

have related our findings to evidence that misregulation of its substrate, bile acid, could result in 409 

disorders related to kidney stones, lipid metabolism, thyroid gland, respiratory system, and central 410 

nervous system. This also indicates the strength of our approach, which can relate genes to 411 

physiological processes unbiasedly in humans, without any interventions or large scale genome-412 

wide association studies, but solely with voluntary adverse event reporting.  413 

 414 

While we recommend this approach to find target-ADR associations to impact safety awareness 415 

in drug discovery, we are also aware of the limitations. Firstly, the presented analyses are limited 416 

by the input data. The in vitro data matrix is incomplete (targets in the in vitro pharmacology panel 417 

cover a small fraction of the biological target space and not all drugs were tested in all assays). 418 

We recognize that the present set of targets is biased towards the GPCR target family with limited 419 

representation of other therapeutic or ADR-associated targets such as ion channels and kinases. 420 

Also, data are influenced by prior knowledge; for example, more than 87% of all drugs in the set 421 

were tested for hERG activity. High affinity (lower AC50 value) for hERG is associated with higher 422 

probability for QT prolongation for human and non-human preclinical species 27,28. As discussed 423 

earlier, there are not many drugs with a hERG AC50 value in the highly active class (0-3 μM), 424 

which is a commonly encountered roadblock for drug candidates to progress towards clinical trials 425 
30. Only about 10% of all drugs fall into the highly active class in our assay data. To limit feature 426 

engineering, our AC50 discretization into three classes (Figure 1D) was kept uniform across all 427 

assays. Notably for the BSEP assay only, the dynamic range extends up to 300 μM and as a 428 
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result most of our data falls into the ‘inactive’ (>30 μM) class. Consequently, we initially did not 429 

find the expected association with hepatotoxicity. We rectified this by reclassifying the BSEP 430 

assay data according to levels required for hepatotoxicity of BSEP inhibition 52,53 and indeed 431 

recovered the expected association. 432 

 433 

Secondly, in vitro potency is a very simplified marker of clinical effect, and does not take into 434 

account prolonged dosing, comorbidity or pharmacokinetic/pharmacodynamic relationships (e.g. 435 

therapeutic window). For 9 of 184 assays, non-human proteins were assayed (e.g. rat brain was 436 

used as a source for the benzodiazepine receptor) which may not be a direct correlate of the 437 

human protein. Further development of the model would require addition of parameters on 438 

occupancy and pharmacodynamic components for more precision and enhanced predictive 439 

value.  440 

 441 

Thirdly, the FAERS database has limitations. For example, drug-ADR associations may be 442 

mislabeled, e.g. anti-hypertensives are often reported as associated with hypertension as an 443 

ADR, rather than as the indication. This and other limitations are discussed by Maciejewski et al. 444 
21 with suggestions and methodology for further refinement of the method. Additionally, the 445 

FAERS database does not contain information on the total number of patients exposed to a 446 

particular drug, nor is it necessarily a reflection of the true incidence or frequency of ADRs.  447 

 448 

This work retains several uncertainties. One of the most critical might be the prediction of 449 

congenital ailments, which are hard to prove. The one example we would like to highlight is the 450 

PDE3 enzyme association with congenital renal disorders association. While the association is 451 

correct, the modality has to be clarified: PDE3 inhibitors are proposed to ameliorate certain forms 452 

of chronic kidney disease 54, instead of causing it. Thus, predictions of congenital disorders should 453 

be considered but confirmed by checking the modality of the effects. 454 

 455 

We investigated one-to-one associations between targets and ADRs because these relationships 456 

are biologically meaningful and have utility in preclinical drug development. However, in some 457 

cases, a given ADR can be a prerequisite for others (e.g. hypotension leading to reflex 458 

tachycardia). We leave a model extension to incorporate these dependencies as future work. For 459 

target-ADR associations, we utilized our random forest model for a single drug at a time. One can 460 

repurpose our model to predict possible ADRs from combination drug therapies and likelihood of 461 

drug-drug interactions. In principle, this can be extended for combination therapies by merging 462 
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the in vitro data from the individual compounds. Offside and Twosides databases can be used for 463 

validation 55. Similarly, our model can be utilized for drug repositioning and repurposing, using 464 

similar target-ADR profiles. In conclusion, our random forest model and the target ADR 465 

associations provide a validated, comprehensive resource to support drug development and 466 

future human biology studies. 467 

 468 

Methods 469 

In vitro secondary pharmacology assays for marketed drugs 470 

AC50 values of 2134 marketed drugs (Supplementary Table 1) were measured in up to 218 471 

different in vitro secondary pharmacology assays. Compounds were obtained from the Novartis 472 

