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SUMMARY  10	

The fitness cost of antibiotic resistance in the absence of antibiotics is crucial to the 11	

success of suspending antibiotics as a strategy to lower resistance. Here we show that 12	

after antibiotic treatment the cost of resistance within the complex ecosystem of the 13	

mammalian gut is personalized. Using mice as an in vivo model, we find that the 14	

fitness effect of the same resistant mutation can be deleterious in a host, but neutral or 15	

even beneficial in other hosts. Such antagonistic pleiotropy is shaped by the 16	

microbiota, as in germ-free mice resistance is consistently costly across all hosts. An 17	

eco-evolutionary model of competition for resources identifies a general mechanism 18	

underlying between host variation and predicts that the dynamics of compensatory 19	

evolution of resistant bacteria should be host specific, a prediction that was supported 20	

by experimental evolution in vivo. The microbiome of each human is close to unique 21	

and our results suggest that the short-term costs of resistance and its long-term within-22	

host evolution will also be highly personalized, a finding that may contribute to the 23	

observed variable outcome of control therapies. 24	

  25	
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INTRODUCTION 26	

Antibiotic resistance (AR) is a growing challenge in the treatment of infectious 27	

diseases which are projected to become a burden worldwide in the coming decades1. 28	

The set of AR genes and AR mutations – called resistomes – is widespread in 29	

clinical2,3 and environmental4,5 settings, providing a reservoir that can further expand 30	

by horizontal gene transfer. Commensal bacteria can carry AR in healthy individuals 31	

and AR can persist in the human gut for years6. 32	

Chromosomal encoded resistance mutations often map onto genes coding for essential 33	

cellular functions, such as transcription, translation, or cell-wall biogenesis (see 34	

e.g.7,8). Resistance tends to be highly epistatic and pleiotropic9–11 and typically entails 35	

fitness costs in the absence of antibiotics12–15. The existence of AR costs predicts that 36	

a susceptible strain should out-compete a resistant strain, and a decrease of resistance 37	

levels to a given antibiotic should occur if the use of that drug is halted in clinical 38	

settings. This strategy should be effective when the cost of resistance is high16–19, 39	

allowing for the elimination of the AR strain before evolutionary compensation for 40	

the cost of resistance occurs8. Thus, the efficacy of controlling the spread of AR by 41	

suspending the usage of an antibiotic is critically dependent on the relative fitness of 42	

resistant and sensitive genotypes in the absence of antibiotic. 43	

The costs of AR are strongly influenced by the environment where bacteria grow, 44	

both in its abiotic (e.g. nutrient availability) and biotic (interactions with other cells) 45	

components20–22. Fitness costs of AR can also depend on the genetic background, 46	

including the presence of other resistances, at the level of the core and accessory 47	

genome9,23,24. Since the effects of AR mutations have often been measured under 48	

laboratory environments, which lack the multiple interactions likely to be important in 49	

natura, our understanding of how costly AR can actually be is currently limited. A 50	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/748897doi: bioRxiv preprint 

https://doi.org/10.1101/748897


3	
	

few studies where pathogens25–31 were tested during in vivo colonization and infection 51	

suggest that fitness costs of AR are not always high in the context of bacterial 52	

colonization or virulence. Yet to the best of our knowledge, no study so far has 53	

analyzed the temporal dynamics of resistant strains colonizing the key ecosystem of 54	

the gut microbiota. In particular, it is currently unclear how the results from in vitro 55	

studies or in the context of invasive pathogens are informative about AR in gut 56	

commensal strains, which are by far the main colonizers of a natural complex 57	

ecosystem. Here, we performed in vivo competitive fitness assays, mathematical 58	

modeling and in vivo experimental evolution to unravel the fitness effects of AR in 59	

commensal E. coli colonizing its natural environment.  60	

 61	

RESULTS 62	

Competitive fitness of AR in the mouse gut   63	

We focused on common resistance mutations to streptomycin - StrR (rpsLK43T) and 64	

rifampicin- RifR (rpoBH526Y), and also studied double resistant clones - StrRRifR 65	

(rpsLK43TrpoBH526Y). These have been identified in many important pathogens, such 66	

as Mycobacterium tuberculosis and Salmonella, and also in pathogenic and 67	

commensal E. coli32–34.  68	

To query how inter-species interactions, present in the natural ecosystem comprising 69	

the mammalian gut, influence the costs of AR, we performed competitive fitness 70	

assays in mice that have a complex microbiota (SPF mice). To mimic conditions 71	

where the rise of AR can occur, mice were given an antibiotic treatment – 72	

streptomycin - for a week (see Fig. 1a and Methods). Such treatment is known to 73	

cause perturbations in the microbiota species composition and also to break 74	

colonization resistant to E. coli35, thus increasing the probability that colonization by 75	
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external strains occurs. To measure the in vivo fitness effects of AR and quantify their 76	

costs, which should occur in the absence of antibiotic, we removed the treatment for 77	

two days and then colonized the mice with susceptible and resistant E. coli strains 78	

(Fig. 1a). Previous studies suggest that streptomycin is quickly removed from mice36 79	

and we have experimentally confirmed that streptomycin is absent 2 days after 80	

treatment is stopped, via a biological  detection method in the fecal samples (the 81	

developed method has a threshold of detection of ≈2µg/ml) (Supplementary Fig. 1). 82	

