
1 
 

The relevance of dominance and functional annotations to predict 1 

agronomic traits in hybrid maize 2 

Guillaume P. Ramstein1; Sara J. Larsson2; Jason P. Cook3; Jode W. Edwards4; Elhan S. Ersoz5; 3 

Sherry Flint-Garcia6; Candice A. Gardner4; James B. Holland7; Aaron J. Lorenz8; Michael D. 4 

McMullen6; Mark J. Millard4; Torbert R. Rocheford9; Mitchell R. Tuinstra9; Peter J. Bradbury10; 5 

Edward S. Buckler1,10; M. Cinta Romay1 6 

1 Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853  7 

2 Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853. Current 8 

address: Corteva Agriscience, Windfall, IN, 46076 9 

3 Division of Plant Science, University of Missouri, Columbia, MO, 56211. Department of Plant 10 

Sciences and Plant Pathology, Montana State University, MT, 59717  11 

4 USDA-ARS, Ames, IA, 50011. Department of Agronomy, Iowa State University, Ames, IA, 12 

50011 13 

5 Syngenta Seeds, Stanton, MN, 55018. Current address: Umbrella Genetics, Champaign, IL, 14 

61820 15 

6 USDA-ARS, Columbia, MO, 56211. University of Missouri, Columbia, MO, 56211 16 

7 USDA-ARS, Raleigh, NC, 27695. Dep. of Crop Science, North Carolina State University, 17 

Raleigh, NC, 27695 18 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/745208doi: bioRxiv preprint 

https://doi.org/10.1101/745208
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

8 Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68588. 19 

Current address: Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, 20 

MN, 55108  21 

9 Department of Agronomy, Purdue University, West Lafayette, IN, 47907  22 

10 USDA-ARS, Ithaca, NY, 14853 23 

  24 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/745208doi: bioRxiv preprint 

https://doi.org/10.1101/745208
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

ABSTRACT 25 

Heterosis has been key to the development of maize breeding but describing its genetic basis has 26 

been challenging. Previous studies of heterosis have shown the contribution of within-locus 27 

complementation effects (dominance) and their differential importance across genomic regions. 28 

However, they have generally considered panels of limited genetic diversity and have shown 29 

little benefit to including dominance effects for predicting genotypic value in breeding 30 

populations. This study examined within-locus complementation and enrichment of genetic 31 

effects by functional classes in maize. We based our analyses on a diverse panel of inbred lines 32 

crossed with two testers representative of the major heterotic groups in the United States (1,106 33 

hybrids), as well as a collection of 24 biparental populations crossed with a single tester (1,640 34 

hybrids). We assayed three agronomic traits: days to silking (DTS), plant height (PH) and grain 35 

yield (GY). Our results point to the presence of dominance for all traits, but also among-locus 36 

complementation (epistasis) for DTS and genotype-by-environment interactions for GY. 37 

Consistently, dominance improved genomic prediction for PH only. In addition, we assessed 38 

enrichment of genetic effects in classes defined by genic regions (gene annotation), structural 39 

features (recombination rate and chromatin openness), and evolutionary features (minor allele 40 

frequency and evolutionary constraint). We found support for enrichment in genic regions and 41 

subsequent improvement of genomic prediction for all traits. Our results point to mechanisms by 42 

which heterosis arises through local complementation in proximal gene regions and suggest the 43 

relevance of dominance and gene annotations for genomic prediction in maize. 44 

  45 
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INTRODUCTION 46 

Since the development of the first maize hybrids by Shull (1908) and their widespread adoption 47 

starting in the 1930s, heterosis has been central to the improvement of maize in the United 48 

States. Heterosis, or hybrid vigor, refers to the increase in performance of hybrids relatively to 49 

their average parental performance (Shull 1914). There has been little doubt about the practical 50 

significance of hybrid vigor as it drove considerable breeding gains in maize during the 20th 51 

century, but there has been a long-lasting scientific debate about the basis for this phenomenon 52 

(Crow 1998). Predominant hypotheses about the causes of heterosis have related to genetic 53 

complementation of parental genomes. The basis for such complementation consists of non-54 

additive genetic effects, particularly (over)dominance (within-locus complementation, i.e., 55 

interaction between alleles within single genetic loci) and epistasis (among-locus 56 

complementation, i.e., interactions involving multiple genetic loci). Overdominance, or 57 

heterozygous advantage, was initially favored as an explanation for heterosis (East 1936, Crow 58 