Institutes of Biomedical Research (NIBR) compound library and tested in a panel of in vitro 473 

biochemical and cell-based assays at Eurofins and at NIBR in concentration-response (8 474 

concentrations, half-log dilutions starting at 30 µM). Assay formats varied from radioligand binding 475 

to isolated protein to cellular assays. Example protocols may be found at 476 

https://www.eurofinsdiscoveryservices.com/cms/cms-content/services/in-vitro-assays/ . 477 

Normalized concentration response curves were fitted using a four parameter logistic equation 478 

with internally developed software (Helios). The equation used is for a one site sigmoidal dose 479 

response curve Y as a function of tested concentrations X: Y(X)=A+(B-A)/(1+(X/C)D), with fitted 480 

parameters A=min(Y), B=max(Y), C=AC50 and exponent D. By default, A is fixed at 0, whereas B 481 

is not fixed. 482 

 483 

If a drug was not tested against a specific assay, the AC50 value was set to NA (not available). 484 

AC50 values from similar assays with the same gene target were merged to reduce the NA data 485 

and features in the random forest model; this procedure resulted in 184 different target assays 486 

(Supplementary Table 2). In case any merged assays had multiple AC50 values for the same drug, 487 

we averaged these geometrically to take into account variation over orders of magnitudes. In 488 

figures 1D and 2C, the drugs are classified according to their annotated Anatomical Therapeutic 489 

Chemical (ATC) code 19. In case of multiple ATC codes, we assigned the most frequent level 1 490 

code.  491 

 492 

Mining adverse event reports of marketed drugs using OpenFDA 493 
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In this study, we utilized openFDA to acquire FAERS reports related to the query compounds 15,20. 494 

This Elasticsearch-based API provides a raw download access to a large volume of structured 495 

datasets, including adverse events reports from FAERS.  496 

 497 

We used generic compound names (e.g. “Amoxicillin”) to query through the openFDA interface, 498 

accessed programmatically using Python. In order to maximize the coverage over FDA datasets, 499 

we normalized generic names to uppercase format followed by a name similarity metric to filter 500 

out unrelated records in our analysis. We included reports when the Jaro similarity between the 501 

query generic name and reported compound name was equal or greater than 0.8. To illustrate, to 502 

query “3alpha-Androstanediol”, we acquired reports including “3ɑ-Androstanediol”, 503 

“Androstanediol”, “3-alpha-Androstanediol” as different lexical variations of the generic name and 504 

collated the resulting adverse event reports. 505 

 506 

As the FAERS database contains information voluntarily submitted by healthcare professionals, 507 

consumers, lawyers and manufacturers, adverse event reports may be duplicated by multiple 508 

parties per event, and may be more likely to contain incorrect information if submitted by a non-509 

medical professional. To reduce reporting bias and increase report information accuracy, we only 510 

analyzed reports submitted by physicians (data field: ‘qualification’ = 1). In this subset of adverse 511 

event reports, the data were further filtered by reported drug characterization, which indicates 512 

how the physician characterized the role of the drug in the patient’s adverse event. A drug can be 513 

characterized as a primary suspect drug, holding a primary role in the cause of the adverse event 514 

(data field: ‘drugcharacterization’ = 1); a concomitant drug (‘drugcharacterization’ = 2); or an 515 

interacting drug (‘drugcharacterization’ = 3). Here, we included only primary suspect drug reports. 516 

Without this restriction, model performances did not improve. We obtained all adverse events 517 

reports corresponding to the query compound that passed through the aforementioned filters.  518 