In agreement, we see variation of costs even when the competition is between two 83	

strains that are resistant to the streptomycin (Supplementary Fig. 2). 84	

For most of the competitions, the temporal dynamics of each of the resistant strains in 85	

each mouse, and hence, the fitness effects of AR within a host, were consistent with a 86	

constant selective effect throughout 5 days of colonization (Fig. 1b). However, a wide 87	

variation in the temporal dynamics of Log (AR/Susceptible) is observed between each 88	

mouse (Fig. 1b). Such variation is not the result of sampling noise but unveils host-89	

specific fitness effects of AR. Remarkably AR caused a strong deleterious effect in a 90	

particular host, whereas in another host AR did not exhibit a significant cost (Fig. 1b 91	

and Supplementary Table 1). These results strongly suggest that the elimination of 92	

AR will likely take a very long time to occur, or may not occur at all, in certain hosts. 93	

Frequency dependent selection is unlikely to be the cause of the observed temporal 94	

variation in the frequency of AR between hosts, as the initial frequency of the 95	

resistant strain is not predictive of the resistance fate (Fig. 1b). The occurrence of 96	

compensatory mutations, although possible, is also unlikely to explain the observed 97	

variation. Such events would have to be very common and also entail strong 98	

beneficial effects to influence the estimated fitness difference within the 5 day period 99	

studied. Compensatory mutations are also expected to take longer periods to be rise in 100	
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frequency (see below) and their spread should lead to strong temporal variations in 101	

the frequency of AR strains within each mouse, causing significant deviations from a 102	

simple linear model, a pattern which was not observed. The data strongly suggests 103	

that constant selection against resistance occurs in a host, but selection for resistance 104	

can occur in another host during the 5-day co-colonization period. Such observation 105	

cannot be explained by the occurrence of back-mutations or by mutations that would 106	

render the bacteria sensitive to the antibiotic (Supplementary Table 2).  107	

To investigate if the presence of a complex microbiota is an important contributor to 108	

the personalized fitness of AR, we performed co-colonization experiments in germ-109	

free mice. Here the in vivo fitness costs of AR are solely derived from intra-strain 110	

competition in the gut and we find much lower variance between these hosts. 111	

Significant fitness costs of each resistant strain were estimated in this in vivo but 112	

simpler environment: SStr
R

/day = -0.20 (± 0.09, 2*SE), SRif
R

/day = -0.25 (±0.08) and 113	

SStr
R

Rif
R

/day= -0.44 (± 0.10) (Fig. 1c and Supplementary Table 3-4, corresponding to 114	

1 to 2% cost per generation37, implying that AR should be eliminated within 50 to 100 115	

generations, in the absence of antibiotics. The fitness effects of AR estimated in vivo 116	

are significantly different from those estimated in vitro (Supplementary Fig. 3). 117	

Indeed none of the commonly used laboratory environments provides a good 118	

predictor to the costs of single AR mutations, in the simplest in vivo system lacking a 119	

complex microbiota, nor of their combined effects (see Supplemental Text and 120	

Supplemental Fig. 3).  121	

Having found that the fitness effects of AR are host-specific, we next asked about 122	

their effects at the population level. Taking the cohort of mice studied as a population, 123	

we find that AR is costly on average (Fig. 1d), although it is not significant in any of 124	

the cases (SStr
R

/gen = -0.02 (± 0.04 2SE, n=6), SRif
R

/gen= -0.02 (± 0.02 2SE) and 125	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/748897doi: bioRxiv preprint 

https://doi.org/10.1101/748897


6	
	

SStr
R

Rif
R

/gen= -0.02 (± 0.02 2SE)). This indicates that all resistance strains would be 126	

difficult to eliminate at the host meta-population level. 127	

Characterization of the gut microbiota composition of the cohorts of mice, through 128	

16S rRNA sequencing, showed that antibiotic treatment both reduced the alpha 129	

diversity (p<0.001) and increased substantially the variation of the host microbiota 130	

(Fig. 1e-f). These results suggest that the personalized fitness effect of AR likely 131	

results from an interaction between the effect of AR and the microbial gut ecosystem. 132	

 133	

Modeling AR costs within a species rich ecosystem 134	

To understand whether general properties of the microbiota could cause host-specific 135	

effects of mutations we turned to a theoretical model. If most prevalent interactions in 136	

the microbiota are competitive, as suggested by previous analysis38, we can use the 137	

MacArthur consumer-resource model, which only assumes competition. This 138	

framework is capable of explaining major diversity patterns of microbial 139	

communities39. The model was adapted to quantify the effect of a diverse microbiota 140	

on the relative fitness of an AR mutation (which is costly in the absence of other 141	

species) both analytically and numerically. This theoretical framework seems 142	

appropriate since the resistances studied affect core genes in bacterial metabolism and 143	

alter growth rates in different carbon sources (Supplementary Fig. 4). We assume 144	

that bacteria compete for a set of non-essential resources 𝑆!,… , 𝑆! and each species is 145	

defined by their resource consumption rates α in a 𝑃-dimensional phenotypic space 146	

(Fig. 2a-b). We start by assuming that the species of the microbiota (𝑀) initially 147	

satisfy the conditions for stable coexistence (Supplementary Text, eq.3). To quantify 148	

the fitness effect in this context, we assume that a mutant has a phenotypic difference 149	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/748897doi: bioRxiv preprint 

https://doi.org/10.1101/748897


7	
	

from its parental wild type (α!"# = α!" + Δ) such that its overall fitness is impaired 150	

relative to the total amount of resources that the parent could consume ( 𝛥!!
! < 0). 151	

The selection coefficient in the presence of other species is then given by:  152	

𝑠 𝑡 = 𝑆!

!

!

