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Abstract 

Binary reward feedback on movement success is sufficient for learning in some simple 

reaching tasks, but not in some more complex ones. It is unclear what the critical conditions 

for learning are. Here, we ask how reward-based sensorimotor learning depends on the number 

of factors that are task-relevant. In a task that involves two factors, we test whether learning 

improves by giving feedback on each factor in a separate phase of the learning. Participants 

learned to perform a 3D trajectory matching task on the basis of binary reward-feedback in 

three phases. In the first and second phase, the reward could be based on the produced slant, 

the produced length or the combination of the two. In the third phase, the feedback was always 

based on the combination of the two factors. The results showed that reward-based learning 

did not depend on the number of factors that were task-relevant. Consistently, providing 

feedback on a single factor in the first two phases did not improve motor learning in the third 

phase.  
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Introduction 

Katy practices a dance move while her trainer tells her whether her attempts are successful or 

not. Each time she hears that she was successful, a reward signal is delivered to her brain that 

can form the basis for motor learning 1,2. Several mechanisms have been proposed to underlie 

this learning. For instance, Katy may directly form associations between actions and success 

which would result in action-specific learning 1,3. Another possibility is that she may learn from 

successful exploration 4-6, which could potentially transfer across actions. The type of 

mechanism that we focus on in this study is a learning mechanism that relies on the exploitation 

of successful exploration.  

The task in which reward-based learning has been typically tested is a far cry from the 

complexity of ‘real-life’ tasks such as Katy’s dance training 7. In the commonly used 

‘visuomotor rotation’ paradigm 1,4-6,8,9 movements are in a horizontal plane in which the relation 

between visual and motor direction is rotated. In this paradigm, participants make center-out 

reaching movements in which reward feedback is based on a single factor: the angular error. 

In most natural tasks, in contrast, many factors are task-relevant. For instance, Katy’s dance 

move will only be successful if she gets both the position and timing right. We previously 

showed that learning of a visuomotor perturbation in a three-dimensional pointing task was not 

possible when participants received feedback based on a three-dimensional position error 10-12. 

However, learning did occur when the feedback was based on the perturbed dimension only 10. 

This suggests that reward-based learning depends on the number of factors that are task-

relevant. 

In the current study, we test two hypotheses. The first hypothesis is that learning of a 

factor improves when it is the only task-relevant factor. The second hypothesis is that learning 

of multiple factors improves by factorizing the feedback (giving feedback on each factor in a 

separate phase of the learning). We test these hypotheses in a three-dimensional trajectory 

matching task akin to trajectory learning tasks used in other studies on reward-based learning 
3,13. We asked participants to copy a remembered simple trajectory – a slanted line – by moving 

the unseen hand. Without training, participants make systematic errors in this task, and the aim 

of the feedback was to reduce these errors. Feedback could be based on errors in produced 

slant, errors in produced length or the combination of these error components (combined 

feedback).  
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We divided the participants in three groups that differed in the way they received 

feedback during the three learning phases of the experiment. A ‘Slant First’ group received 

feedback on slant in a first learning phase, feedback on length in a second learning phase and 

ended with combined feedback. A ‘Length First’ group received feedback on length in their 

first learning phase, feedback on slant in their second learning phase and ended with combined 

feedback. A ‘Combined’ group, finally, received combined feedback throughout all learning 

phases of the experiment. If reward-based learning depends on the number of factors that are 

task-relevant, learning of a single factor would be faster when it is the only factor that is task-

relevant. Furthermore, if factorized feedback improves reward-based learning, we predict that 

at the end of the third learning phase, the combined error is reduced more in the Length First 

and Slant First groups compared to the Combined group. In addition to testing these 

predictions, we assessed how exploration depends on the feedback. 

Results 

In virtual reality, participants viewed a line slanted in the sagittal plane, and copied this line 

with an invisible handheld controller. They did so in five phases of 50 trials each. In a baseline 

and retention phase, no performance feedback was provided. In the three intermediate learning 

phases, binary score reward feedback was provided. As expected, participants showed biases 

in both slant and length that tended to be reduced in the third learning phase (Figure 1a). 

