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ABSTRACT 
Many genome-wide collections of candidate cis-regulatory elements (cCREs) have been defined 
using genomic and epigenomic data, but it remains a major challenge to connect these elements 
to their target genes. To facilitate the development of computational methods for predicting target 
genes, we developed a Benchmark of candidate Enhancer-Gene Interactions (BENGI) by 
integrating the Registry of cCREs we developed recently with experimentally-derived genomic 
interactions. We used BENGI to test several published computational methods for linking 
enhancers with genes, including signal correlation and the supervised learning methods 
TargetFinder and PEP. We found that while TargetFinder was the best performing method, it was 
modestly better than a baseline distance method for most benchmark datasets while trained and 
tested within the same cell type and that TargetFinder often did not outperform the distance 
method when applied across cell types. Our results suggest that current computational methods 
need to be improved and that BENGI presents a useful framework for method development and 
testing. 
 
  

  
INTRODUCTION 
With the rapid increase of genomic and epigenomic data in recent years, our ability to annotate 
regulatory elements across the human genome and predicting their activities in specific cell and 
tissue types has substantially improved. Widely used approaches integrate multiple epigenetic 
signals, such as chromatin accessibility, histone marks, and transcribed RNAs 1-7 to define 
collections of regulatory elements, which can be used to study the regulatory programs in 
diverse cell types and dissect the genetic variations associated with human diseases5,8-11. 
 
To maximize the utility of regulatory elements, one must know which genes they regulate. We 
recently developed the Registry of candidate cis-Regulatory elements (cCREs), a collection of 
candidate regulatory genomic regions in human and mouse, by integrating chromatin accessibility 
(DNase-seq) data and histone mark ChIP-seq data in hundreds of biosamples generated by the 
ENCODE Consortium (http://encodeproject.org/SCREEN). Over 75% of these cCREs have 
enhancer-like signatures (high chromatin accessibility as measured by high DNase-seq signal 
and high level of the enhancer-specific histone mark H3K27ac) and are distal (> 2 kb) from an 
annotated transcription start site (TSS). For cCREs proximal to a TSS, it may be safe to assume 
that the TSS corresponds to the target gene, but to annotate the biological function of the TSS-
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distal cCREs and interpret the genetic variants they harbor, we need to determine the genes they 
regulate.  

 
Assigning enhancers to target genes on a genome-wide scale remains a difficult task. While one 
could assign an enhancer to the closest gene using linear distance, there are many examples of 
enhancers skipping over nearby genes in favor of more distal targets12. Experimental assays such 
as Hi-C and ChIA-PET survey physical interactions between genomic regions13,14 and by 
overlapping the anchors of these interactions with annotated enhancers and promoters, we can 
infer regulatory connections. Approaches based on quantitative trait loci (QTL) associate genetic 
variants in intergenic regions with genes by the variation of their expression levels across multiple 
individuals in a human population15,16. Recently a single-cell perturbation approach extended this 
idea17. However, these assays are expensive to perform and have only been conducted in high 
resolution in a small number of cell types. Therefore, we need to rely on computational methods 
to broadly predict enhancer-gene interactions. 

 
One popular computational method for identifying enhancer-gene interactions is correlating 
genomic and epigenomic signals at enhancers and gene promoters across multiple biosamples. 
This method is based on the assumption that enhancers and genes tend to be active or inactive 
in the same cell types. The first study to utilize this method linked enhancers with genes by 
correlating active histone mark signal at enhancers with gene expression across nine cell types1. 
Several groups subsequently used similar approaches to link enhancers and genes by correlating 
various combinations of DNase, histone mark, transcription factor, and gene expression data8,18-

20. While these methods successfully identified a subset of biologically relevant interactions, their 
performance has yet to be systematically evaluated.  
 
Other groups have developed supervised machine-learning methods that train statistical models 
on sets of known enhancer-gene pairs. Most of these models use epigenomic signals (e.g., 
histone marks, TFs, DNase) at the enhancers, promoters, or intervening windows as input 
features21-24. PEP-motif, on the other hand, uses sequence-based features25. The performance of 
these methods has also not been systematically evaluated for several reasons. First, different 
methods use different definitions for enhancers ranging from EP300 peaks23 to chromatin 
segmentations24. Second, these methods use different datasets to define their gold standards, 
such as ChIA-PET interactions21,23 or Hi-C loops23,24, along with different methods for generating 
negative pairs. Finally, many of these methods use a traditional randomized cross-validation 
scheme, which results in severe overfitting of some supervised models due to overlapping 
features26,27 

 
To facilitate the development of target gene-prediction methods, we developed a collection of 
benchmark datasets by integrating the Registry of cCREs with experimentally-derived genomic 
interactions. We then tested several published methods for linking enhancers with genes, 
including signal correlation and the supervised learning methods TargetFinder and PEP24,25. 
Overall, we found that while TargetFinder was the best performing method, it was modestly better 
than a baseline distance method for most benchmark datasets while trained and tested within the 
same cell type, and Target Finder often did not outperform the distance method when applied 
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across cell types. Our results suggest that current computational methods need to be improved 
and that our benchmark presents a useful framework for method development and testing. 

 
RESULTS 
A Benchmark of candidate Enhancer-Gene Interactions (BENGI) 
To effectively evaluate target-gene prediction methods, we curated a Benchmark of candidate 
Enhancer-Gene Interactions (BENGI) by integrating our predicted enhancers, cCREs-ELS, with 
3D chromatin interactions, genetic interactions, and CRISPR/dCAS9 perturbations, in total 21 
datasets across thirteen biosamples (Figure 1a, Supplemental Tables 1 and 2a). For 3D 
chromatin interactions, which include ChIA-PET, Hi-C, and CHi-C datasets, we selected all links 
with one anchor overlapping a cCRE-ELS and the other anchor falling within 2 kb of a GENCODE 
annotated TSS (Figure 1b, see Methods). For about three-quarters of the interactions in total, 
the anchor of the 3D chromatin interaction overlaps the proximal region of more than one gene 
making the assignment of the exact gene target ambiguous. To assess the impact of these 
potentially ambiguous assignments, we created two versions of each 3D interaction benchmark 
dataset. In the first, we retained all cCRE-gene links; in the second, we removed links with ends 
within 2 kb of the TSSs of multiple genes (i.e., ambiguous pairs). For genetic interactions (eQTLs) 
and CRISPR/dCas9 perturbations (crisprQTLs), we paired a cCRE-ELS with a gene if the cCRE 
overlapped the reported SNP or targeted region (Figure 1b). In total, we curated over 185 
thousand unique cCRE-gene pairs across the thirteen biosamples. Because these experimental 
datasets capture different aspects of enhancer-gene interactions (see statistical analyses in the 
next section), we keep the cCRE-gene pairs as separate datasets in BENGI.  
 