∆!
𝑒! 𝑡

 

where 𝑒!(𝑡):= 𝑛(!)!∈! (𝑡) ⋅ 𝛼!
(!) with 𝑛(!) being the concentration of species 𝑖. The 153	

phenotypes modeled here can be thought of as enzymes dynamics, ej (t), as they 154	

represent key functional units likely to be relevant in the competitive environment. 155	

Their abundance in the ecosystem (which is proportional to the density of the species) 156	

can vary over time, especially in the context of a strong perturbation, such as the 157	

antibiotic treatment in our experimental system. From the time-dependent form of 158	

selection in (eq. 1) one can deduce the following results: Firstly, at equilibrium 159	

(𝑒! = 𝑆! ∀𝑗), selection on the traits is additive, constant and independent of the 160	

microbiota composition (Supplementary Text, eq.7). However, the presence of a 161	

stable microbiota can amplify or buffer the cost of a mutation, according to its 162	

specific effect (Fig. 2c, Supplementary Text, eq.8). Furthermore, the probability that 163	

the cost is buffered increases with the ratio between the traits (Fig. 2d, 164	

Supplementary Text, eq.8-9). Secondly, when the microbiota ecosystem is pushed 165	

out of equilibrium via a perturbation (e.g. antibiotic treatment), the fate of a 166	

previously deleterious mutation can be significantly altered. Under such conditions, 167	

selection on the mutant becomes host-specific and can be negative, neutral or even 168	

positive in the short-term (Supplementary Text, eq.10-11). 169	

We performed numerical simulations (see Supplementary Text) for the case of 2-170	

resources to illustrate how the time dynamics predicted by the model may explain the 171	

experimental patterns in Fig. 1. The Ln(mutant/susceptible) varies in time and 172	

(eq. 1)	
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depends on the specific mutant (see Fig. 3). If a mutation changes two traits but not 173	

their ratio, its fitness cost is independent of the microbiota composition (Fig. 3a-b, 174	

Mutant x). For a mutation that causes an increase on one trait but a decrease on the 175	

other, the functional content of the ecosystem determines which trait is beneficial or 176	

detrimental and consequently, determines if the mutant is selected for or against (Fig. 177	

3a-b, Mutants y and z have opposite fitness effects). Thus the model predicts variable 178	

fitness effects across hosts and reveals how a pleiotropy-dependent mechanism 179	

characteristic of AR mutants, can lead to their increase in frequency in the absence of 180	

antibiotics (Supplementary Text, eq.11). Importantly, at longer time scales, as the 181	

whole microbial ecosystem approaches equilibrium, the fitness effects converge 182	

towards a negative value (Fig. 3c), which will eventually become constant across all 183	

individuals (Supplementary Text, eq.7). These results indicate that an AR mutation, 184	

which affects competition for resources, should exhibit a host-specific fitness effect 185	

during the initial days of competition (Fig. 1b), and predict that the AR cost should 186	

become host-independent once the microbiota reach equilibrium within a host. 187	

Importantly, since mode and time for equilibrium to occur are microbiota-dependent 188	

(Supplementary Figure 5), one can further predict that the selective pressure for 189	

compensatory mutations should be different across individuals. Thus, the dynamics of 190	

compensation for AR costs should be time-dependent with compensatory mutations 191	

appearing sooner in some hosts and later in others. 192	

 193	

Compensatory evolution of AR strains  194	

To experimentally test the theoretical prediction of time dependent compensatory 195	

evolution, we followed the long-term evolutionary dynamics of each AR clone 196	

colonizing the gut, after streptomycin treatment. Since the gut microbiota composition 197	
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is more similar in mice from the same litter than mice from different litters40,41, our 198	

colonization experiment follows a design where the same AR background colonizes 199	

two mice from different parents (Fig. 4A). Thus, each mouse will likely differ in its 200	

microbiota composition state after antibiotic treatment is stopped (Fig. 4b). Analysis 201	

of the 16S rDNA in each colonized mouse indeed confirmed this expectation and 202	

significant differences between mice were found (Fig. 4b). 203	

We next queried about the evolutionary dynamics of compensatory mutations along 204	

time and between hosts. To identify bona fide compensatory mutations we leveraged 205	

on the fact that these AR mutations have been extensively studied in vitro, in different 206	

media and bacterial species, and many of their targets have been identified31,42–44. 207	

Adaptive mutations unrelated to AR can also occur in the mouse gut at the time scale 208	

of weeks35,45 and many of those can be similar between mice with different 209	

microbiota compositions37. We thus expect adaptive mutations to be more similar 210	

across mice than compensatory mutations, which ought to be more specific to the AR 211	

background of the colonizing E. coli. Whole genome sequencing of pools of clones 212	

around week 3 and 6 after colonization reveal a temporal signal of compensatory 213	

evolution, and variation in the number of compensatory mutations between hosts. In 214	

the first cohort of mice at least one compensatory mutation could be detected in all 215	

AR backgrounds by the 3rd week, whereas in the other cohort of mice no 216	

compensation for RifR or SrtRRifR could be detected at this earlier time point (Fig. 217	

4c). This result is consistent with the expectation that after antibiotic perturbation, 218	

different microbiota compositions will reach equilibrium at different times and thus 219	

selection for the spread of compensatory mutations will be time dependent. Consistent 220	

with this interpretation, by the 6th week the number of compensatory mutations 221	

detected increased in three out of the six studied mice. Remarkably no signal of 222	
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compensatory evolution could be detected in one of the mice from cohort 2, even 223	

though 11 adaptive mutations raised in frequency in the double resistant lineage that 224	

colonized this host after six weeks of colonization (Fig. 4d-e and Supplemental 225	