Because motivation may affect how participants learn from score reward, we asked participants 

about their motivation following each phase. Reported motivation in the three groups was 

similar (Figure 1b). Therefore, between-group differences in learning should probably not be 

attributed to differences in motivation.  
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Figure 1) Overview of individual performance and motivation. a) Slant error (eq; left panel) 

and length error (el; right panel) in the baseline phase and in the final learning phase. b) 

Motivation of the individuals (dots) in each group with their median (lines) as a function of 

experimental phase. We applied a small horizontal scatter to the dots to show the individual 

data. 

To study learning, we were interested in how the errors change relative to baseline. We 

therefore used the normalized error, which has a value of one at baseline and is zero if learning 

is complete. Overall, the normalized error in slant, length and the combined factor was reduced 

in the third learning phase and this learning was at least partially retained in the retention phase 

(Figure 2a).  

We first tested whether learning of a single factor improves when it is more task-relevant. For 

task relevance, we take a value of 1 when a factor is the only task-relevant factor, a value of 

0.5 when there is one other task-relevant factor and 0 was the factor is not task-relevant. As a 

measure of learning, we analyzed the fraction of the baseline error that was removed in the last 

20 trials of each phase (the ‘gain’). In contrast to our prediction, learning the in the first learning 

phase was not better for factorized learning than for combined learning. This was the case both 

for slant  (Slant First group with task-relevance = 1, compared to the Combined group with 
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task-relevance = 0.5; Medians 0.51 and 0.37, z = 0.13, p = 0.45) as well as for length (Length 

First group with task-relevance = 1 compared to the Combined group with task-relevance = 

0.5; Medians 0.34 and 0.85, z = -2.02, p = 0.98).  

Next, we analyzed whether factorized feedback improved learning of the combined factor at 

the end of the third learning phase (Figure 2c). We focused on the third learning phase rather 

than on the retention phase because our primary interest is in learning, not retention. In contrast 

to the prediction that the groups that had received factorized feedback would have learned more 

than the Combined group, learning of the combined factor in the Slant First group (median = 

0.54) or Length First group (median = 0.17) was not better (z = 0.41, p = 0.34 and z = -1.18, p 

= 0.88, respectively) than for the Combined group (median = 0.44). Thus we found that 

participants could learn the task and that learning was not improved by factorized feedback. In 

the next paragraphs we address exploration. 
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Figure 2. Results on learning. Median normalized error with 95% confidence interval 

as a function of trial number for the three groups. Data are smoothed with a Gaussian kernel 

(σ = 5 trials) for each phase separately. The dashed horizontal lines indicate the value that 

would indicate no learning (1) and complete learning (0). Grey background indicates phases 

without feedback. Rectangles indicate the episode within which the learning was analyzed.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 24, 2019. ; https://doi.org/10.1101/745778doi: bioRxiv preprint 

https://doi.org/10.1101/745778
http://creativecommons.org/licenses/by-nc-nd/4.0/


   8  

Because theories propose that reward-based learning relies on exploration 3,4,6, we assessed how 

exploration depends on the feedback and task relevance. Exploration will increase trial-by-trial 

changes. Therefore we analyze exploration from trial-by-trial changes. Trial-by-trial changes 

(D) were calculated as the amplitude of each change in the normalized error from trial t-1 to 

trial t. Several studies have found that trial-by-trial changes are larger following non-rewarded 

trials than following rewarded trials 4,5,10,12,14,15. To test whether this effect existed in the current 

study, we calculated the median trial-by-trial change in the combined error (DCombined) following 

non-rewarded trials and following rewarded trials within the three learning phases. A one-sided 

Wilcoxon sign rank test showed that, as expected, changes were larger following non-rewarded 

trials: medians 2.05 cm and 1.38 cm, z = 6.56, p < 0.01 (Figure 3a).  

Next, we tested whether a factor is explored more when it is more task-relevant. To this end, 

we performed a linear regression on the trial-by-trial variation in slant and length (DSlant and 

DLength) as a function of the factors’ task relevance and phase (1,2,3). Phase was included in this 

analysis because exploration might decrease with phase, possibly confounding the effect of 

task-relevance on trial-by-trial variation. As the value for task relevance we used 0 when no 

feedback was provided on the factor, 1 when it was the only factor that feedback was provided 

on and 0.5 when the feedback was provided on the combined error. For slant, we found that 

trial-by-trial variation depended positively on task relevance (slope = 0.32 cm; 95% CI: [0.04, 

0.60]) but not on phase (slope =-0.02 cm; CI [-0.14, 0.09]). For length, in contrast, we did not 

find that trial-by-trial variation depended on the task-relevance (slope = 0.02 cm; CI [-0.18, 

0.21]), neither did the trial-by-trial variation in length depend on phase (slope = -0.01 cm; CI 

[-0.09, 0.07]).  