 519 

Adverse event report descriptions are coded as medical terms of MedDRA terminology 17. Medical 520 

observations can be reported using 5 hierarchical levels of medical terminology, ranging from a 521 

very general System Organ Class term (e.g. gastrointestinal disorders) to a very specific Lowest 522 

Level Term (e.g. feeling queasy). Each term is linked to only one term on a higher level. For each 523 

report, we recorded all MedDRA Reaction terms (data field: “reactionmeddrapt”) at the Preferred 524 

Term level and mapped these Preferred Terms to Higher Level Group Term and System Organ 525 

Class level. For each (ADR term, drug) tuple, we then calculated the ADR occurrence, defined as 526 
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the following fraction: number of adverse event reports containing that ADR term relative to the 527 

total number of ADR reports for that drug. 528 

 529 

For different FAERS versions (Q4_2014, Q4_2018 and Q2_2019), we used the same query 530 

except the time parameter TO, which was set to 12/30/2014 for the Q4_2014 query. For other 531 

two queries, we didn’t set the limit parameter which was filled with the query time by default (query 532 

date was 10/10/2018 for Q4_2018 and 08/12/2019 for Q2_2019).   533 

 534 

Random forest models 535 

To construct and train our models (Figure 3A), we used AC50 values for a panel of target assays 536 

for marketed drugs (model input; independent variable) and ADR occurrences of the compounds 537 

(model output/predictions; dependent variable). Since there may be several ADRs associated 538 

with any given drug, we considered this a multi-label learning problem. We took a “first-order 539 

strategy”, i.e. we assume there is no correlation between different ADRs, and a “divide and 540 

conquer” strategy, i.e. we decompose our multi-label learning task into n independent binary 541 

classification problems, where n is the number of different ADR terms in our output data (n = 26 542 

for SOC and n = 321 for HLGT level respectively). We built a random forest56  binary classifier for 543 

each ADR using Binary Relevance with the random forest modeling option in mldr package 57 and 544 

utiml package in R 58. 545 

 546 

To define the features for the random forest models, we discretized and one-hot encoded our 547 

input AC50 values. Discretization was essential to limit the number of features and enhance the 548 

predictive power of the model. We defined 3 classes (levels) of AC50 ranges for each target assay. 549 

● Highly active class: AC50 in [0, 3 μM) 550 

● Active class: AC50 in [3 μM, 30 μM] 551 

● Inactive class: AC50 greater than 30 μM 552 

If the AC50 value is NA, the values for all Classes are 0. Each drug has AC50 values for 184 553 

(merged) assays, so there are 184x3 = 552 binary features to represent our input data. Features 554 

consisting of only 0 values were removed, resulting in 413 input features used for model 555 

construction. 556 

  557 

The observed ADR occurrences were discretized into binary dependent variables. To achieve 558 

this, first let Nd be the total number of ADR reports for a given drug. The probability to observe an 559 

ADR occurrence OADR = X / Nd at random is equivalent to choosing that ADR X times out of Nd 560 
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with X distributed binomially: X~bin(Nd, p=1/n). Here, n represents the total number of ADRs as 561 

defined above. Under this null distribution, we calculate the p-values for all observed ADR 562 

occurrences OADR for a given drug, and then perform a Benjamini-Hochberg False Discovery Rate 563 

(FDR) correction (using the Python statsmodels package). If an FDR-corrected p-value is < 0.01, 564 

then the ADR value for that drug is 1, reflecting an association; 0 otherwise. 565 

 566 

All random forest models were first trained using 5-fold cross validation and each fold is selected 567 

sequentially. 1063 drugs were used for training and 266 drugs were used for testing in each fold. 568 

Then, the drugs with at least 1 ADR report are used as a training set. For a given (drug) input of 569 

AC50 values and ADR, the random forest model output, termed ADR probability, can be 570 

interpreted as the probability that the ADR is associated with the drug. To enable direct 571 

comparison of model predictions with binarized ADR occurrences, we binarized these ADR 572 

probabilities with a simple threshold value of 0.5. These binary values were used for training, 573 

cross validation and to calculate classification performance metrics (Figure 3B,C). All models 574 

have been constructed the same way regardless of different FAERS versions. 575 

 576 

We evaluated our models based on five metrics: accuracy, Matthew’s correlation coefficient 577 