1948). However, this type of gene action did not account for experimental results, such as the 59 

decrease in the realized degree of dominance over consecutive generations in populations 60 

derived from biparental crosses (Gardner 1963, Moll et al. 1964). Instead, it was proposed that 61 

apparent overdominance was due to dominance gene action at closely-linked polymorphisms 62 

having opposite effects (repulsion phase linkage) (Hill and Robertson 1966, Cockerham and 63 

Zeng 1996, Graham et al. 1997). Epistasis also provides a plausible explanation for genomic 64 

complementation. However, studies assessing its contribution to heterosis have suffered from a 65 

lack of statistical power (Reif et al. 2005) and have reported contrasting results (e.g., Mihaljevic 66 

et al. 2005 and Ma et al. 2007).  67 
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Genetic studies in maize have investigated dominance gene action by focusing either on 68 

directional dominance, effects of quantitative trait loci (QTL), or genome-wide (polygenic) 69 

effects. Studies on testcrosses or diallel mating designs have investigated directional dominance 70 

by assessing the relationship between heterosis and inter-parent genetic distance (e.g., Reif et al. 71 

2003), or the relationship between testcross means and the genomic contribution of a given 72 

parent to the testcross (e.g., Hinze and Lamkey 2003). Their conclusions seem to support the 73 

presence of directional dominance, particularly for grain yield. Furthermore, studies on 74 

populations derived from backcrosses between recombinant inbred lines and their parents, under 75 

North Carolina III designs, have generally identified several QTL with significant dominant 76 

effects for traits such as flowering time, plant height, and grain yield (e.g., Frascaroli et al. 2007, 77 

Larièpe et al. 2012). Finally, genomic prediction analyses in maize have assessed polygenic 78 

dominance effects for their contribution to genotypic variability. Importantly, these genomic 79 

prediction studies have often focused on factorial designs in which hybrids were obtained from 80 

crosses between lines coming from different heterotic groups: Flint and Dent (e.g., Technow et 81 

al. 2014) or Stiff Stalk and non-Stiff Stalk (e.g., Kadam et al. 2016). Most of these studies have 82 

suggested little contribution of non-additive effects (i.e., specific combining abilities) to 83 

genotypic variability. However, they could not assess the relevance of dominance effects in more 84 

diverse panels in which genomic effects, and heterotic responses, may be more inconsistent, due 85 

to differential levels of genomic complementation within and across heterotic groups (Reif et al. 86 

2005, Gerke et al. 2015).  87 

 The above-mentioned studies have assayed the relative importance of additive and 88 

dominance effects across the genome, but they have not attempted to describe the properties of 89 

genomic regions most enriched for causal variants. Other studies in maize have characterized the 90 
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genetic basis of agronomic traits based on locus properties such as gene proximity, structural 91 

features, and/or evolutionary features. Gene proximity has been linked to causal variants in 92 

maize through enrichment for QTL effects (Wallace et al. 2014); additionally, a large portion of 93 

variability of gene expression in maize has been attributed to cis polymorphisms (Schadt et al. 94 

2003). Therefore, most polymorphisms underlying genome complementation and hybrid vigor 95 

are expected to lie in proximal gene regions. Structural features may also be functionally relevant 96 

to heterosis in maize. For example, chromatin openness and high recombination rate were 97 

associated with enrichment for QTL effects in maize inbred lines (Rodgers-Melnick et al. 2016). 98 

However, studies on maize hybrids have also shown that heterotic QTL tend to locate around 99 

centromeres, where recombination rate is low (Larièpe et al. 2012, Thiemann et al. 2014, 100 

Martinez et al. 2016). Therefore, it is possible that causal loci for hybrid vigor in maize is 101 

enriched in regions characterized by low recombination rate and closed chromatin, because of 102 

repulsion phase linkage (Hill and Robertson 1966). Evolutionary features characterize allelic 103 

diversity within species (e.g., allele frequency or nucleotide diversity) and across species (e.g., 104 

evolutionary constraint). Lower allelic diversity has been associated with stronger QTL effects in 105 

hybrid maize (Mezmouk and Ross-Ibarra 2014, Yang et al. 2017). Therefore, loci with low allele 106 

frequency or high evolutionary constraint may have stronger effects on heterosis in maize. 107 