To test whether these results were specific to the case in which task-relevance was explicitly 

defined in the instructions, we analyzed the Combined group in which task relevance of slant 

and length was not explicitly defined but implicitly determined by the relative amplitude of 

slant and length biases. We therefore calculated the ‘implicit task-relevance’ for a factor as the 

bias amplitude divided by the sum of the bias amplitude in slant and length. Next, we performed 

a rank order correlation between the implicit task relevance for a factor and the trial-by-trial 

changes of this factor. There was no significant correlation (for slant: R = 0.03, p = 0.80; for 

length: R = 0.02, p = 0.86). 
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Figure 3. Violin plots 16 of the effect of reward and task-relevance on exploration. a) 

Trial-by-trial changes in the combined error (DCombined) following rewarded and non-rewarded 

trials in the learning phases and in the phases without feedback (grey background). b) Trial-

by-trial changes in the slant error (DSlant) and in the length error (DLength) as a function of task 

relevance within the three groups. For the Combined group the task relevance was 0.5 in all 

three phases. Therefore, the data from the three phases overlap. Violins have been smoothed 

with default MatLab kernel density smoothing, depending on the number of points and range 

of the data.   

The explorative exit questionnaire on explicit strategies provided no additional insights. 
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Discussion 

In this study, we investigated whether reward-based motor learning depends on whether one 

or two factors are task-relevant. In addition, we tested whether factorizing feedback on two 

factors improved learning of these factors. We addressed these questions in a novel 3D 

trajectory matching task that allowed us to test motor learning without perturbing feedback to 

impose errors. For both slant and length, we found that unique task relevance of a factor did 

not improve learning of that factor. Consistently, factorizing feedback did not improve learning 

of the combination of the factors: participants who received feedback on slant and length at the 

same time learned the task equally well as participants who received factorized feedback. 

Below we discuss what these results imply for the mechanisms of reward-based learning. 

In the present study, learning did not depend on the number of factors that are task-relevant. 

This seems in contrast with our earlier finding that learning of a lateral perturbation on reaching 

was possible with feedback on one factor (the lateral dimension), but not if feedback was based 

on two additional factors (three-dimensional position; three-dimensional position; 10. Three 

differences in the experimental design may underlie the difference in results. First, the number 

of factors to be learned was smaller in the current study: 2 instead of 3, so the limitation could 

be on learning three factors. The second difference is related to the noise in the task-relevant 

factors. Noise hampers learning 5 and an additional factor may hamper learning by adding noise 

to the signal that the reward is based on. In van der Kooij & Smeets (2019) we studied the 

addition of depth and elevation to a lateral task. Depth perception is associated with a higher 

level of perceptual noise than perception of lateral position -especially in a virtual reality set-

up 17. Therefore, adding a depth factor may have added a significant amount of noise to the 

motor output that the reward was based on. The factors in the current study both depend on 

depth perception and might have been associated with more comparable levels of perceptual 

noise. Hence, learning of the 3D task in our previous study may have been impaired by 

perceptual noise rather than by an inability to learn more than one factor in parallel. The third 

difference is related to what participants had to learn. In the previous study, a visual 

perturbation was used to impose errors whereas in the current study no perturbation was used. 

Although a visual perturbation defines movements that miss the target as successful, 

participants may proprioceptively sense that the movement missed the target 18. Such 

proprioceptive errors could have interfered with learning from the reward in our previous study, 

similar to how reward can interfere with learning from error 12. To conclude, we can conclude 

that adding a single additional factor does not hamper learning when no excessive variability 
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or perturbation is introduced. This suggests that existing models of reward-based learning can 

be extended to a multidimensional task with parallel learning and exploration of the different 

factors.  

As participants only received feedback on a single factor in the first phase, it is not surprising 

that the factorized feedback hampered the reduction of the combined error in the first phase. 

More surprising is that there seems to be no learning at all; the combined error even tended to 

increase (Figure 2). The cause is visible in the figure: an increase in the task-irrelevant error. 

Errors in the task-irrelevant factor can increase because participants will have variability in the 

planning of both factors. Without feedback, such errors which will lead to a random walk in 

performance, leading not only to variability, but also to a systematic error 19,20.  