To complement the positive cCRE-gene pairs in each BENGI dataset, we generated negative 
pairs for each cCRE-ELS by selecting all unpaired genes with a TSS within (either upstream or 
downstream) the 95th percentile distance of all positive cCRE-gene pairs in the dataset 
(Supplemental Table 2a, see Methods). These distance cutoffs ranged from 119 kb (RNAPII 
ChIA-PET in HeLa) to 1.77 Mb (Hi-C in K562). The percentages of positives pairs also varied 
from 1.9% (Hi-C in K562) to 23.8% (CHi-C in GM12878), and datasets with greater class 
imbalance (i.e., smaller percentage of positives) are inherently more challenging for a 
computational algorithm. To enable the comparison of algorithm performance across datasets, 
we further created datasets with a fixed ratio of one positive to four negatives for each BENGI 
dataset, by randomly discarding the excess negatives. This consideration, along with the 
previously mentioned removal of ambiguous pairs for 3D chromatin interactions, results in four 
BENGI datasets per ChIA-PET, Hi-C, or CHi-C experiment and two BENGI datasets per eQTL or 
crisprQTL experiment (Figure 1c, Supplemental Table 2a). All pairs with the natural positive-
negative ratio were used in our analyses unless otherwise noted. 
 
To facilitate the training and testing of supervised machine-learning algorithms, we then assigned 
both positive and negative pairs to 12 cross-validation (CV) groups by chromosome such that 
pairs within the same chromosome were always assigned to the same CV group while different 
CV groups maintained similar sizes by pairing one large chromosome with one small chromosome 
(chromCV, see Methods, Figure 1d). Because GM12878 and other lymphoblastoid cell lines 
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(LCLs) had the most BENGI datasets and have been extensively surveyed by the ENCODE and 
1000 Genomes Consortia, we will highlight our analyses on BENGI datasets from LCLs. 
 
Summary statistics of BENGI datasets 
We asked whether the various chromatin, genetic, and CRISPR experiments might capture 
different types of enhancer-gene interactions. To answer this question, we carried out several 
statistical analyses across the BENGI datasets. First, we performed hierarchical clustering on the 
six BENGI datasets in GM12878/LCLs by overlap coefficient—the number of positive cCRE-gene 
pairs shared between two datasets divided by the number of positives in the smaller dataset. Two 
clusters resulted; one comprised the two eQTL datasets and the other the four chromatin 
interaction datasets (Figure 2b). This overall grouping of the datasets is consistent with the 
characteristics of the experimental techniques (Table 1). Beyond the overall grouping, the two 
eQTL datasets had higher overlap coefficients with the RNAPII ChIA-PET and CHi-C datasets 
(0.20–0.36) than with the Hi-C and CTCF ChIA-PET datasets (0.01–0.05). This reflects the 
promoter emphasis of the first four techniques, hence enriching for promoter-proximal 
interactions. In contrast, Hi-C identifies significantly more distant interactions than the other 
techniques (Figure 2a, Wilcoxon rank-sum test p-value = 1.1E-223). 
 
We then compared gene expression of the positive pairs among the six GM12878/LCL datasets 
(Figure 2c). Overall, genes in the GEUVADIS eQTLs pairs had the highest median expression 
(median = 10.9 transcripts per million sequenced reads or TPM, Wilcoxon rank-sum test p = 1E-
3), while genes in the CHi-C pairs had the lowest median expression levels (median = 0.24 TPM, 
p = 7E−39). When we removed ambiguous pairs, gene expression increased significantly for all 
four chromatin interaction datasets (Supplemental Figure 1a), suggesting that some of the 
ambiguous pairs are false positives. We observed similar increases in gene expression upon 
removal of ambiguous pairs in other cell types for which we had RNA-seq data (Supplemental 
Figure 1b-d). Without ambiguous pairs, RNAPII ChIA-PET pairs have comparable expression to 
GEUVADIS eQTL pairs. The enrichment for RNAPII in the ChIA-PET protocol may preferentially 
identify interactions that involve higher RNAPII activity and higher gene expression. The K562 
crisprQTL pairs had the highest overall median expression of 26.4 TPM. We expected to see high 
expression for the eQTL and crisprQTL datasets because these interactions can only be detected 
for genes that are expressed in their respective biosamples. 
 
We also observed significant differences in CTCF ChIP-seq signals at cCREs-ELS between 
BENGI datasets—cCREs-ELS in CTCF ChIA-PET pairs and Hi-C pairs showed significantly 
higher CTCF signals than cCREs-ELS in other datasets (Wilcoxon rank-sum test p < 3.7E−9, 
Figure 2d, Supplemental Table 2b). Similarly, these pairs were enriched for components of the 
cohesin complex such as RAD21 and SMC3 (Supplemental Table 2b). This enrichment for 
CTCF is biologically consistent as CTCF was the target for the ChIA-PET experiment, and Hi-C 
loops are enriched for convergent CTCF binding sites28.  
 
Finally, we tallied the number of linked genes for each cCRE-ELS. Across all BENGI datasets, 
the majority of cCREs-ELS were linked to just one target gene (Figure 2e, Supplemental Table 
2c). As expected, this trend was more pronounced for 3D chromatin datasets without ambiguous 
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pairs (on average, 84% of cCREs-ELS were paired with only one gene, p < 3.3E-5). With or 
without ambiguous pairs, a lower percentage of cCREs-ELS in CHi-C pairs was paired with just 
one gene (18% of all pairs and 55% of unambiguous pairs) than in other BENGI datasets (p < 
3.1E−75). This observation, along with the lower average expression of the linked genes (Figure 
2c), suggests that either some of the CHi-C pairs were false positives or they captured interactions 
between cCREs-ELS and genes yet to be expressed.  
 
These analyses suggest that the various experimental techniques, the results of which formed 
the basis of the BENGI datasets, capture different classes of genomic interactions. Because we 
do not have a complete understanding of which experimental techniques was best able to capture 
bona fide enhancer-gene interactions, we propose that computational methods (Table 2) should 
be evaluated on the entire collection of these BENGI datasets to provide a comprehensive 
understanding of their performance. 
 