Table 5). This data indicates that the cost of double resistance can take a long time to 226	

be expressed in specific hosts.  227	

Analysis of the targets of evolutionary change and their frequency with the colonizing 228	

lineages showed that, in the majority of mice, adaptive mutations were more frequent 229	

than compensatory mutations, irrespective of the host or the AR genetic background 230	

(Fig. 4d). Overall 17 genes and 10 intergenic regions were called by natural selection 231	

for global adaptation across the 6 studied mice. Some of these have been shown to be 232	

adaptive when E. coli colonizes the gut of streptomycin-treated mice35,45–47.  233	

The temporal pattern of population genomic variation strongly suggests that clonal 234	

interference between adaptive and compensatory mutations occurs. In some hosts the 235	

emerging compensatory mutations had weaker benefits than other adaptive mutations 236	

(e.g. mutations in fimE and tdcA reached higher frequencies than compensatory 237	

mutations to either StrR or RifR). The observed pattern is also consistent with the 238	

overall mutation rate to compensation being smaller than that of global adaptation to 239	

the gut. rpoB and rpoC were the two targets for compensation to RifR, with deletions 240	

in rpoB being alleles that have not been commonly detected in vitro.  The three targets 241	

for compensation to StrR: in the rpsE, rpsL and rpsD genes have been detected in 242	

previous studies of compensation under laboratory conditions (Fig. 4d-e and 243	

Supplementary Table 5).  244	

Overall these observations are consistent with the observed variation of fitness effects 245	

of AR in the short-term competitions (Fig. 1b) and with the results of the simple 246	

theoretical model described above (Fig. 2-3), predicting a strong personalized pattern 247	
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of compensation for deleterious pleiotropic mutations at the initial stages of evolution 248	

(Fig. 4).  249	

 250	

DISCUSSION 251	

Many chromosomal encoded AR exhibit a fitness cost when growing in in vitro 252	

artificial laboratory environments. How previously measured costs of AR in vitro 253	

translate into the natural environments is currently poorly known. Yet, the 254	

quantification of the strength of selection for and against resistance in ecosystems 255	

such as the mammalian gut is critical for understanding the levels of the microbiota 256	

resistome8. In the species rich intestinal tract, bacteria ferociously compete for 257	

resources and the environment may not be as constant as that of laboratory settings. 258	

Indeed, we have found that the costs of both single and double resistances in vitro 259	

could significantly deviate from their estimated in vivo effects, even in the simplest 260	

case of mono-colonized hosts (Fig. 1b and Supplementary Fig. 3). In the more 261	

relevant model of E. coli colonization of a complex gut microbiota with inter-species 262	

interactions, we uncovered that the same AR mutation can have a wide range of 263	

fitness effects in hosts that are genetically identical, eat the same diet and experience 264	

the same environment. Following antibiotic treatment, a given AR mutation showed a 265	

strong deleterious effect in competitive fitness within one host but increased in 266	

frequency in another - a display of antagonistic pleiotropy. A similar finding occurs 267	

when double resistant strains compete with single resistant lineages (Supplementary 268	

Figure 2). Since the host specific effect is absent in germ-free mice (Fig. 1c), our 269	

observations suggest that selection against resistance is acting unequally across mice 270	

due to the presence of the microbiota. In accordance with previous reports48,49, a 271	

decrease in microbiota diversity following antibiotic treatment is also seen in our 272	
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study, as well as a high variance of its composition between mice (Fig. 1e-f). 273	

Differences in the composition of the microbiota can lead to differences in metabolic 274	

activity of the whole ecosystem, which in turn will likely result in distinct levels of 275	

inter-species competition for the different gut resources. Since the AR studied here, 276	

involving changes in the ribosome and RNA polymerase, affect metabolism50–52, it is 277	

natural to expect that their fitness effects may depend on the microbiota composition, 278	

as observed. Streptomycin resistance mutations can affect translation speed and 279	

accuracy53, while certain rpoB mutations can affect transcription speed54 and 280	

fidelity55,56. Cellular processes that depend of the effectiveness of transcription and 281	

translation, such as the activation or repression of operons linked to nutrient uptake 282	

and consumption, are likely to be affected, generating distinct consumption rates 283	

when compared with the wild-type strain. Accordingly, the mutations under study 284	

have been shown to change the growth and competitive fitness of bacteria in different 285	

nutritional environments22, suggesting that they can change the relative consumption 286	

of different resources in natural environments. By theoretical modeling the effect of 287	

AR mutations in a framework of competition within ecosystems, we found that AR 288	

mutations, which are costly in the absence of interspecies interactions, should entail 289	

variable costs in the context of host-specific microbiota perturbations. The model also 290	

predicted time dependent-selection of the fate of AR, implying that the strength of 291	

selection to lower resistance costs should generally show variation along time within 292	

and between individuals. Such patterns were corroborated by in vivo long-term 293	

evolution experiments on three different resistance backgrounds. Notwithstanding 294	

other key simplifications in the model, we also did not explicitly consider the 295	

emergence of compensatory mutations nor the clonal interference pattern observed 296	

during the long-term evolutionary dynamics of E. coli resistant strains in the gut. The 297	
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quantitative understanding of how globally adaptive mutations interfere with 298	

background specific compensatory mutations during the eco-evolutionary dynamics 299	

of gut commensal bacteria after microbiota dysbiosis is an important problem for 300	

future theoretical work, that can illuminate specific in vivo experimental evolution 301	

designs. 302	

The findings that metabolic adaptations occur in every host, that typical compensatory 303	