Although the results show that two factors can be learned in parallel, the number of factors that 

can be learned in parallel may be limited. First, exploration adds variability to the motor output. 

If all factors would be explored by the same amount, the added variability increases with the 

number of factors that are being explored. This conflicts with the general tendency of the motor 

system to minimize variability 21,22. Second, reward-based motor learning may be an explicit 

process that depends on working memory 9,23. When fewer factors are explored, a longer history 

of performance can be retained in working memory, providing more information for learning. 

As a strategy to reduce exploratory variability in multi-dimensional tasks, participants may 

determine which factor is most task-relevant and explore this factor before the other factors. 

Such sequential exploration requires that participants solve an attribution problem, which can 

be resolved quickly according to the literature. For instance, in a 2D trajectory learning task, 

participants learned the factor (curvature or direction) that was weighted more heavily in the 

reward function more rapidly 13. We however only found mixed evidence for a relation between 

task relevance and exploration. Exploration in slant depended on task relevance whereas 

exploration in length did not. One reason why we found inconsistent results for slant and length 

may be that different strategies were used in the learning of these factors. For length, some 

participants reported on the exit interview that they counted the duration of their movement in 

order to control length more precisely. For slant no such strategies were reported. Also, as 

perception of depth affects both perception of slant and length, the two factors may have been 

correlated. Therefore, the influence of task relevance on exploration of length may have been 

hidden by exploration of slant. Moreover, task-relevant exploration has been reported in the 

literature. In one experiment for instance, variability in velocity increased during adaptation to 
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a velocity dependent force field whereas variability in position increased following adaptation 

to a position-dependent force field 24.  

As a strategy to reduce working memory load in multi-dimensional tasks, participants may rely 

less on explicit forms of learning when a large number of factors is task-relevant. Our exit 

interview revealed no difference in explicit learning between groups but explicit learning can 

be studied more sensitively using for instance a double-task paradigm 9, by asking participants 

to report explicit strategies 25 by limiting movement preparation time 26 or by instructing 

participants to drop any strategy they used to score more points in the retention phase 23. 

Methods 

Participants 

Participants were 60 students of the Vrije Universiteit Amsterdam (age 22.3 ± 3.8; 20 male, 38 

female, 2 unregistered sex; 48 right handed, 7 left handed, 5 unregistered handedness). 

Participants had adequate stereovision (acuity < 60”) as assessed with the StereoFly test and 

adequate eye sight in our set-up as assessed by asking them to read aloud a text simulated at a 

distance of 50 cm and in a font size of 4 cm. We used a between-participants design in which 

participants were, in a random order, assigned to one of three feedback factorization groups. 

The Slant First and Length First groups received factorized feedback whereas the Combined 

group received combined feedback. Ethical approval for the study was provided by the local 

ethical committee (VCWE) of the Vrije Universiteit Amsterdam in accordance with the 

declaration of Helsinki. Participants provided informed consent prior to participating in the 

study. 

Set-up 

We used an HTC Vive virtual reality set to generate stimuli and record movements. The 

movement task was performed with a controller that participants held in their dominant hand. 

We simulated a simple virtual environment (Figure 4a) in which participants stood behind a 

pole (height 80% of headset height above the floor) with a red ‘starting sphere’ (diameter 6 

cm) on top. The visual target was a 16 cm line (1 cm width) with its center 5 centimeters behind 

the starting sphere, slanted 47° backwards around the fronto-parallel axis. In order to facilitate 

moving towards the starting sphere, a white 5 cm diameter ball could provide feedback of hand 

position. Above the target, the trial number and the cumulative score were displayed. 
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Task 

Motor learning was assessed in a 3D trajectory matching task in which participants were asked 

to repetitively copy a remembered line by moving the hand-held controller. To start a trial 

(Figure 4b), participants were asked to align the controller with the starting sphere. To help 

them do so, visual feedback on controller position was rendered within a 10-centimeter radius 

of the starting sphere. When they had successfully done so, the feedback on controller position 

disappeared, the starting sphere colored green and the target line was visible for 500 ms. After 

the target had disappeared, the participants were to move the controller to one endpoint of the 

remembered rod, pull the trigger of the controller, move in a straight line to the other endpoint, 

and release the trigger when finished – a movement akin to drawing with a pen. Controller 

vibration provided haptic feedback that a copying movement was recorded. If the controller 

left the starting sphere too early, the starting sphere colored red and the controller had to be 

returned before a copying movement could be recorded. In this way, we ensured that 

participants were copying a remembered line, so that visuo-proprioceptive matching errors 27 

would not affect task performance. Once the trigger was released, visual feedback on progress 

and, depending on the experimental phase, performance was provided. After a 300 ms inter-

trial interval, the participant could initiate the next trial by aligning the controller with the 

starting sphere. 