A baseline method of target-gene prediction using genomic distance 
Using the BENGI datasets, we evaluated a simple closest-gene method for target-gene 
prediction: assigning a cCRE-ELS to its closest gene in linear distance, computed by subtracting 
genomic coordinates of the cCRE and the nearest TSS. We tested this method using two gene 
sets—all genes or all protein-coding genes annotated by GENCODE V19—by evaluating 
precision and recall on each BENGI dataset. Using protein-coding genes performed invariably 
better than using all genes (on average 50% better over all 21 datasets across cell types; 
Supplemental Table 2d); thus, we used protein-coding genes for all subsequent analyses with 
this method.  
 
The closest-gene method worked best for crisprQTL pairs (precision = 0.68 and recall = 0.62) 
followed by ChIA-PET RNAPII pairs (precision = 0.60 and recall = 0.33 averaged across cell 
lines). The method performed the worst for Hi-C pairs with an average precision of 0.18 and an 
average recall of 0.11. These results are consistent with our statistical analyses described above, 
which revealed that crisprQTL and RNAPII ChIA-PET pairs were enriched in gene-proximal 
interactions while Hi-C pairs tended to identify more distal interactions. 
 
To compare with other enhancer-gene prediction methods, we adapted the closest-gene method 
to a quantitative ranking scheme where we ordered cCRE-gene pairs by the distance between 
the cCRE-ELS and the gene's closest TSS. For each BENGI dataset, we evaluated the overall 
performance of the resulting distance method by calculating the area under the precision-recall 
curve (AUPR). Accordingly, the distance method had the highest AUPR (0.47) for crisprQTL pairs 
and the lowest AUPR (0.06) for Hi-C pairs (Figure 3a,b, Supplemental Figure 2b, 
Supplemental Table 3). Since the distance method is cell-type independent and does not require 
any experimental data, we considered it the baseline method for comparing all enhancer-gene 
prediction methods.  
 
Correlation-based approaches performed worse than the distance method 
We next evaluated the performance of two correlation-based methods on the BENGI datasets: a 
method based on correlating the DNase signals at predicted enhancers with the DNase signals 
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at TSSs across a panel of biosamples19 and a method based on correlating DNase signal with 
gene expression20. Both DNase-DNase and DNase-expression methods outperformed random 
predictions for all 21 BENGI datasets, with the average AUPR of 0.10 and 0.12 vs. 0.07, 
respectively, but the differences were modest (Supplemental Figure 1; Supplemental Table 3). 
As previously demonstrated19, positive pairs had significantly higher correlations for both methods 
than negative pairs in all datasets (Supplemental Figure 2); however, the relative rankings of 
these correlations were mixed and did not segregate positive from negative pairs completely. The 
DNase-expression method significantly outperformed the DNase-DNase method in all but two 
BENGI datasets (Wilcoxon signed-rank test p = 1.0E-4), with an average AUPR increase of 25% 
(Supplemental Table 2).  
 
However, the distance method substantially outperformed these two correlation-based methods: 
distance was better than DNase-DNase for all 21 datasets (average AUPR increase of 128%; p 
= 9.5E-7; Supplemental Table 2) and better than DNase-expression for 17 datasets (average 
AUPR increase of 82%; p = 1.6E-4). The PR curves of the distance and two correlation-based 
methods on RNAPII ChIA-PET pairs are shown in Figure 3a. For the first 25 k predictions, the 
distance method had a similar precision to the DNase-DNase method and lower than the 
DNase-expression method, but with more predictions being made, the distance method 
substantially outperformed both correlation-based methods and achieved a much higher AUPR 
(0.39 vs. 0.26 and 0.28). We observed this cross-over of PR curves in other non-QTL datasets 
as well (Supplemental Figure 1); thus, we integrated the distance and DNase-expression 
methods by averaging their ranks for the same prediction. Notably, this average-rank method 
showed high precisions for its top-ranked predictions (Figure 3a) and achieved higher AUPRs 
than the other methods for all 13 datasets except GTEx eQTL and crisprQTL, with an average 
AUPR increase of 17% over the distance method for these datasets (Figure 3b, Supplemental 
Table 2).  For the eight GTEx eQTL and crisprQTL datasets, the distance method remained the 
best, showing on average 23% higher AUPR than the second-best method, average-rank 
(Supplemental Table 2). 
 
We asked why correlation-based methods performed poorly for predicting enhancer-gene pairs. 
One particular example is highlighted in Figure 3c-d. The cCRE-ELS EH37E0853090 is paired 
with the gene AKIRIN2 by RNAPII ChIA-PET, Hi-C, CHi-C, and a GEUVADIS eQTL (Figure 3c). 
However, this pair is poorly ranked by both correlation-based methods (correlation coefficient r = 
0.03 and 0.16 for DNase-DNase and DNase-expression, respectively). AKIRIN2 was highly 
expressed in most surveyed cell types (median normalized expression 8.5 vs. background of 4.7 
RPKM, Supplemental Figure 4a) and its promoter had high DNase signal (signal ≥ 50) for each 

of the DNase-seq groups (Supplemental Figure 4b). EH37E0853090, however, only had high 
DNase signals in four cell types, which were all lymphoblastoid cell lines, suggesting that this 
enhancer was primarily active in the B cell lineage. The ubiquitous expression of AKIRIN2 and 
the cell-type-specific activity of EH37E0853091 resulted in a low correlation (Figure 3d, 
Supplemental Figure 4b). In general, TSS-overlapping cCREs (cCREs-TSS) are active in many 
more biosamples than distal cCREs-ELS (median of 92 vs. 46 biosamples, p = 3.6E−264, 
Supplemental Figure 4c-d). In summary, because the epigenomic signals at cCREs-ELS are far 
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more cell type specific than the epigenomic signals at TSSs and gene expression profiles, 
correlation across biosamples is a poor method for detecting enhancer-gene pairs.  
 
Supervised methods upon cross-validation outperformed baseline methods 
We tested two supervised machine-learning methods that were reported to perform well in their 
original publications: TargetFinder, which uses as input features epigenomic signals such as 
histone mark ChIP-seq, TF ChIP-seq, and DNase-seq in the corresponding cell type, and PEP-
motif, which uses the occurrence of TF sequence motifs as features. Xi et al. subsequently 
revealed that the original implementations of cross-validation (CV) by TargetFinder and PEP-motif 
allowed assignment of enhancer-gene pairs from the same genomic loci to different CV groups, 
which led to sharing of training and testing data, overfitting of their models, and inflated 
performance26. Thus, we implemented the chromCV method to ensure that pairs from the same 
chromosome were always assigned to the same CV group (Figure 1e; Methods).  
 