Importantly, structural and evolutionary features have also been associated with gene density. 108 

For example, Beissinger et al. (2016) and Rodgers-Melnick et al. (2016) have reported lower 109 

nucleotide diversity and more open chromatin near genes, respectively. So, there is ambiguity 110 

about the relevance of evolutionary and structural features to capture variability at agronomic 111 

traits independently from gene proximity.  112 
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In this study, we aimed at characterizing the genetic basis of hybrid vigor for three 113 

agronomic traits (days to silking, plant height, and grain yield) in panels representative of genetic 114 

diversity in maize. We analyzed two hybrid panels: one was derived from crosses between a 115 

diverse sample of maize inbred lines and either of two testers, B47 and PHZ51, belonging 116 

respectively to the Stiff Stalk (SS) and non-Stiff Stalk (NSS) heterotic groups; the other was 117 

derived from crosses between the US Nested Association Mapping (NAM) panel and PHZ51. 118 

We investigated the importance of dominance for heterosis in maize by (i) the contribution of 119 

polygenic dominance to genotypic variability, (ii) the existence of significant dominance effects 120 

at QTL, and (iii) directional effects of dominance by inbreeding. In addition, we tested the 121 

hypotheses that most genetic effects involved in dominance are located (i) near genes, (ii) in low-122 

recombination regions, and (iii) at evolutionarily constrained loci (Figure 1). Our study is 123 

focused on the usefulness of genetic effects partitioned by gene action (additive or dominance 124 

effects) and functional classes (based on gene proximity and structural or evolutionary features), 125 

for applications such as prioritization of SNP markers and genomic prediction. 126 

  127 
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 128 

Figure 1 – Graphical summary of the study. Two rationales were tested: (1) dominance gene 129 

action explains heterosis in maize; (2) genetic effects underlying heterosis are enriched by 130 

functional classes. Under each rationale, evidence from analyses is characterized as consistent 131 

(+) or inconsistent (-) with scientific hypotheses. Non-conclusive evidence is either due to 132 

absence of QTL (No QTL) or lack of significance (N.S.). 133 
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MATERIAL AND METHODS 134 

Phenotypic data 135 

Phenotypic measurements 136 

In this study, two panels of maize lines were assayed for hybrid performance: the NCRPIS 137 

association panel (hereafter, Ames) and the nested association mapping panel (hereafter, NAM). 138 

The Ames panel comprises a subset of temperate inbred lines from the diversity panel described 139 

by Romay et al. (2013); the NAM panel is a subset of 24 recombinant inbred line (RIL) 140 

populations, all having one parent in common, B73, as described by McMullen et al. (2009).  141 

 In the hybrid Ames panel, a subset of 875 inbred lines was selected to reduce differences 142 

in flowering time while favoring genetic diversity based on pedigree information. Two inbred 143 

lines, formerly under Plant Variety Protection, were selected as testers: one non-Stiff Stalk 144 

(NSS) inbred (PHZ51) and one Stiff Stalk (SS) inbred (B47, also known as PHB47). Inbreds 145 

were assigned to one or two testers based on known heterotic group: SS inbreds were crossed 146 

with PHZ51, while NSS inbreds were crossed with B47; inbreds with unknown heterotic group 147 

as well as inbreds belonging to the Goodman association panel (Flint-Garcia et al. 2005) were 148 

crossed with both testers, for a total of 1,111 hybrids. Hybrids were assigned to one of four 149 

combinations, based on tester (PHZ51 or B47) and maturity (early or late). Each combination 150 

was split into three sets based on expected plant height (short, medium, or tall). Each of those 12 151 

groups were arranged in an incomplete block (alpha-lattice) design. Sets were randomized for 152 

each environment, and tester-maturity combinations were randomized within each set. One 153 

common check (B73×PHZ51) was randomly included in each block of the lattices, and each 154 

lattice randomly included three additional checks (PHZ51×B47, B47×PHZ51, and a maturity 155 

commercial check). In the Ames panel, evaluation was performed in 2011 and 2012, in six 156 
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locations across the US – Ames (IA), West Lafayette (IN), Kingston (NC), Lincoln (NE), Aurora 157 