The experimental phase determined the type of feedback that was provided (Figure 4c) In a 50-

trial baseline phase, the trial number was updated, but no reward feedback was provided. In 

the subsequent three learning phases of 50 trials each, performance feedback was provided 

based on a ‘drawn vector’ between the starting and endpoint of the drawn line in the sagittal 

plane. After these three learning phases, participants performed a 50-trial retention phase 

without any performance feedback. Two factors of the drawn vector could contribute to the 

performance feedback during the learning phases: slant and length (Figure 4a). Between groups 

we varied whether these factors were trained sequentially in the first two learning phases 

(‘factorized’ training) or in a combined manner. The slant factor was ‘vertical’ slant in the 

sagittal plane, the length factor was the vector length and the feedback on the combined factor 

was determined based on the vector difference between the drawn vector and the target line.  

Performance feedback was provided according to an adaptive success criterion in which trials 

were rewarded when the amplitude of the relevant error was smaller than a median of the last 

5 trials or when the error in the combined factor was smaller than 2 cm: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 24, 2019. ; https://doi.org/10.1101/745778doi: bioRxiv preprint 

https://doi.org/10.1101/745778
http://creativecommons.org/licenses/by-nc-nd/4.0/


   14  

Participants in the Length First group performed the first learning phase with feedback based 

on the length, the second learning phase with feedback based on the slant and the third learning 

phase with feedback based on the combined factor. Participants in the Slant First group 

performed the first learning phase with feedback based on slant, the second learning phase with 

feedback based on length and the third learning phase with feedback based on the combined 

factor. Participants in the Combined group performed all three learning phases with feedback 

based on the combined factor. 

Figure 4) Methods. a) Virtual environment with the starting sphere and line target. b) Steps 

within a trial. When a trial was rewarded, the score turned green and 5 points were added to 
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the cumulative score. Otherwise, the score turned blue. c) Experimental groups (Slant First, 

Length First, Combined) and experimental phases. 

 

Procedure 

Prior to the experiment, we measured eye distance with a ruler and stereovision with the 

StereoFly test. Next, participants received visual and auditory instructions on the experimental 

task. All participants were instructed that they should try to match the target line as accurately 

as possible with the movement of the controller. The Slant First group was told that their scores 

would first depend on slant, next on length and finally on the combination of the two. The 

Length First group was told that their scores would first depend on length, next on slant and 

finally on the combination of the two. Participants in the Combined group were told that their 

scores would depend on the combination of slant and length. Illustrations were used to inform 

the participants how slant and length were defined. 

After the instructions, participants put on the headset. We checked visual acuity by asking them 

to read aloud a participant code simulated at a 50 cm distance and a character size of four cm. 

We let participants familiarize themselves with the drawing task in four practice trials in which 

a different target trajectory was shown and, in contrast to all phases of the experiment, full 

visual feedback on the drawn trajectory was provided. After that, the experiment started. 

As motivation may influence how participants learn from score rewards, motivation was 

assessed after the baseline phase and learning phases of the experiment using a Quick 

Motivation Index 28 in which participants responded orally to the following two questions that 

were posed by the experimenter using a 1-10 numerical scale: “How much did you enjoy the 

task until now?” and “How motivated are you to continue?”. 

When all five phases of the experiment were finished, the participants’ total score was attached 

to the scoreboard. After the experiment, participants completed an exit interview in which we 

asked them about handedness, age, sex, height, clarity of the instructions, explicit knowledge 

of performance errors and strategies to score points. 
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Data analysis 

We used three types of error in our analysis: slant error, length error and combined error. For 

comparison between factors all errors were expressed in centimeters (signed scalars). To 

express the slant error (eq) in centimeters, we used the length of the target line (ltarget), the 

vertical slant of the drawn vector (qdrawn) and the vertical slant of the target line (qtarget) 

𝑒"	   = 2𝑙'()*+'|𝑠𝑖𝑛(𝜃2)(34 −	  𝜃'()*+')/2)| 

Errors for which q was smaller than the target angle were defined negative, whereas other 

values were defined positive. To express the error in the combined factor as a scalar 

representing changes in the direction of interest, we calculated the combined error by projecting 

the vector error onto the median vector error in the last 20 trials of the baseline phase. In earlier 

publications we referred to this error as the primary error  29-31. 