We first tested these two supervised methods on the six BENGI datasets in GM12878 because 
this cell type had a large number of epigenomic datasets that could be used as features to train 
the methods. Although PEP-motif performed better than random, it under-performed the distance 
method for all but the Hi-C dataset and was far worse than the average-rank method for all six 
datasets (Figure 4a-b; Supplemental Table 2b). In contrast, TargetFinder outperformed the 
average-rank method for all six datasets, with an average AUPR improvement of 61% (Figure 
4a-b;  Supplemental Table 2), but the AUPRs were still low, especially for the Hi-C (0.13) and 
eQTL datasets (0.19 and 0.25).  
 
Because the results of TargetFinder and PEP-motif upon our chromCV implementation were 
worse than their original published results, we also implemented a randomized 12-fold CV method 
as described in the original publications to test whether we could reproduce their results. Indeed, 
we observed large performance decreases with the chromCV method with respect to the original 
CV method (Figure 4c), suggesting that overfitting was a source of their inflated performance. 
PEP-motif had a more substantial drop in performance (average AUPR decrease of 81%) than 
TargetFinder (average AUPR decrease of 52%), likely because PEP-motif added  4-kb padding 
on both sides of each enhancer, increasing the chance of overlapping training and testing data. 
Although PEP-motif and TargetFinder used Hi-C loops as the gold standard in their original 
analyses, both methods showed the largest performance drops for the BENGI GM12878 Hi-C 
pairs (AUPR decrease of 96% for PEP-motif and 84% for TargetFinder). This analysis further 
highlights the utility of a carefully designed benchmark to prevent overfitting of supervised models. 
 
Our implementation of TargetFinder in GM12878 cells used 101 epigenomic datasets, including 
ChIP-seq of 88 TFs, resulting in a total of 303 input features (Figure 4d). However, other 
biosamples did not have such extensive TF ChIP-seq data; thus, we also trained TargetFinder 
models using only distance and four epigenomic features—DNase, H3K4me3, H3K27ac, and 
CTCF data—which we call the core4 TargetFinder models. While the core4 models had an 
average AUPR reduction of 16% compared with the respective full models across the 13 BENGI 
datasets  (Figure 4a-b; Supplemental Table 3), they still outperformed the distance and the 
average-rank methods for all datasets. Of note were IMR-90 Hi-C pairs, which had the greatest 
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drop in performance between the full and core4 TargetFinder models with a reduction of AUPR 
of 0.28 (80%). We observed similar large decreases in performance across all four variations of 
IMR-90 Hi-C pairs. Additionally, for GM12878 eQTL and CHiC pairs, the core4 models performed 
slightly better than the full model, suggesting that the full TargetFinder model may be overfitting 
these datasets. However, for other variations of these pairs, (fixed ratio and ambiguous pairs 
removed) the full TargetFinder models had the best performances. We also trained core3 models 
for the biosamples without CTCF data, and they showed an average AUPR reduction of 28% 
compared with the respective full models across the 13 BENGI datasets. For the seven GTEx 
eQTL datasets in tissues, these core3 models did not outperform the distance or average-rank 
models. 
 
TargetFinder has a moderate performance cross cell types 
The most desirable application of a supervised method is to train the model in a biosample with 
3D chromatin or genetic interaction data and then use the model to make predictions in another 
biosample without such data. Thus, we tested the TargetFinder core4 and core3 models for such 
an application on the ChIA-PET, Hi-C, CHi-C, and GTEx eQTL datasets readjusting our chromCV 
to prevent overfitting{Schreiber:ta} (see Methods). 
 
As expected, the cross-cell type models performed worse than same-cell type models, but their 
performance varied when compared with the unsupervised distance and average-rank methods. 
For CHi-C and RNAPII ChIA-PET datasets, the cross-cell type TargetFinder models outperformed 
the distance and average-rank methods in both tested cell types (GM12878 vs. HeLa and 
GM12878 vs. CD34+) with an average AUPR increase of 37% and 12%, respectively (Figure 5 
a,b, Supplemental Table 4). For CTCF ChIA-PET, the model trained in HeLa did not outperform 
the unsupervised methods for predicting GM12878 pairs (AUPR = 0.17 vs 0.21 and 0.21) but the 
model trained in GM12878 did for predicting HeLa pairs (AUPR = 0.26 vs 0.16 and 0.19; Figure 
5c, Supplemental Table 4). Results for the Hi-C datasets were mixed. Of the 60 cross-cell type 
models tested, 13 outperformed the distance and average-rank methods. Specifically, the model 
trained in GM12878 only outperformed distance and average-rank methods for predicting HeLa 
or NHEK pairs (Figure 5d, Supplemental Table 4), with an average 31% increase in 
performance. The model trained in IMR-90 never outperformed the distance and average-rank 
methods, and for predicting HMEC, IMR-90, and K562 pairs, none of the cross-cell type models 
outperformed the distance or average-rank methods (Supplemental Table 4). These results were 
consistent across the fixed-ratio pairs as well. Finally, none of the cross-cell type models 
outperformed the distance method for GTEx datasets; the distance method was the highest 
performing model for all GTEx datasets (Supplemental Table 4).  
 
 
DISCUSSION 
Here we presented BENGI, a benchmark of cCRE-ELS–gene pairs, curated through the 
integration of the Registry of cCREs and genomic interaction datasets. We used BENGI to 
evaluate four published computational methods for target gene prediction that represent most of 
the widely used approaches in the field while surveying orthogonal dimensions—correlation 
methods survey across the biosample dimension while supervised machine-learning methods like 
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TargetFinder survey across the assay dimension. We found that the two correlation-based, 
unsupervised methods significantly underperformed the baseline distance method while one of 
the two supervised methods examined, TargetFinder, significantly outperformed the distance 
method when trained and tested within the same cell type by cross-validation. Although 
TargetFinder outperformed the distance method for all BENGI datasets, the AUPRs of the 
TargetFinder models were generally still low (0.07-0.71). In particular, TargetFinder performed 
best on ChIA-PET RNAPII pairs, suggesting that these interactions may be most highly correlated 
with epigenomic features. The other supervised method, PEP-motif, significantly underperformed 
the distance method, suggesting that the frequencies of TF motifs at enhancers and promoters 
are not sufficiently predictive of genomic interactions. When trained and tested in different cell 
types, TargetFinder beat the distance method for some BENGI datasets, albeit by a much smaller 
amount. Overall, there is much room for improvement for all of these methods, indicating that 
target-gene prediction remains a challenging problem. BENGI datasets can be used by the 
community to tackle this problem while avoiding overfitting issues such as those identified for 
TargetFinder and PEP post-publication26,27.  
 