(MCC), macro-precision, macro-recall and area under the receiver operating characteristic curve 578 

(macro-AUROC). These metrics are calculated using their definitions below, except 2 metrics: (1) 579 

MCC, which is calculated using mltools package in R (https://github.com/ben519/mltools) and (2) 580 

AUROC, which is calculated using precrec package in R 59.  581 

● Accuracy = (𝑇𝑃 + 𝑇𝑁)	/	(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 582 

● Precision = 𝑇𝑃	/	(𝑇𝑃 + 𝐹𝑃) 583 

● Recall = 𝑇𝑃	/	(𝑇𝑃 + 𝐹𝑁) 584 

● MCC = (𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁)	/	𝑆𝑄𝑅𝑇	((𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)) 585 

● AUROC	= ∫ 𝑇𝑃𝑅2𝐹𝑃𝑅34(𝑥)6𝑑𝑥4
89: 	586 

where TPR (true positive rate = 𝑇𝑃	/	(𝑇𝑃 + 𝐹𝑁)) and FPR (false positive rate = 𝐹𝑃	/	(𝐹𝑃 + 𝑇𝑁)). 587 

The corresponding metrics for each ADR model (Figure 3C, 3D) are accuracy, precision, recall, 588 

and MCC, which is calculated using mltools package in R (https://github.com/ben519/mltools).  589 

 590 

Determination of target-ADR associations 591 

To find associations between gene target assays and ADRs (Figure 4), we first generated ADR 592 

probabilities specific to a given assay. As a model input, one out of its three random forest input 593 

features’ value was set to 1 and all others to 0. This simulates the scenario of an in silico 594 
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compound that is potent with an AC50 value in the range corresponding to the positive feature 595 

only. We then utilized the ADR’s random forest model, pre-trained on all available marketed drug 596 

data (see previous section), to calculate the resulting ADR probability. We repeated this 597 

procedure for each feature of all assays and each ADR.  598 

 599 

To select the predictive features for a given ADR, we ordered the pre-trained random forest 600 

model’s input features according to their Gini importance score 60 and denote the top 5% as 601 

significant features. Our criteria for a gene (target assay) - ADR pair were:  602 

● For a given ADR: at least 2 out of 3 assay features need to be significant in order to make 603 

a reliable comparison between the ADR probabilities with respect to AC50 values.  604 

● At least one of the ADR probabilities of the significant features has to be larger than zero.  605 

 606 

We filtered out target-ADR pairs if the ADR term maps to the following SOC classes, which are 607 

not specific to body parts or underlying human biology:  608 

● general disorders and administration site conditions 609 

● injury, poisoning and procedural complications 610 

● investigations 611 

● neoplasms benign, malignant and unspecified (incl cysts and polyps) 612 

● poisoning and procedural complications 613 

● social circumstances 614 

● surgical and medical procedures 615 

To ensure the reproducibility of the target-ADR pair selection procedure, we repeated the random 616 

forest model training with different seeds for a total of 5 times. We then took the union of the 5 617 

sets of target-ADR pairs and discarded pairs that were only found once out of 5 runs. Finally, to 618 

determine if the mean ADR probabilities between the selected AC50 classes were statistically 619 

significantly different, we performed a two-sample t-test with sample sizes equal to the number of 620 

times a class was selected (ranging from 2 to 5 times) using the Python scikit.stats package. In 621 

case all three AC50 classes were represented, we tested the highly active versus inactive class. 622 

We then performed a Benjamini-Hochberg FDR correction. If the FDR-corrected p-value is < 0.1, 623 

then the target-ADR pair is considered a statistically significant association (Figure 4B, 624 

Supplementary Table 8). 625 

 626 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2019. ; https://doi.org/10.1101/750950doi: bioRxiv preprint 

https://doi.org/10.1101/750950
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

To evaluate the relation between the HLGT level ADR term hepatic and hepatobiliary disorders 627 

and target assay BSEP, we also trained and analyzed two random forest models as described 628 

above to find target-ADR pairs but with only the BSEP assay data discretized with class 629 

boundaries [0, 30 μM), [30, 300 μM] and >300 μM or [0, 100 μM), [100, 300 μM] and >300 μM.  630 