(NY), and Columbia (MO) – for a total of nine unique environments: 11IA, 11IN, 11NC, 11NE, 158 

11NY, 11MO, 12NE, 12NC, and 12MO.  159 

 In the hybrid NAM panel, selection and evaluation were performed as described by 160 

Larsson et al. (2017). Briefly, a subset of 60 to 70 RILs from each of the NAM families was 161 

selected to reduce differences in flowering time across families: the later RILs from the earliest 162 

families and the earlier RILs from the latest families, for a total of 1,799 RILs. All RILs were 163 

crossed with the same tester: PHZ51. Hybrids were evaluated in five different locations – Ames 164 

(IA), West Lafayette (IN), Kingston (NC), Aurora (NY), and Columbia (MO) – during 2010 and 165 

2011 for a total of eight unique environments: 10IA, 10IN, 10NC, 10MO, 11IA, 11IN, 11NC, 166 

and 11NY.  167 

 Both NAM and Ames hybrids were planted in two-row plots (40-80 plants per plot; 168 

50,000 to 75,000 plants per hectare), except for 11NY, where 12 plants were planted per plot. 169 

The following traits were measured: days to silking (number of days from planting until 50% of 170 

the plants had silks; DTS), plant height (cm from soil to flag leaf; PH), and grain yield (t/ha 171 

adjusted to 15.5% moisture; GY). In 11NY, only PH and DTS were measured (Table 1). 172 

Genotype means and heritability 173 

Genotype means of hybrids were estimated by a linear mixed model, fitted by ASREML-R v3.0 174 

(Butler et al. 2009). For each combination of panel (Ames or NAM panel) and trait (DTS, PH, or 175 

GY), the following effects were estimated: genotype [fixed], environment [random, independent, 176 

and identically normally distributed (i.i.d.)], field within environment [random, i.i.d.], and, if 177 

possible, spatial effects within environment/field combinations [random, normally distributed 178 

under first-order autoregressive covariance structures by row and column]. Since genotypes were 179 
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not replicated within environments, genotype-by-environment interactions were pooled with 180 

residual variation. For PH in both panels, spatial effects were not included in the model because 181 

the fitting algorithm could not converge to a solution. For GY in both panels, DTS measurements 182 

[fixed] were included in the model to account for phenological differences among lines. In 183 

addition to estimating genotype effects as fixed, models with genotype effects as random were 184 

also fitted to estimate genotypic variance (���) and error variance (���). Broad-sense heritability 185 

on a plot basis was then calculated as �� � ���

��
����

�. Finally, entry-mean reliability was estimated 186 

as ��� � 1 � �

�
∑ �	
�������

��
�

�
��� , where n is the number of hybrids assayed in either panel and 187 

Var��� � ��� is the prediction error variance of genotype mean for hybrid i (Searle et al. 2009). 188 

Genotypic data 189 

Marker data 190 

All the inbreds that were used to create the evaluated hybrids were originally genotyped using 191 

genotyping-by-sequencing (GBS) (Romay et al. 2013, Rodgers-Melnick et al. 2015). Single-192 

nucleotide polymorphisms (SNPs) were called with the software TASSEL v5.0 (Bradbury et al. 193 

2007) using the GBS production pipeline and the ZeaGBSv2.7 Production TOPM obtained from 194 

more than 60,000 Zea GBS samples (Glaubitz et al. 2014). 195 

 The GBS SNPs in both panels were used for imputing marker scores (alternate-allele 196 

counts) called at whole-genome-sequencing (WGS) SNPs from the Hapmap 3.2.1 panel, under 197 

version 4 of the reference B73 genome (Bukowski et al. 2018). From the original WGS dataset 198 

heterozygote SNPs were set to missing (since these were presumably due to errors or collapsed 199 

paralogous loci) and WGS SNPs were filtered out if they did not satisfied the following criteria: 200 

two alleles by SNP, call rate > 50%, and minor allele count > 3. A total of 25,555,019 positions 201 
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across the reference genome were then selected for imputation. Marker scores were imputed by 202 