Our analyses highlight the differences between the genomic interactions as identified by the 
various experimental techniques (Table 1). In the same biosample (e.g., LCLs), the BENGI 
datasets by the same technique share ~40% of their pairs (e.g., between RNAPII and CTCF ChIA-
PET and between GEUVADIS and GTEx eQTLs), but the overlaps between datasets by different 
techniques are typically lower than 25% and can be as low as 1% (e.g., between eQTL and Hi-
C). The BENGI datasets also differ significantly in enhancer-gene distance and enrichment of 
epigenomic signals at the enhancers and TSSs. Thus, we still do not have a comprehensive 
understanding of the factors that regulate enhancer-gene interactions, and the different 
experimental techniques may be capturing different subsets of interactions. 
 
Overall, all computational methods evaluated had difficulty predicting Hi-C pairs; even in the fixed 
ratio datasets, the Hi-C pairs consistently had the lowest overall performance. This could be due 
to the technical challenges of calling Hi-C loops or the biological roles of these loops. For example, 
it was noted that the detection of Hi-C loops requires care, and different loop calling methods can 
produce markedly different results29.  Additionally, recent results from the Aiden lab demonstrated 
that gene expression did not change upon loop disruption via knocking out the key protein CTCF 
using a degron system30. This may suggest that these CTCF Hi-C loops may serve specific 
biological roles and may only represent a small subset of enhancer-gene interactions that have 
different properties compared to the other interactions. 
 
Although the correlation-based methods did not outperform the distance method, the DNase-
expression method did augment the distance method when combined with it. Furthermore, 
because correlation-based methods and supervised machine-learning methods survey 
orthogonal dimensions (biosample vs. assay), one promising future direction is to combine these 
two types of approaches. For such future directions to be fruitful, it would be beneficial to 
understand the different performance between the two correlation-based methods as the DNase-
expression correlation method consistently outperformed the DNase-DNase correlation method. 
Several factors could be contributing to this increased performance. First, gene expression may 
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be a better readout for enhancer-gene interactions than a promoter's chromatin accessibility, 
although these two features are correlated (average Pearson correlation r = 0.68). Second, for 
the DNase-expression method, Sheffield et al. generated normalized, batch-corrected matrices 
for the DNase-seq and gene expression data while the DNase-DNase method used read depth 
normalized signal without any additional processing. To avoid imprecision of reimplementation, 
we downloaded these exact input datasets from the original publications (i.e., the exact 
normalized matrices for the DNase-expression method and the ENCODE2-processed DNase-
seq bigWigs for the DNase-DNase method). The Sheffield et al. normalization technique may 
correct for outliers and batch effects, which otherwise would lead to spurious correlations 
impacting performance. Third, the DNase-DNase method merges 79 cell types into 32 groups 
based on cell type similarity. While this grouping may correct an uneven survey of the biosample 
space, it may lead to lower overall correlations for cell type-specific interactions. We highlighted 
one such case with the LCL-specific EH37E0853090-AKIRIN2 interaction where the DNase-
DNase method reported a correlation of 0.03, and the DNase-expression method reported a 
correlation of 0.12. The low correlation by the DNase-DNase method was due to the combination 
of the four LCLs into one group, reducing statistical power (Supplemental Figure 4b). These 
possible explanations should be carefully considered when designing future correlation-based 
and combined methods. Additionally, although these correlation-based methods did not perform 
well on BENGI datasets, they may have better predictive power when used on curated sets of 
biosamples such as those across embryonic development or cell differentiation. As we expand 
the number of cell types and tissues covered by BENGI,  we hope to test these methods to 
evaluate their performance systematically.  
 
Finally, we developed BENGI using an enhancer centric model as we were motivated by the 
Registry of cCREs. We hope to expand upon this to include a gene centric model (i.e., given a 
gene, determine its interacting enhancers) for future developments. We also plan on expanding 
BENGI to include more functionally tested datasets such as the crisprQTLs as these results are 
published. Developing precise and accurate enhancer-gene prediction models will improve our 
understanding of how regulatory elements control gene expression and ultimately their role in 
human diseases. 
 
 
FIGURE CAPTIONS   
Figure 1 | A benchmark of candidate enhancer-gene interactions (BENGI).  a, Experimental 
datasets used to curate BENGI interactions categorized by 3D chromatin interactions, genetic 
interactions, and CRISPR/Cas9 perturbations. b, Methods of generating cCRE-gene pairs 
(dashed straight lines in green, shaded green, or red) from experimentally determined interactions 
or perturbation links (dashed, shaded arcs in red, pink, or gold). Each cCRE-gene pair derived 
from 3D chromatin interactions (top panel) has a cCRE-ELS (yellow box) intersecting one anchor 
of a link, and the pair is classified depending on the other anchor of the link: for a positive pair 
(green dashed line), the other anchor overlaps one or more TSSs of just one gene; for an 
ambiguous pair (dashed line with grey shade), the other anchor overlaps the TSSs of multiple 
genes; while for a negative pair (red dashed line), the other anchor does not overlap a TSS. Each 
cCRE-gene pair derived from genetic interactions or perturbation links (middle and bottom panels) 
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has a cCRE-ELS (yellow box) intersecting an eQTL SNP or a CRISPR-targeted region, and the 
pair is classified as positive (green dashed line) if the gene is an eQTL or crisprQTL gene, while 
all the pairs that this cCRE forms with non-eQTL genes that have a TSS within the distance cutoff 
are considered negative pairs (red dashed line). c, To reduce potential false positives from 3D 
interaction data, we implemented a filtering step to remove ambiguous pairs (gray box in b) that 
link cCREs-ELS to more than one gene. This filtering step was not required for assays that 
explicitly list the linked gene (eQTLs and crisprQTLs). Additionally, to compare between BENGI 
datasets, we also curated matching sets of interactions with a fixed positive-to-negative ratio. 
Therefore, in total four BENGI datasets are curated for each 3D chromatin experiment (A, B, C, 
D) and two are curated for each genetic interaction and CRISPR/Cas-9 perturbation experiment 
(A, B). d, To avoid overfitting of machine-learning algorithms, all cCRE-gene pairs were assigned 
to cross-validation (CV) groups based on their chromosomal locations. Positive and negative pairs 
in the same chromosome were assigned to the same CV group, and chromosomes with 
complementary sizes were assigned to the same CV group so that the groups had approximately 
the same number of pairs.  
 