 631 

Side Effect Resource (SIDER) analysis 632 

The Side Effect Resource (SIDER; version 4.1) was downloaded 633 

(http://sideeffects.embl.de/download/; accessed 09/16/2019).  The file  meddra_all_se.tsv.gz 634 

contains drug-ADR pairs extracted from drug labels using text mining 26. The supplied MedDRA 635 

preferred term (PT) was mapped to HLGT used for the random forest modeling.  The file 636 

drug_atc.txt provides mappings from drug names as used in SIDER to Anatomical Therapeutic 637 

Chemical (ATC) codes.  ATC codes for the 805 drugs in the test set were obtained from the NIBR 638 

compound database, and matched to ATC codes from SIDER.  For drugs that could not be 639 

matched via ATC codes, additional matches were obtained by mapping the compound name, first 640 

trying the name in its entirety (e.g. “butriptyline hydrochloride”, then on the first word in the drug 641 

name (e.g. “butriptyline”).  All matches, whether obtained on ATC codes or by drug name, were 642 

reviewed manually for accuracy.   643 

 644 

Systematic validation of predicted target-ADR association using PubMed database 645 

We built a query based on 254 unique HLGT level ADR terms and 106 unique target genes 646 

(corresponding to the assays), for which we could find a corresponding MeSH term 647 

(Supplementary Table 9), to retrieve linked publication identifiers (PMIDs) from the PubMed 648 

database. All PMIDs were acquired by submitting a query for every MeSH entity separately via 649 

the PubMed API engine, a search engine that provides access to the MEDLINE database of 650 

references and abstracts on life sciences and biomedical articles. Next, we determined the PMIDs 651 

for a gene-ADR pair as the intersection of the two PMID sets of each corresponding MeSH term 652 

query. Furthermore, for each possible gene-ADR pair we determined whether it was part of the 653 

221 predicted associations from the Random Forest model or not. In this way, we obtained 219 654 

unique positive gene-ADR pairs and a total 26705 unique negative pairs. Lastly, we generated a 655 

set of negative pairs corresponding to all permutation pairs from the 39 unique genes and 131 656 

unique ADRs that are part of the positive set, resulting in 4890 unique negative pairs in this 657 

negative control set. To assess any statistical overrepresentation, we calculated the number of 658 

pairs with at least one co-occurrence publication for both negative and positive sets and assessed 659 

significance with a Fisher Exact test (Python function scipy.stats.fisher_exact). Furthermore, we 660 
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calculated the co-occurrence “lift” over the reporting probability when assuming independence, 661 

defined as , with  the total 662 

number of PMIDs in the Pubmed database in 2019 663 

(https://www.nlm.nih.gov/bsd/licensee/2019_stats/2019_LO.html). , , and  are 664 

respectively the number of retrieved PMIDs for a unique gene-ADR pair, ADR, or gene target  665 

separately. To assess the location differences of the above described positive versus negative 666 

distribution of lift values, we performed a Mann Whitney U test (Python function 667 

scipy.stats.mannwhitneyu, two-sided, continuity correction=True).  668 
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Figure Legends 669 

 670 

Figure 1. Major elements of the target-ADR association analysis  671 

A. Schematic outline of target-ADR pair determinations. The observed relations (solid lines) 672 

between drugs and adverse drug reactions (ADRs) are determined by post-marketing 673 

pharmacovigilance and between drugs and their (off) targets by in vitro pharmacology. This 674 

approach enables prediction of associations (dashed line) between targets and ADRs through 675 

random forest modeling. 676 

B. Representation of drug classes in word cloud. The cloud displays the top 50% most 677 

frequently occurring drug classes, representing 2134 drugs, in the Novartis in vitro pharmacology 678 

data warehouse. Size of the font of the drug class reflects the number of associated drugs. 679 

C. Target class distribution in the Novartis in vitro secondary pharmacology assay panel. 680 

The 184 targets in the Novartis assay panel cover 6 target classes. Almost half of the target 681 

assays belong to the G protein-coupled receptor (GPCR) class. 682 

D. Novartis target panel potency (AC50) heatmap.  The profile consists of the AC50 values of 683 

184 target assays for 2134 drugs. We considered an AC50 value less than 3 μM as highly active 684 