mutations may take a long time to reach high frequency, and that reversion to a 304	

sensitive state are not detected, has consequences for the expansion and maintenance 305	

of resistant strains within hosts. A recent study showing that a short-term cefuroxime 306	

treatment can increase the general level of resistance in the human gut microbiota57, 307	

corroborates this expectation, although the factorial level of potential causes for such 308	

an effect is enormous when studying AR levels in humans.  309	

The dysbiotic period following antibiotic treatment offers a time window of 310	

opportunity for disease causing bacteria to invade the host intestine. The associated 311	

possible reduction in costs of resistance at this critical period offers an important 312	

breach for the maintenance of resistant pathogens, and further difficulties in 313	

elimination of these agents. Yet in the case of AR mutations that affect nutritional 314	

metabolism, an interesting possibility of using specific dietary supplementation could 315	

be considered. As metabolic model predictions from genomic data of strains is rapidly 316	

improving and specific carbon supplementations can sometimes be effective in 317	

changing the frequency of specific strains58, hopes that such progress can be 318	

harnessed to lower resistance levels may become within reach.  319	

A study with a simplified model microbiota has shown that the presence of a single 320	

gut bacterial species can change the outcome of intra-species competitions59. 321	

Therefore, a plausible strategy to eliminate resistant pathogens is to find competitors 322	
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that will reliably and specifically generate a cost for the resistant strain. Studying the 323	

fitness effects of resistance mutations in the presence of specific gut microbes or 324	

defined collections of microbiota members, and further testing the efficiency of these 325	

strains in dysbiosis models could lead to optimized approaches for selection against 326	

resistance. 327	

According to our model, multi-species can coexist when there are, at least, two 328	

resources available for which the different species compete. Importantly, the species 329	

are able to consume both resources, even though they have different abilities to 330	

consume each one. There is evidence that several gut species can use more than one 331	

carbon sugar60. Even though carbon-catabolite-repression (CCR) is known to occur in 332	

E. coli for carbon sources such as glucose61, bacteria can find a multitude of 333	

nutritional niches when colonizing the mammalian gut.  Successful species probably 334	

evolved to be versatile enough to switch their realized nutrient niche regularly or to 335	

simultaneously utilize multiple substrates62. In agreement, the gene expression 336	

profiles E. coli MG1655 grown in mucus (mimicking the gut nutritionally) identified 337	

genes involved in catabolism of several sugars such as N-acetylglucosamine, sialic 338	

acid, glucosamine, fucose, ribose, glucuronate, galacturonate, gluconate, and 339	

maltose63.  340	

We found evidence for significant antagonistic pleiotropy for AR fitness effects 341	

between hosts. Antagonistic pleiotropy could also occur within a single host intestine, 342	

as individual E. coli cells might experience different niches in such structured 343	

environment, while the population as a whole may consume different carbon sources 344	

simultaneously58. The simple theoretical model of resource competition helps 345	

explaining how the host-dependent AR costs can arise from general properties of the 346	

ecosystem even without species-specific or cross-feeding interactions. Pairwise cross-347	
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feeding interactions between gut bacteria can nevertheless occur64,65 and higher order 348	

cross-feeding interactions are thought to be involved in complex microbial 349	

communities66. While cross-feeding interactions are a feature of the gut ecosystem, 350	

these networks of metabolites produced by bacteria can also be affected by strong 351	

microbiota perturbations. Thus, an altered ability to consume cross-fed resources by 352	

resistant bacteria would lead to the same outcome: a host-specific fitness effect of 353	

resistance mutations in dysbiosis. 354	

Recent studies that define the bacterial taxa within human microbiota demonstrate 355	

significant variability between individuals67,68. One of these studies68 was able to track 356	

individuals from hundreds of people by using the microbiota data available in the 357	

“Human Microbiome Project” database. This is strong evidence that our microbiota 358	

has enough unique characteristics to be almost used as a “fingerprint” of an 359	

individual. As the microbiota can affect the cost of resistance, it is likely that the fate 360	

of resistant bacteria in humans is also host-specific. Therefore, depending on 361	

individual microbiomes and resistomes, the fight against antibiotic resistance in the 362	

current era might require personalized medicine. 363	

 364	

METHODS 365	

E. coli and mice strains 366	

All of the strains were derived from Escherichia coli strain K-12 MG1655. Since the 367	

gat operon was observed to be a mutation hotspot under strong selection for our 368	

strains in the mouse gut 35,45, we pre-adapted our E. coli strain to a gat negative 369	

phenotype by knocking down the gatZ gene permanently. Briefly, P1 transductions 370	

were performed in order to delete the gatZ gene from our strains as a pre-adaptive 371	

mutation and strain E. coli JW2082-1 from the KEIO collection was used as a donor. 372	
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The new strains, LC88 and RB929 (ΔlacIZYA::scar galK::cat-YFP/CFP ∆gatZ::FRT-373	

aph-FRT), were used as wild-type strains in the competitions. P1 transduction was 374	

also used to insert the point mutation rpoBH526Y (RifR) in the wild-type background 375	

and to pass the gatZ deletion from the wild-type strains to isogenic antibiotic resistant 376	

strains, carrying either the point mutation rpsLK43T (StrR) or both rpsLK43T and  377	

rpoBH526Y mutations (StrRRifR). The resulting streptomycin resistant (StrR) strains 378	

LC81 and LC82 (YFP/CFP, respectively), the rifampicin resistant (RifR) strains 379	