Figure 2 | Characteristics of BENGI datasets. Six datasets in GM12878 or other LCLs were 
evaluated: RNAPII ChIA-PET (red), CTCF ChIA-PET (orange), Hi-C (green), CHi-C (blue), 
GEUVADIS eQTLs (purple), and GTEx eQTLs (pink), and the same coloring scheme is used for 
all panels. a, Violin plots depicting the distance distributions of positive cCRE-gene pairs for each 
BENGI dataset. The 95th percentile of each distribution is indicated by a star and stated above 
each plot. b, Heatmap depicting the overlap coefficients between positive cCRE-gene pairs in 
each BENGI dataset. The datasets were clustered using the hclust algorithm and clustered 
datasets are outlined in black. c, Violin plots depicting the expression levels of genes in positive 
cCRE-gene pairs (in transcripts per million, TPM). d, Violin plots depicting CTCF signal levels at 
cCREs-ELSs in positive cCRE-gene pairs. A dashed box points out cCREs-ELS with signal > 5. 
e, Distributions of the number of genes positively linked with a cCRE-ELS across datasets. 
 
Figure 3 | Evaluating unsupervised methods for predicting cCRE-gene pairs. a, Precision-
recall (PR) curves for four unsupervised methods evaluated on RNAPII ChIA-PET pairs in 
GM12878: the distance between cCREs-ELS and genes (gray), DNase-DNase correlation by 
Thurman et al. (green), DNase-expression correlation by Sheffield et al. (purple), and the average 
rank of distance and the DNase-expression method (black). Areas under the PR curve (AUPRs) 
for the four methods are listed in the legend. The AUPR for a random method is indicated with 
the dashed line at 0.14. b, AUPRs for the four unsupervised methods in a computed on each of 
the six benchmark datasets in LCLs. c, Genome browser view (chr6:88,382,922-88,515,031) of 
epigenomic signals and positive BENGI links (RNAPII ChIA-PET in red, Hi-C in green, CHi-C in 
blue, and GEUVADIS eQTL in pink) connecting the cCRE EH37E0853090 (star) to the gene 
AKIRIN2. d, Scatter plot of normalized AKIRIN2 expression vs. normalized DNase signal at 
EH37E0853090 as calculated by Sheffield et al. (Pearson correlation coefficient = 0.16). Even 
though AKIRIN2 is highly expressed across many tissues, EH37E0853090 has high DNase 
signals primarily in lymphoblastoid cell lines (purple triangles), resulting in a low correlation. 
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Figure 4 | Evaluating supervised learning methods for predicting cCRE-gene pairs. a, PR 
curves for three supervised methods evaluated on RNAPII ChIA-PET pairs in GM12878: PEP-
motif (green) and two versions of TargetFinder (full model in darker blue and core model in lighter 
blue). For comparison, two unsupervised methods from Figure 3, the distance (gray) and average-
rank (black) methods, are also shown along with the AUPR for a random method (dashed line at 
0.14). AUPRs for the methods are listed in the legend. b, AUPR for the three supervised methods, 
two unsupervised methods, and random, colored as in a, for each of the six BENGI datasets in 
LCLs. c, Scatter plot of AUPRs for TargetFinder (squares) and PEP-motif (triangles) across 
BENGI datasets evaluated using 12-fold random CV (X-axis) vs. chromosome-based CV (Y-axis). 
The diagonal dashed line indicates X = Y. d, Schematic for full and core4 TargetFinder models.  
 
Figure 5 | Evaluating supervised learning methods trained in one cell type and tested in 
another cell type. AUPRs for distance (gray), average-rank (black) and TargetFinder core4 
(purple) methods across a, RNAPII ChIA-PET b, CTCF ChIA-PET c, CHi-C d, Hi-C, and e, GTEx 
eQTLs pairs. Cell type for training is indicated in the panel title and cell type for testing is indication 
on the x axis. The best performing method for each dataset is indicated by a star and random 
performance is indicated with a dashed line. 
 
 
SUPPLEMENTAL FIGURE CAPTIONS  
 
Supplemental Figure 1 | Expression levels of genes in BENGI pairs. Violin plots displaying 
the distributions of gene expression in positive pairs for each BENGI dataset in a, GM12878/LCLs 
b, HeLa c, K562, d, CD34+ cells, HMEC, IMR-90, and NHEK. The median expression level (in 
TPM) is displayed above each violin plot. For 3D chromain datasets (ChIA-PET, Hi-C and CHi-
C), genes in all positive pairs and with ambiguous pairs removed were compared and Wilcoxon 
rank-sum test p-values are indicated.  
 
Supplemental Figure 2 | PR curves for unsupervised models AUPRs for distance (gray), 
average-rank (black), DNase-DNase correlation (teal), and DNase-expression correlation ( 
purple), across each of the BENGI datasets. Top left group has all pairs with natural ratio. Bottom 
left group has all paris with fixed ratio. Top right group has ambiguous pairs removed with natural 
ratio. Bottom right group has ambiguous pairs removed with fixed ratio.  
 
Supplemental Figure 3 | Correlation between BENGI pairs. Violin plots displaying the 
distributions of Pearson correlation coefficients—computed using the DNase-DNase or DNase-
expression method—for positive (right, colored) and negative (left, grey) BENGI pairs. Wilcoxon 
rank-sum test p-values are indicated. Top left group has all pairs with natural ratio. Bottom left 
group has all paris with fixed ratio. Top right group has ambiguous pairs removed with natural 
ratio. Bottom right group has ambiguous pairs removed with fixed ratio.  
 
Supplemental Figure 4 | Correlation methods perform poorly due to the ubiquity of 
promoters. a, Normalized gene expression calculated by the DNase-expression method for all 
genes (black) and AKIRIN2 (green) across 112 cell types. b, DNase signal at EH37E0853090 
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and AKIRIN2's promoter using the DNase-DNase correlation method. Only the Lymphoblastoid 

cell line group (purple) has high signal at EH37E0853090. c-d, Number of biosamples in the 

ENCODE phase 2, ENCODE phase 3, and Roadmap projects with high DNase (Z-score > 1.64) 

for cCREs-TSS with promoter like signatures (cCRE-PLS) and cCREs with enhancer-like 

signatures (cCREs-ELS) included in BENGI datasets. 

 

Supplemental Figure 5 | PR curves of supervised methods evaluated on BENGI datasets 

AUPRs for distance (gray), average-rank (black), PEP-motif (teal), TargetFinder full-model (dark 

purple), TargetFinder core4 (medium purple) and TargetFinder core3 (light purple) methods in 

each of the BENGI datasets. Top left group has all pairs with natural ratio. Bottom left group has 

all paris with fixed ratio. Top right group has ambiguous pairs removed with natural ratio. Bottom 

right group has ambiguous pairs removed with fixed ratio.  