BEAGLE v5 (Browning and Browning 2018), with the following parameters: 10 burn-in 203 

iterations, 15 sampling iterations, and effective population size set to 1000. Marker scores at 204 

WGS SNPs were first fully imputed and phased in the Hapmap 3.2.1 panel; then, they were 205 

imputed in the Ames panel and the NAM panel separately, based on GBS SNPs using the 206 

imputed Hapmap 3.2.1 panel as reference. 207 

 In subsequent analyses, hybrids were divided in four sets: Ames/PHZ51, Ames/B47, the 208 

entire Ames hybrid panel (Ames/PHZ51+B47), and NAM/PHZ51. These sets comprised 463, 209 

643, 1106, and 1640 hybrids, respectively. After imputation, WGS SNPs were further filtered for 210 

the following criteria in every set, based on the respective subsets of inbreds: minor allele 211 

frequency ≥ 0.01; estimated squared correlation between imputed and actual marker scores ≥ 0.8 212 

(Browning and Browning 2009). Marker scores at selected WGS SNPs were then inferred for 213 

each hybrid by using CreateHybridGenotypesPlugin in TASSEL v5.0; at each selected WGS 214 

SNP, female and tester marker scores were combined, unless either of these was heterozygous or 215 

missing (in which case the hybrid genotype was set to missing). After filtering by quality and 216 

variability of marker scores, a total of � � 12,659,487 WGS SNPs were retained for 217 

subsequent analyses (14,846,984 to 15,733,697 SNPs were selected due to filters on minor allele 218 

frequency alone). In a given set, the marker data consisted of the matrix X of minor-allele 219 

counts, where minor alleles were defined by frequencies in the Hapmap 3.2.1 panel, and the 220 

matrix Z of heterozygosity, which coded homozygotes as 0 and heterozygotes as 1. 221 

Population principal components 222 

Principal component analysis (PCA) was performed using the R package irlba v2.3.3 (Baglama 223 

and Reichel 2005), based on the Goodman association panel, presumed to represent the genetic 224 
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diversity among elite maize inbred lines (Flint-Garcia et al. 2005). Matrix P, consisting of 225 

coordinates at the first three PCs in hybrids, was obtained by (i) adjusting marker scores by their 226 

observed mean in the Goodman association panel, and (ii) mapping adjusted marker scores to 227 

PCs by the SNP loadings from PCA, i.e., � � �� � ���, where � � � is the matrix of adjusted 228 

marker scores and V is the � � 3 matrix of right-singular vectors from PCA. 229 

Functional features 230 

Gene annotation: proximity to genes 231 

Gene positions were available from v4 gene annotations, release 40 232 

(ftp://ftp.ensemblgenomes.org/pub/plants/release-233 

40/gff3/zea_mays/Zea_mays.AGPv4.40.gff3.gz). Gene proximity bins (either ‘Proximal’ or 234 

‘Distal’) then indicated whether any given SNP was within 1 kb of an annotated gene (less than 1 235 

kb away from the start or end positions). 236 

Structural features: recombination rate and chromatin openness 237 

Previously published recombination maps identified genomic segments originating from either 238 

parent within the progeny of each NAM family (Rodgers-Melnick et al. 2015). These maps were 239 

uplifted to version 4 of the reference genome using CrossMap v0.2.5 (Zhao et al. 2014). Then, 240 

the average numbers of recombination events (recombination fractions) were fitted on genomic 241 

positions by a thin-plate regression spline model, by the R package mgcv v1.8-27 (Wood 2003). 242 

Based on this model, recombination rates c were inferred by finite differentiation of fitted 243 

recombination fractions: � � �  ! " �

�
# � �  ! � �

�
#, where ! is the vector of genomic positions 244 

of all WGS SNPs, and f is the function inferred by the spline model. Finally, we defined 245 

recombination bins as follows: cj ≤ 0.45 cM/Mb, 0.45 cM/Mb < cj ≤ 1.65 cM/Mb, and 1.65 246 
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cM/Mb < cj, where 0.45 cM/Mb and 1.65 cM/Mb are the first two tertiles of estimated 247 

recombination rates cj among all WGS SNPs. 248 

Chromatin accessibility was previously assessed by micrococcal nuclease hypersensitivity 249 