RB933 and LC84b (YFP/CFP, respectively), and the double resistant (StrRRifR) 380	

strains LC85, LC86 (YFP/CFP, respectively) were used to colonize the mice and 381	

perform the competitions in vivo. 382	

Six-to-thirteen week-old female C57BL/6J germ-free (GF) mice were used as hosts 383	

for the in vivo competitions in the absence of microbiota, while 6-to-8 week-old 384	

female C57BL/6J specific pathogen free (SPF) mice were used for the in vivo 385	

competitions and the evolution experiment in the presence of microbiota. GF mice 386	

were bred and raised at the IGC gnotobiology facility in dedicated axenic isolators 387	

(La Calhene/ORM).) Young adults were transferred into sterile ISOcages (Tecniplast) 388	

before the competition experiments. 389	

 390	

In vitro competitions 391	

The strains were streaked from the frozen stocks into LB agar with antibiotics 392	

corresponding to their resistance and incubated at 37°C for 24 hours, followed by 393	

acclimatization for 24h in LB and in minimal media with 0.4% glucose, in 96-well 394	

plates, at 37°C, with shaking (700 rpm). Each resistant strain was mixed in a 1:1 ratio 395	

with the sensitive wild-type, and competitions were performed for 24h in the same 396	

conditions as the acclimatization. To determine the initial and final ratios of resistant 397	
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and susceptible strains in the competition assays, bacteria were quantified with an 398	

LSR Fortessa flow cytometer using a 96-well plate autosampler. Samples were always 399	

run in the presence of SPHERO (AccuCount 2.0-µm blank particles) in order to 400	

accurately quantify bacterial numbers in the cultures. Briefly, flow cytometry samples 401	

consisted of 180 µl of PBS, 10 µl of SPHERO beads, and 10 µl of a 100-fold dilution 402	

of the bacterial culture in PBS. The bacterial concentration was calculated based on 403	

the known number of beads added. Cyan fluorescent protein (CFP) was excited with a 404	

442-nm laser and measured with a 470/20-nm pass filter. Yellow fluorescent protein 405	

(YFP) was excited using a 488-nm laser and measured using a 530/30-nm pass filter. 406	

The selection coefficient (s) of each mutant strain was estimated as the per generation 407	

(number of doublings of the susceptible strain) difference in the ration of the resistant 408	

strain and the reference strain after 24h: S = ln(Rf/Ri)/t, where t corresponds to the 409	

number of generations and Rf and Ri to the final and initial ratios between resistant 410	

and reference strains, respectively. The gat negative phenotype had no interference in 411	

between the negative epistasis in between resistances 9,22. 412	

 413	

In vivo competitions 414	

To measure the fitness effects and to evolve the resistant strains in SPF mice, we used 415	

a streptomycin treatment in order to break the colonization resistance. Mice were 416	

separated into individual cages and given autoclaved drinking water containing 417	

streptomycin sulfate (5g/L) for seven days and then mice were given regular 418	

autoclaved drinking water for 2 days, in order to wash out the antibiotic from the gut 419	

and allow for the microbiota stabilization. After 4 hours of starvation for food and 420	

water, the mice were gavaged with 100 µl of a ≈109 cells/ml suspension with a 1:1 421	

ratio of the two competing strains. 422	
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To make the suspension, the strains were streaked from stocks in LB agar with 423	

antibiotics corresponding to their resistance two days before gavage and incubated for 424	

24 hours, followed by an overnight culture of a single colony for each biological 425	

replicate in BHI (brain heart infusion) media with the corresponding antibiotic. The 426	

cultures were then diluted 100-fold and grown in BHI media until an OD600nm ≈ 2. 427	

Flow cytometry was used to assess the number of cells per growth and therefore 428	

adjust the initial number of cells in order to prepare the suspension for the gavage. 429	

The same protocol was used in order to generate the bacteria suspension for the GF 430	

mice. Mice fecal pellets were collected 4 hours and every 24 after gavage, for 5 days, 431	

suspended and diluted in PBS and plated in LB agar plates. Plates were incubated 432	

overnight and the frequencies of CFP- or YFP-labeled bacteria were assessed by 433	

counting the fluorescent colonies with the help of a fluorescent stereoscope 434	

(SteREOLumar, Carl Zeiss). The samples were also stored in 15% glycerol at -80°C 435	

for future experiments. The selection coefficient (S) per day of each mutant strain was 436	

estimated through the slope of the log-linear regression of the ratio of the resistant 437	

strain and the reference strain from day 1 to day 5. Apart from the streptomycin 438	

treatment to break colonization resistance, the same protocol was used in the 439	

competitions with GF mice. 440	

 441	

Microbiota analysis 442	

To assess the gut microbiota composition of mice, we extracted DNA from fecal 443	

samples from two experiments: the measurement of fitness costs in SPF mice (Fig. 1) 444	

and from the compensatory evolution of the resistant strains (Fig. 4). For the analysis 445	

of the microbiota perturbation during the measurement of the fitness costs, fecal 446	

samples were collected from 8 mice belonging to different litters, before the start of 447	
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the antibiotic treatment and 72 hours after its end, corresponding to the first time-448	

point on the competition experiments. For samples collected during the E. coli 449	

resistant strains compensatory evolution experiments, we characterized the microbiota 450	

context by analyzing the fecal samples collected from 6 female mice from two 451	

different litters (3 per litter) at day 17 of the evolution experiment. 452	

Fecal DNA was extracted with a QIAamp DNA Stool MiniKit (Qiagen), according to 453	

the manufacturer’s instructions and with an additional step of mechanical disruption69. 454	

16S rRNA gene amplification and sequencing was carried out at the Gene Expression 455	