For comparison across participants, the slant error, length errors and the combined error were 

normalized by the baseline bias such that a value of 1 represented no learning whereas a value 

of 0 represented complete learning. Negative values would indicate overcompensation. We 

determined the baseline bias as the median error in the last 20 trials of the baseline phase. We 

used only the last 20 trials because some participants showed significant drift during the 

baseline phase. As a measure of learning within a phase, we will report the gain: 1 – the median 

normalized error in the last 20 trials of the phase. 

Exploration was analyzed based on a measure of trial-by-trial variability 14 in which the 

amplitude of changes in the slant error (Dq), in the length error (Dl) and in the combined error 

(Dy) between trial N and trial N+1 were calculated. Trial-by-trial variation in a phase was the 

median D within  a phase.  

Statistical tests 

Visual inspection of the data (Figure 2 and Figure 3) showed that for some groups the data did 

not follow a normal distribution. Therefore non-parametric tests were used to test the 

predictions. Our first prediction was that the learning of an individual factor (slant or length) 

is fastest when it is the only task-relevant factor. We therefore predicted that for a single factor 

(slant or length) the gain at the end of a phase would be greater if the factor’s task relevance 

would be greater. Thus: in the first learning phase, gain of slant would be greater for the Slant 

First group than for the Combined group and gain of length would be greater for the Length 
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First group than for the Combined group. These predictions were tested using Mann-Whitney 

U tests. 

Our second prediction was that learning of both factors (slant and length) is faster when they 

are practiced sequentially. We therefore predicted that gain of the combined error in the third 

learning phase would be greater in the Slant First and Length First groups compared to the 

Combined group. Again, Mann Whitney U tests were used to test these predictions. 

As exploration is the basis of reward-based learning we also assessed how the exploration 

depended on the factorization. We therefore performed a linear regression of the exploration 

in a factor on the task relevance and phase number. When the reward did not depend on the 

factor, we used a value of 0 for the task relevance, when the reward depended only on the 

factor, we used a value of 1 and when the reward depended on the combined error, we used a 

value of 0.5. 

 

Data availability: The datasets generated during and analyzed during the current study and the 

MatLab code used in the analysis are available in the Open Science Foundation repository, 

[https://osf.io/vsdt5/]. 
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Figure Legends 

Figure 1) Overview of individual performance and motivation. a) Slant error (eq; left panel) 

and length error (el; right panel) in the baseline phase and in the final learning phase. b) 

Motivation of the individuals (dots) in each group with their median (lines) as a function of 

experimental phase. We applied a small horizontal scatter to the dots to show the individual 

data. 

Figure 2. Results on learning. Median normalized error with 95% confidence interval as a 

function of trial number for the three groups. Data are smoothed with a Gaussian kernel (σ = 

5 trials) for each phase separately. The dashed horizontal lines indicate the value that would 
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indicate no learning (1) and complete learning (0). Grey background indicates phases without 

feedback. Rectangles indicate the episode within which the learning was analyzed.  

Figure 3. Violin plots 16 of the effect of reward and task-relevance on exploration. a) Trial-

by-trial changes in the combined error (DCombined) following rewarded and non-rewarded trials 

in the learning phases and in the phases without feedback (grey background). b) Trial-by-trial 

changes in the slant error (DSlant) and in the length error (DLength) as a function of task relevance 

within the three groups. For the Combined group the task relevance was 0.5 in all three phases. 

Therefore, the data from the three phases overlap. Violins have been smoothed with default 

MatLab kernel density smoothing, depending on the number of points and range of the data.   

Figure 4) Methods. a) Virtual environment with the starting sphere and line target. b) Steps 

within a trial. When a trial was rewarded, the score turned green and 5 points were added to 

the cumulative score. Otherwise, the score turned blue. c) Experimental groups (Slant First, 

Length First, Combined) and experimental phases 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 24, 2019. ; https://doi.org/10.1101/745778doi: bioRxiv preprint 

https://doi.org/10.1101/745778
http://creativecommons.org/licenses/by-nc-nd/4.0/