(MNase HS) in juvenile root and shoot tissues in B73 (Rodgers-Melnick et al. 2016). Here, 250 

MNase HS peaks were mapped to their coordinates in version 4 of the reference genome. A 251 

given SNP was considered to lie in a euchromatic (open) region if a MNase HS peak was 252 

detected, in either root or shoot tissues. We then defined MNase HS bins as ‘Dense’ or ‘Open’ 253 

for the absence or presence of MNase HS peaks, respectively. 254 

Evolutionary features: minor allele frequency and evolutionary constraint 255 

Minor allele frequencies (MAF) at SNPs were determined based on the Hapmap 3.2.1 panel in 256 

version 4 of the reference genome, without imputation of marker scores. Similarly to Evans et al. 257 

(2018), we defined MAF bins as follows: MAF ≤ 0.01, 0.01 < MAF ≤ 0.05, and 0.05 < MAF 258 

(SNPs were not binned at MAF ≤ 0.0025 due to only 7,202 of them falling into this class). 259 

Evolutionary constraints at SNPs were reflected by genomic evolutionary rate profiling (GERP) 260 

scores, as introduced by Davydov et al. (2010). Here we derived GERP scores from a whole-261 

genome alignment of 13 plant species (Rodgers-Melnick et al. 2015, Yang et al. 2017), based on 262 

coordinates in version 4 of the reference genome. We defined GERP score bins as GERP ≤ 0 and 263 

GERP > 0. 264 

Genome-wide polygenic models  265 

Additive effects 266 

Genome-wide additive effects were estimated under a standard genomic BLUP (GBLUP) model 267 

(VanRaden 2008), as follows: 268 
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$ � %& " ' " (; ' ~ +�,, -����, ( ~ +�,, .����, - � ��� �⁄    269 

where y was the vector of genotype means; % � 01 �2 was the matrix consisting of a vector of 270 

ones and the first three PCs as described above; & were fixed effects; u and e consisted of 271 

polygenic additive genomic effects and random errors, respectively. The GBLUP model was 272 

fitted in Ames/PHZ51+B47 or NAM/PHZ51, by restricted maximum likelihood (REML) using 273 

the R package regress v1.3-15 (Clifford and McCullagh 2005). 274 

For comparison to Bayesian sparse linear mixed models (see next section below), we also fitted 275 

RR-BLUP models where the effects of PCs were not explicitly accounted for by fixed effects, 276 

i.e., $ � 13 " �4 " (; 4 ~ +�,, .����, ( ~ +�,, .����, where 4 consisted of random additive 277 

marker effects. The RR-BLUP model was fitted in Ames/PHZ51+B47 or NAM/PHZ51, by 278 

REML using GEMMA v0.98.1 (Zhou and Stephens 2012). 279 

Additive and dominance effects 280 

To account for dominance, the GBLUP model was extended to the dominance GBLUP 281 

(DGBLUP) model, as follows: 282 

$ � %& " ' " 5 " (; ' ~ +�,, -����, 5 ~ +�,, 6����, ( ~ +�,, .����, - � ��� �⁄ , 6 �283 

77� �⁄   (1) 284 

where w consisted of polygenic dominance effects. Model (1) was fitted in Ames/PHZ51+B47, 285 

by REML using the R package regress v1.3-15 (Clifford and McCullagh 2005). 286 

Directional effects 287 

Directional effects arise from consistent genetic effects across loci, such that their average is 288 

non-zero. An example of directional effects about dominance is inbreeding depression, due to 289 

genome-wide dominance effects being usually positive for fitness. Under a simple dominance 290 
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model without linkage nor epistasis, inbreeding depression is characterized by a linear negative 291 

relationship between the inbreeding coefficient and fitness (Falconer and Mackay 1996). 292 