Unit from Instituto Gulbenkian de Ciência, following the service protocol. For each 456	

sample, the V4 region of the 16 S rRNA gene was amplified in triplicate, using the 457	

primer pair F515/R806, under the following PCR cycling conditions: 94 ºC for 3 min, 458	

35 cycles of 94 ºC for 60 s, 50 ºC for 60 s, and 72 ºC for 105 s, with an extension step 459	

of 72 ºC for 10 min. Samples were then pair-end sequenced on an Illumina MiSeq 460	

Benchtop Sequencer, following Illumina recommendations. 461	

QIIME270 was used to analyze the 16S rRNA sequences by following the authors’ 462	

online tutorials (https://docs.qiime2.org/2018.11/tutorials/). Briefly, the demultiplexed 463	

sequences were filtered using the “denoise-single” command of DADA271, and 464	

forward and reverse sequences were trimmed in the position in which the 25th 465	

percentile’s quality score got below 20. Alpha diversity and ANCOM analysis72 were 466	

performed as in the QIIME2 tutorial. Beta diversity distances were calculated through 467	

Unweighted Unifrac73, and PCoA on the respective distance matrices were performed 468	

using the R software ((http://www.R-project.org) and the R packages “vegan” 469	

(https://CRAN.R-project.org/package=vegan), “BiodiversityR” (https://CRAN.R-470	

project.org/package=BiodiversityR) and “RVAideMemoire” (https://CRAN.R-471	

project.org/package=RVAideMemoire).	For taxonomic analysis, OTU were picked by 472	
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assigning operational taxonomic units at 97% similarity against the Greengenes 473	

database74. 474	

 475	

Compensatory evolution in SPF mice 476	

To study the adaptation of resistance strains to the gut, three sister mice from 2 477	

different litters were used, for a total of 6 mice. For each resistant genotype, we 478	

colonized 1 mouse from each litter with a mix of YFP and CFP-labeled bacteria. The 479	

whole colonization protocol was identical to the in vivo competitions as described for 480	

the SPF mice. Samples were collected 24h after gavage and every 48h thereafter, until 481	

39 days post colonization. All samples were stored in 15% glycerol at -80°C. 482	

 483	

DNA extractions and whole-genome sequencing analysis 484	

Concentration and purity of DNA were quantified using Qubit and NanoDrop, 485	

respectively. The DNA library construction and sequencing was carried out by the 486	

IGC genomics facility. Each sample was pair-end sequenced on an Illumina MiSeq 487	

Benchtop Sequencer. Standard procedures produced data sets of Illumina paired-end 488	

250 bp read pairs. The reads were filtered using SeqTk version 1.0-r63. The mean 489	

coverage after filtering for the different samples was as follows: 168x and 175x for 490	

StrR1 day 19 and day 39, respectively; 238x and 194x for StrR2 day 19 and day 39, 491	

respectively; 164x and 159x for RifR1 day 19 and day 39, respectively; 226x and 202x 492	

for RifR2 day 19 and day 39, respectively; 148x and 156x for StrR RifR1 day 19 and 493	

day 39, respectively; 213x and 220 for StrR RifR2 day 19 and day 39, respectively. 494	

Sequences were analyzed using Breseq version 0.31.1, using E. coli K12 genome 495	

NC_000913.3 as a reference, with the polymorphism option selected, and the 496	

following parameters: (a) rejection of polymorphisms in homopolymers of a length 497	
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greater than three, (b) rejection of polymorphisms that are not present in at least three 498	

reads in each strand, and (c) rejection of polymorphisms that do not have a p-value for 499	

quality greater than 0.05,(d) rejection of polymorphisms with less than 3 of coverage 500	

in each strand and (e) rejection of polymorphisms with less than 1% frequency. All 501	

other Breseq parameters were used as default. Hits that were present in all of our 502	

ancestral mutants as well as homopolymers were discarded. Hits that were likely to be 503	

due to misalignment of repetitive regions were also discarded. Regarding the 504	

downstream analysis, target genes that appeared only in one sample and had a 505	

frequency lower than 5% were not considered. 506	

 507	

Modeled AR competitions 508	

Numerical simulations were used to confirm the analytical predictions and to 509	

graphically represent the results. The dynamics of M species competing for P 510	

resources follow a recent formalization of the classical MacArthur consumer-resource 511	

model39: 512	

!"(!)

!"
= 𝑛(!)

!!!
(!)!!

!(!)!
!!! !!

(!)
!
!!! − 𝛿 , (i=1, ..., M) 513	

Where 𝑛 ! 𝑡  is the density of species 𝑖, 𝛼!
(!)is the consumption rate of substrate 𝑗 by 514	

species 𝑖, 𝑆! is the constant substrate 𝑗 supply, 𝛾 is the yield and 𝛿 is the microbial 515	

death rate. A detailed description of the parameter choice and the algorithm is given 516	

in the supplementary information. The implementation of the competitions and the 517	

graphical resolution of the two-resource scenario were done in RStudio 1.1.463 and 518	

the source code is available upon request to the authors. 519	

 520	

Statistical analysis 521	
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The selection coefficient of the in vivo competitions was tested in R software, through 522	

an F-statistic on a predictive linear model of the mutant/sensitive or double 523	

mutant/single mutant ratio over time, generated through the observed ratio on sampled 524	

time-points from 24, 48, 72, 96 and 120 hours after gavage. The null hypothesis is 525	

that the slope, which is an estimation of the selection coefficient, is equal to 0. When 526	

the null hypothesis was rejected, p-value < 0.05, the mutant was considered to have a 527	

cost if the slope of the model was negative and to have a fitness benefit if the slope 528	

was positive. F tests were performed to analyze the variance in between hosts. 529	