 

 

TABLES 
Table 1 | Genomic interaction datasets 
 
Table 2 | Computation methods for predicting target genes 

 

SUPPLEMENTAL TABLES  
 
Supplemental Table 1: Input data sources 

 

Supplemental Table 2: Summary of BENGI datasets 
 

Supplemental Table 3: AUPRs for unsupervised methods 
 

Supplemental Table 4: AUPR for supervised methods 
 

Supplemental Table 5: AUPR for cross-cell type methods 
  

 
 
METHODS 

  
Data acquisition 
 

ChIA-PET  
We downloaded the following ChIA-PET clusters generated by the Ruan lab31 from NCBI's Gene 

Expression Omnibus (GEO) under the accession GSE72816.  

GSM1872886_GM12878_CTCF_PET_clusters.txt 
GSM1872887_GM12878_RNAPII_PET_clusters.txt 
GSM1872888_HeLa_CTCF_PET_clusters.txt 
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GSM1872889_HeLa_RNAPII_PET_clusters.txt 

 

We filtered each set of clusters by selecting ChIA-PET links that were supported by at least four 

reads (column 7 ≥ 4). 
 

  
Hi-C Loops 
We downloaded the following Hi-C loops generated by the Aiden lab28 from GEO under the 
accession GSE63525.  
 

GSE63525_GM12878_primary+replicate_HiCCUPS_looplist.txt 

GSE63525_HMEC_HiCCUPS_looplist.txt.gz 

GSE63525_HeLa_HiCCUPS_looplist.txt.gz 

GSE63525_IMR90_HiCCUPS_looplist.txt.gz 

GSE63525_K562_HiCCUPS_looplist.txt.gz 

GSE63525_NHEK_HiCCUPS_looplist.txt.gz 

 
We did not perform any additional filtering on these loops. 
 
CHi-C 
We downloaded the following CHi-C interactions generated by the Osborne lab32 from 
ArrayExpress under the accession E-MTAB-2323.  
 

TS5_GM12878_promoter-other_significant_interactions.txt 

TS5_CD34_promoter-other_significant_interactions.txt  

 

We filtered each set of interactions selecting CHi-C links by requiring log(observed/expected) 
greater than ten (column 11 > 10). 
 
 
eQTLs 
We downloaded eQTLs from the GEUVADIS project:  

ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-

GEUV-1/analysis_results/ 

EUR373.gene.cis.FDR5.all.rs137.txt 

 

We downloaded GTEx eQTLs in GTEx_Analysis_v7_eQTL.tar.gz from the gTEX Portal 
https://gtexportal.org/home/datasets. We used the following files: 
 

Cells_EBV-transformed_lymphocytes.v7.signif_variant_gene_pairs.txt 

Colon_Sigmoid.v7.signif_variant_gene_pairs.txt 

Liver.v7.signif_variant_gene_pairs.txt 

Ovary.v7.signif_variant_gene_pairs.txt 
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Pancreas.v7.signif_variant_gene_pairs.txt 
Stomach.v7.signif_variant_gene_pairs.txt 
Thyroid.v7.signif_variant_gene_pairs.txt 

 

 

CRISPR Perturbations 
We downloaded crisprQTL data from Gasperini et al.17 and mapped the reported genes to those 

annotated in GENCODE V19 and intersected the reported enhancer coordinates with cCREs-

ELS in K562. 4,937 of the tested enhancers (85%) overlapped a K562 cCRE-ELS. 

 

Defining cCREs-ELS 

We used cCREs-ELS from V1 of the ENCODE Registry of cCREs available on the ENCODE 

portal found under the accessions provided in Supplemental Table 1a. We selected all cCREs-

ELS (RGB color code 255,205,0) that were distal (i.e., greater than 2 kb from an annotated TSS, 

GENCODE v19). 

 

Defining cCRE-gene pairs 
We created cCRE-gene pairs using the script Generate-Benchmark.sh. Which is available on 

GitHub. 

 

3D chromatin interactions (ChIA-PET, Hi-C, and CHi-C) 
Using bedtools intersect (v2.27.1), we intersected the anchors of the filtered links (see above) 

with cCREs-ELS that were active in the same biosample. We retained all links with an anchor that 

overlapped at least one cCREs-ELS and with the other anchor within ± 2 kb of a GENCODE V19 

TSS. We tagged all links with an anchor within ± 2 kb of the TSSs of multiple genes as ambiguous 

pairs and created a separate version of each dataset with these links removed. 

 

Genetic interactions (eQTLs) 
For eQTLs, we retrieved the location of each reported SNP from the eQTL file and intersected 

these loci with cCRE-ELS that were active in the same tissue type using bedtools intersect. We 

then paired the cCRE-ELS with the gene linked to the SNP. We only considered SNPs that were 

directly reported in each of the studies; we did not expand our set using linkage disequilibrium 

due to the mixed populations surveyed by GTEx. 

 

CRISPR/dCas-9 (crisprQTLs) 
For crisprQTLs, we intersected the reported positive enhancers with cCREs in K562 using 

bedtools intersect. We then paired the cCRE-ELS with the gene linked to the reported enhancer. 

 

Generating negative pairs 
To generate negative pairs, we calculated the 95th percentile of the distances of positive cCRE-

gene pairs for each dataset, with distance defined as the linear distance between the cCRE-ELS 

and the closest TSS of the gene using bedtools closest. For each cCRE-ELS in the positive cCRE-

gene pairs that fell within this 95th percentile, we considered all other genes within the 95th 

percentile distance cutoff as negatives. For datasets with ambiguous links removed (ChIA-PET, 
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Hi-C, and CHi-C), we also excluded genes in these ambiguous pairs as negatives. For the fixed 
ratio datasets, we also excluded genes that were in the positive pairs for the cCREs-ELS in other 
BENGI datasets before randomly selecting the negatives. If a cCRE-ELS had fewer than four 
negative pairs, then it was excluded from this fixed-ratio set.  

  
Assigning chromosome CV 
For each BENGI dataset, we calculated the number of cCRE-gene pairs on each chromosome 
and assigned chromCV groups accordingly. The chromosome with the most pairs (often chr1) 
was assigned its own group. Then, we iteratively took the chromosome with the most and fewest 
pairs and combined them to create one CV group. In total, the 23 chromosomes (1-22, X) were 
assigned to 12 CV groups. 

  
Characterizing BENGI datasets 
Clustering of dataset overlap 
For each pairwise combination of the GM12878/LCL BENGI datasets, we calculated the overlap 
coefficient of positive cCRE-gene pairs. Then using hclust, we performed hierarchical clustering 
with default parameters. 
 
Gene expression 
For biosamples with matching RNA-seq data, we downloaded corresponding RNA-seq data from 
the ENCODE portal (accessions provided in  Supplemental table 1b, Supplemental Figure 1). 
For each gene, we calculated the average TPM between the two experimental replicates. To test 
if there was a significant difference between BENGI datasets with or without ambiguous pairs, we 
used a Wilcoxon test. 
 