(red), between 3 μM and 30 μM as active (blue), and greater than 30 μM as inactive (yellow). No 685 

data for a drug-target pair is labeled as NA (white). Drugs are grouped (vertically) by their 686 

Anatomical Therapeutic Chemical (ATC) codes. Assays are grouped (horizontally) by target class.   687 
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Figure 2. Retrieval of Adverse Event Reports from the FDA Adverse Event Reporting 688 

System (FAERS) database 689 

A. Flow chart of the programmatic strategy for Adverse Event Report retrieval from FAERS 690 

by using openFDA. ‘is qualification = 1’ is a positive filter for adverse event reports that were 691 

reported by physicians. ‘is drugcharacterization’ = 1 is a positive filter for drugs that are annotated 692 

as the primary suspect drug, which hold a primary role in the cause of the adverse event. 693 

B. Scatter plot of the number of associated ADRs for drugs as a function of the number of 694 

adverse event reports retrieved for each drug (Ndrugs = 1329). Drugs without any reported ADR 695 

are not shown. 696 

C. Heatmap of ADR profiles (discretized as used for input of random forest model) for all 697 

marketed drugs used in this study (Ndrugs = 2134). Drugs are clustered (vertically) according to 698 

their ATC drug classes (A-V, or No label if without any ATC code) and HLGT (high level group 699 

term) ADRs are grouped (horizontally) according to the parent System Organ Class (SOC) level 700 

listed in the legend.  701 
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Figure 3. Application of the random forest model to characterize drug-ADR associations  702 

A. Schematic representation of the machine learning approach.  Using input data, which is a 703 

discretized AC50 in vitro pharmacological profile, we built a separate random forest model for each 704 

adverse drug reaction (ADR) that predicts the probability of a drug causing that ADR. For training 705 

we used all drugs for which we could retrieve FAERS Q4_2018 adverse event reports (Ndrugs = 706 

1329). 707 

B. Summary statistics of overall model performance. We developed two unified random forest 708 

models based on two hierarchical levels of organ class specifications. The high level group term 709 

(HLGT; blue) unified random forest model consists of 321 ADR random forest models whereas 710 

the system organ class (SOC; yellow) unified random forest model consists of 26 ADR random 711 

forest models. The performance of the HLGT and SOC models is similar, except in few cases 712 

when the HLGT model outperforms the SOC model. (MCC: Matthew’s correlation coefficient, 713 

AUROC: area under receiver operating characteristic). Training reflects performance after model 714 

training on all 1329 drugs (see A). 5-fold cross validation results are averaged over each fold (all 715 

metrics for each fold are detailed in Supplementary Table 4). 716 

C. Box plots indicating the distributions of the training performance metrics (as in B) for all 717 

random forest models of each individual HLGT ADR (NADRs = 266). 718 

D. Scatter plot of the random forest models’ recall (all metrics as in C) as a function of 719 

number of associated ADRs, which served as positive training examples. Colors indicate model 720 

precision and circle size reflects the MCC.  721 

E. ADR predictions for anti-hypertensive drugs with different pharmacological targets. For 722 

a set of 22 antihypertensive drugs, we visualized the association between the drugs and HLGT-723 

level ADRs (left). Using the ADR random forest models, we predicted the differences in ADR 724 

associations between antihypertensive drugs representing various pharmacological targets (right; 725 

overall 36 of the HLGT terms are visualized). True negative predictions (285 HLGT-level ADRs) 726 

were omitted from this visualization. 727 

F. Examples of model validation using methysergide and oxprenolol. The random forest 728 

model predicted associations of methysergide with 6 of 321 HLGTs (yellow) which were validated 729 

by comparison of ADRs from its drug label (grey) using the SIDER database. One or more of the 730 

ADRs corresponding to each HLGT category were confirmed in the drug label.   731 
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Figure 4. Random forest model predicts target-ADR associations  732 