Normality of each treatment was tested through with Shapiro Wilk test and normality 530	

of the treatments involving competitions in the presence of microbiota was further 531	

tested through Kolmogorov-Smirnov test. 532	
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FIGURE LEGENDS 755	

Figure 1- Effect of microbiota on the fitness costs of resistances. (a) Scheme of the 756	

experimental design to measure the fitness effect of AR in vivo. Mice with their 757	

natural microbiota were given a one-week course of streptomycin treatment, after 758	

which the antibiotic was removed from the water. Two days post-treatment mice were 759	

fed with a mixture of sensitive and AR E. coli strains, isogenic and marked with YFP 760	

and CFP respectively. The temporal dynamics of the AR frequency was estimated 761	

from plating of fecal samples daily. (b,c) The fitness effect of streptomycin resistance, 762	

coded by rpsLK43T mutation (StrR), rifampicin resistance, coded by rpoBH526Y mutation 763	

(RifR), and the rpsLK43TrpoBH526Y double mutant (StrRRifR) under competition against 764	

a sensitive background in the presence of a diverse microbiota (b) and in the absence 765	

of inter-species interactions (c). (d) Boxplot of the mean and variance of the fitness 766	

costs of resistance measured in mice mono-colonized and with a complex microbiota. 767	

(e) Microbiota beta diversity visualization by principal coordinate analysis (PCoA) 768	

based on Unweighted UniFrac distance before and after antibiotic treatment. Ellipses 769	

represent the standard deviation of point scores with a 95% confidence limit for each 770	

group (ANOSIM test, p < 0.05). (f) Microbiota composition as relative OTU 771	

abundance assayed by 16S rRNA amplicon sequencing and clustered at the phylum 772	

level (colored segments) in different mice after antibiotic treatment displaying the 773	

broader diversity across hosts observed in the PCoA. 774	

 775	

Figure 2 – Multi-species ecological model of pleiotropic AR mutations and the 776	

effect of a stable microbiome. (a) Schematic of the model with two resources and 777	

multiple species. Each species i (represented by a given color) is characterized by its 778	

ability of consuming resources (𝑆! and 𝑆!), encoded by  the traits 𝛼!
(!), 𝛼!

(!) 779	
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(represented by resource-specific shapes around each cell). (b) Species 2-D 780	

phenotypic space assuming a metabolic trade-off (species lie on the diagonal (see 781	

Supplementary Text)) to allow an equilibrium species rich state. (c) The relative 782	

fitness of a mutant in the presence of a stable microbiota (M), sM*, is time-independent 783	

and independent of the specific composition of M. It however can be buffered or 784	

amplified by the microbiota according to the specific values of the mutation effect 785	

(∆!,∆!): when the trait ratio remains unchanged (e.g. Mutant x), s is not affected by 786	

other species, otherwise the cost can increase (e.g. Mutant z) or be buffered by the 787	

microbiota (e.g. Mutant y). (d) The probability of buffering increases with the 788	

distance of the WT to the theoretical optimal (yellow square in panel b, 789	

Supplementary Text, eq8).    790	

 791	

Figure 3 – A general ecological model predicts time-dependent and host-specific 792	

selection on AR after antibiotic treatment. (a) Example of two microbiomes where 793	

a perturbation leads to functional distinct unbalances. Species in different colors with 794	

different relative abundances (represented as different areas of circles or triangles), at 795	

the colonization time; at equilibrium e1=e2 (Supplementary Text). (b) Selection 796	

depends on the mutation effect (mutant x,y, or z) and on the microbiome composition 797	

(sa or sb): for mutant x, which has same trait ratio as the WT, there is no time or 798	

microbiome dependence, whereas mutations y and z have opposite behaviors in the 799	

short time dynamics: selection is positive or negative depending on the microbial 800	

community. (c) Time-dependence of selection at short and long time-scales. As time 801	

passes and the microbiome moves towards equilibrium selection tends to a constant 802	

negative value (Fig. 2c): example of the cost dynamics of mutant z within 100 803	
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simulated microbiomes (equivalent dynamics but for mutants x and y in 804	

Supplementary Fig. 6).  805	

 806	

Figure 4 - Dynamics and genetic basis of compensatory evolution of AR strains 807	

across hosts. (a) Experimental set up to study the adaption pattern of resistant strains 808	

(StrR, RifR and StrRRifR) after an antibiotic perturbation. Mice from the same litter 809	

were co-housed for five weeks to homogenize the microbiota across litters. 810	

Afterwards, mice from the two different litters followed the same colonization 811	

resistance protocol as seen in Figure 1A and then used to follow adaptation of each of 812	

the resistant backgrounds (see Methods) for 6 weeks. Fecal samples were collected 813	

whole genome sequencing of populations and 16S.  (b) Microbiota composition at the 814	

phylum level of the mice from the two different litters 3 weeks after colonization. 815	

Mice from the same litter cluster together and have a more similar microbiota. (c) 816	

Comparison of the number of putative adaptive and compensatory mutations present 817	

in the adapted resistant populations after 3 and 6 weeks in the mice gut with different 818	

microbiotas. (d) Frequency of the detected adaptive and compensatory mutations at 819	

week 3 and week 6. (e) Genetic basis of the bona fide compensatory mutations 820	

detected after 3 or 6 weeks of adaptation in the gut. 821	

 822	
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FIGURES 823	

 824	

 825	

 826	

 827	

 828	
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