ChIP-seq signals 
For cCREs-ELS in each positive pair across GM12878 and LCL BENGI datasets, we calculated 
the average ChIP-seq signal for 140 transcription factors and DNA binding proteins. We 
downloaded ChIP-seq signal from the ENCODE portal (accession available in Supplemental 
Table 2b) and used UCSC's bigWigAverageOverBed to calculate the average signal across each 
cCRE. For each BENGI dataset, we then reported the average signal for all cCREs. 
 
Implementing cCRE-gene prediction methods 
Closest-gene method 
We identified the closest TSS to each cCRE-ELS using bedtools closest and GENCODE V19 
TSS annotations. We compared two options: using the full set of GENCODE TSSs (with 
problematic annotations removed) or using only protein-coding GENCODE TSSs. To evaluate 
performance, we calculated the overall precision and recall for each BENGI dataset (Script: 
Closest-Gene-Method.sh). 
 
Distance method 
For each cCRE-gene pair, we calculated the linear distance between the cCRE-ELS and the 
gene's nearest TSS. To rank these pairs, we took the inverse (1/distance) and calculated the area 
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under the precision-recall curve (AUPR) using a custom Rscript that uses the PROCR library 
(Script: Run-Distance-Method.sh). 
 
DNase-DNase correlation method 
We used the same DNase-seq datasets as Thurman et al. for their DNase-DNase method. We 
downloaded these legacy datasets that were generated during ENCODE Phase 2 from the UCSC 
genome browser. For each cCRE-gene pair, we curated a set of cCREs-TSS by determining the 
closest cCRE for each TSS of the gene. We then calculated the average DNase signal across 
the nucleotide positions in the cCRE-ELS and cCRE-TSS for each DNase dataset. For similar 
cell types, as determined in Thurman et al., we averaged the DNase signal among these similar 
cell types in each of the 32 groups to generate 32 values for each cCRE-ELS and cCRE-TSS. 
We then calculated the Pearson correlation coefficient (PCC) for each cCRE-ELS and cCRE-TSS 
pair. If a gene had multiple TSSs, we selected the highest PCC of all the cCRE-ELS and cCRE-
TSS comparisons. We ranked predictions by their PCC and calculated the AUPR using the 
PROCR library (Script: Run-Thurman.sh). 
 
DNase-expression correlation method 
To match the legacy data and normalization methods originally used by20 we downloaded 
normalized counts across 112 cell types for the DNase hypersensitive sites or DHSs 
(dhs112_v3.bed) and genes (exp112.bed) from http://big.databio.org/papers/RED/supplement/. 
We intersected each cCRE-ELS with the DHSs curated by20. If a cCRE overlapped more than 
one DHS, we selected the DHS with the highest signal for the cell type in question (i.e., the DHS 
with the highest signal in GM12878 for GM12878 cCREs-ELS). For each cCRE-gene pair, we 
then calculated the Pearson correlation coefficient using the 112 normalized values provided in 
each matrix. cCRE-gene pairs that did not overlap a DHS or did not have a matching gene in the 
expression matrix were assigned a score of -100. (Script: Run-Sheffield.sh) 
 
PEP-motif 
We reimplemented PEP-motif to run on our cCRE-gene pairs with chromCV. Like Yang et al., we 
calculated motif frequency using FIMO33  and the HOCOMOCO database (v11 core,34). We also 
added the ± 4 kb padding to each cCRE-ELS as originally described. We concatenated cross-
validation predictions and calculated AUPR using PROCR (Script: Run-PEPMotif.sh). 
 
TargetFinder 
We reimplement TargetFinder to run on our cCRE-gene pairs with chromCV. For features, we 
used the identical datasets described in Whalen et al. for each cell type. We concatenated cross-
validation predictions and calculated AUPR using PROCR (Script: Run-TargetFinder-Full.sh). 

  
Cross-cell type performance 
To test the cross-cell type performance of TargetFinder, we generated core4 and core3 models 
for each cell type and then evaluated the models on other cell types. To prevent any overfitting, 
we assigned the chromCV of the test sets to match those of the training sets. 
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Table 1 | Genomic interaction datasets 
 

Assay Description 
 

Reference 

 
3D chromatin interactions 

 
Hi-C High resolution in situ Hi-C: identifies chromatin loops 

anchored by convergent CTCF binding sites 
{Rao:2014eo} 

RNAPII 
ChIA-PET 

Chromatin interaction analysis by paired-end tag sequencing 
targeting RNAPII: identifies chromatin interactions enriched 
for RNAPII binding 

{Tang:2015bf} 

CTCF 
ChIA-PET 

Chromatin interaction analysis by paired-end tag sequencing 
targeting CTCF: identifies chromatin interactions enriched for 
CTCF binding 

{Tang:2015bf} 

CHi-C  Promoter capture Hi-C: identifies chromatin interactions 
between promoters and other loci 

{Mifsud:2015en} 

 
Genetic interactions 

 
eQTLs Expression quantitative trait loci: identifies genetic 

variants correlated with changes of gene 
expression of individuals in a human population 

{GTExConsortium:2017jn, 
Lappalainen:2013el} 

 
CRISPR/Cas9 perturbations 

 
crisprQTLs Identifies loci that when targeted with CRISPR/Cas9 

correlate with changes in gene expression measured in 
single cells 

{Gasperini:2019kh} 
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Table 2 | Computational methods for target gene prediction 
 

Method Description 
 

Reference 

 
Unsupervised methods 

 
distance Ranks pairs by inverse linear distance 

 

DNase-
DNase 

Calculates the Pearson correlation coefficient between the 
DNase signals at enhancers and promoters across 32 cell-
type categories. 

{Thurman:2012dj} 

DNase-
expression 

Calculates the Pearson correlation coefficient between the 
normalized DNase signals at enhancers and normalized 
gene expression levels measured by microarray across 
112 cell types. 

{Sheffield:2013di} 

average-
rank 

Combines the distance and DNase-expression methods by 
averaging the rank of for each prediction between the two 
methods 

 

 
Supervised methods 

 
PEP-motif Features: frequency of motif instances at enhancers and 

promoters 
Classifier: Gradient boosting (XGB package) 

{Yang:2017hj} 

TargetFinder Features: Cell type-specific epigenomic signals (ChIP-seq, 
DNase, CAGE, etc.) at enhancers, promoters, and the 
intervening window between enhancers and promoters. 
Classifier: Gradient boosting (scikit learn) 

{Whalen:2016go} 
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