A. Schematic outline of the in silico ADR-target predictions. For an ADR of interest, we 733 

determined the top 5% of features from the corresponding trained random forest model, ranked 734 

according to their Gini importance scores, which measures their contribution to the predictive 735 

power of the model. If at least two features (e.g. as depicted: highly active and inactive) from the 736 

same target assay are within that top 5%, we determined the ADR probabilities for the simulated 737 

cases where an in silico compound would target those assay AC50 classes only. The ADR 738 

probabilities of those simulated cases can then be compared to determine the concentration 739 

dependence of the ADR probability. If there is a non-zero correlation between AC50 values and 740 

ADR probabilities, we conclude that there is an association between the respective ADR and 741 

target. For full details, see the Methods.  742 

B. Heatmap showing the resulting 221 predicted target-ADR associations (blue). Target 743 

(gene symbol) assays are listed alphabetically (horizontal), and HLGT ADRs (vertical) are 744 

grouped according to their parent SOC level (as detailed in Figure 2C). For a full description of all 745 

target-ADR associations and their ADR probabilities, see Supplementary Table 8. 746 

C. Scatter plot of each target (assay, N=184) showing the number of ADR associations as 747 

a function of number of assayed drugs.  748 
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Table 1 Predicted associations between targets and cardiac ADRs.  749 

High Level Group Terms (HLGT; MedDRA) associations with targets and Adverse Drug Reaction 750 

(ADR) probability in three concentration ranges (third column). Evidence of the ADR-target pairs 751 

were obtained from peer reviewed publications (fourth column). The number of publications linked 752 

to both an HLGT ADR and target gene was obtained via a systematic literature co-occurrence 753 

analysis (fifth column). hERG: human Ether-a-go-go-Related Gene associated potassium 754 

channel; PDE3: phosphodiesterase-3 enzyme; GR: glucocorticoid receptor; AdT: Adenosine 755 

transporter; COX-2: cyclooxygenase enzyme, type 2. 756 

Cardiac Disorder HLGT Target 
ADR Probability Literature evidence Co-occurrence 

(number) 0-3 μM 3-30 μM >30 μM human (h), animal (a), in vitro (v) 

cardiac arrhythmias hERG (Binding) - 0.03 0.002 h 27 a 28 v 29 753 

cardiac valve disorders PDE3 0.05 - 0 h 31,32 3 

heart failures hERG (Binding) - 0.005 0 h 61 6 

myocardial disorders GR (Binding) 0.02 - 0.005 h 34,35 8 

pericardial disorders AdT - 0.01 0 a33 0 

 757 

Table 2 Predicted renal ADR - target associations (detailed legend in Table 1). 758 

Renal Disorder HLGT Target 
ADR Probability Literature evidence Co-occurrence 

(number) 0-3 μM 3-30 μM >30 μM human (h); animal (a), in vitro (v) 

nephropathies COX-2 0.003 - 0 h 36 a 37,38 398 

renal and urinary tract 
disorders congenital PDE3 0.004 - 0 h 54,62 a 39,63 0 

renal disorders excl 

nephropathies 

hERG (Binding) - 0.01 0.0007 
h 40 a 64 2 

  759 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2019. ; https://doi.org/10.1101/750950doi: bioRxiv preprint 

https://doi.org/10.1101/750950
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

Table 3 Predicted ADR associations with inhibition of the Bile Salt Export Pump (BSEP) 760 

transporter (detailed legend in Table 1). 761 

HLGT Target 
ADR Probability Literature evidence Co-occurrence 

(number) 0-3 μM 3-30 μM >30 μM human (h); animal (a) 

central nervous system vascular 

disorders BSEP - 0.09 0.008 (for BSEP and bile acid) a 65 2 

foetal complications BSEP 0.01 - 0 h 48 7 

pregnancy labour delivery and 
postpartum conditions BSEP - 0.1 0 h 49 0 

lipid metabolism disorders BSEP - 0.2 0 h 66,67 5 

thyroid gland disorders BSEP - 0.07 0 a 68,69 1 

upper respiratory tract disorders excl 

infections BSEP 0.1 - 0 h 70 a 71 0 

urolithiases BSEP - 0.07 0 h 72 0 

  

0-30 
μM 

30-300 
μM 

>300 
μM   

hepatic and hepatobiliary disorders BSEP - 0.2 0.09 h 46 354 
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