Moreover, in presence of directional epistatic effects, the relationship between the inbreeding 293 

coefficient and fitness is expected to be nonlinear (Crow and Kimura 1970). To capture such 294 

nonlinearity, specifically dominance×dominance epistasis, the quadratic effect of the inbreeding 295 

coefficient was fitted along with its linear effect. We followed Endelman and Jannink (2012) to 296 

estimate genomic inbreeding coefficients with respect to a base population, here represented by 297 

the Goodman association panel. For each hybrid i, the coefficient of genomic inbreeding was 298 

calculated as 8� � ∑ ���������
�

�

∑ ����������
� 1, where 9� was the allele frequency in the Goodman 299 

association panel. 300 

Directional effects of inbreeding were assayed as fixed effects under an extension of the 301 

DGBLUP model (1). The following model was fitted: 302 

$ � %& " :; " ' " 5 " (; ' ~ +�,, -����, 5 ~ +�,, 6����, ( ~ +�,, .����, - � ��� �⁄ , 303 

6 � 77� �⁄   (2) 304 

where : and ; consisted of genomic inbreeding values and their directional effects (linear or 305 

quadratic), respectively. Significance of estimates of ; was assessed by Wald tests. Model (2) 306 

was fitted in Ames/PHZ51+B47 or NAM/PHZ51, by REML using the R package regress v1.3-307 

15 (Clifford and McCullagh 2005). 308 

Oligogenic models 309 

Oligogenic effects of SNPs were inferred using association models which estimated the effect of 310 

each SNP while accounting for background polygenic SNP effects. Two types of models were 311 
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used: standard linear mixed models, where the effect of each SNP was estimated separately, and 312 

Bayesian linear models, where effects of all SNPs under assay were fitted simultaneously. 313 

Genome-wide association models 314 

Standard linear mixed models were genome-wide association study (GWAS) models fitted to 315 

assess the significance of SNPs for additive effects only (marginal additive effects), or additive 316 

and dominance effects simultaneously. 317 

For assessing marginal additive effects (<�, fixed, for each SNP j), the following model was 318 

fitted in Ames/PHZ51+B47 or NAM/PHZ51: $ � %& " =�<� " ' " (; ' ~ +�,, -����, 319 

( ~ +�,, .����, - � ��� �⁄ . For assessing additive and dominance effects (<� and >�, fixed, for 320 

each SNP j), the previous model was extended in Ames/PHZ51+B47 to incorporate dominance 321 

for both fixed effects and random effects: $ � %& " =�<� " ?�>� " ' " 5 " (; ' ~ +�,, -����, 322 

5 ~ +�,, 6����, ( ~ +�,, .����, - � ��� �⁄ , 6 � 77� �⁄ . GWAS models were fitted under the 323 

EMMAX approximation of Kang et al. (2010), using function fastLm in the R package 324 

RcppEigen v0.3.3.5.0 (Bates and Eddelbuettel 2013). Significance of SNPs was assessed by 325 

Wald tests on estimates of <� and >�. False discovery rates (FDR) were estimated based on p-326 

values from Wald tests by the method of Benjamini and Hochberg (1995). 327 

Bayesian sparse linear mixed models 328 

Models used for joint estimation of additive marker effects were Bayesian sparse linear mixed 329 

models (BSLMM) where marker effects are decomposed into a polygenic component and a 330 

sparse component (characterizing outstanding effects of few markers). Using Markov chain 331 

Monte Carlo (MCMC), the following model was fitted:  332 
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$ � 13 " �@A " �4 " (; <B�~9+  0, ����# " �1 � 9�D�, E � 1, … , �; 4 ~ +�,, .����; 333 

( ~ +�,, .���� 334 

BSLMMs were fitted in Ames/PHZ51+B47 or NAM/PHZ51 by GEMMA v0.98.1, with 335 

1,000,000 and 10,000,000 MCMC iterations for burn-in and sampling, respectively (Zhou et al. 336 

2013). As part of the MCMC process, a vector γ of posterior inclusion probabilities (PIP) was 337 

generated, such that G� � PrI<B� J 0K, E � 1, … , �. We estimated window posterior inclusion 338 

probability (WPIP) following Guan and Stephens (2011), by summing G�’s in 500-kb windows, 339 

sliding by 250-kb steps. 340 

Functional polygenic models 341 

Effects of markers by evolutionary and structural features 342 

Effects of evolutionary and structural features on the amplitude of marker effects were captured 343 

by linear mixed models which partitioned the genomic variance among hybrids by annotation 344 

bin. For each feature (gene proximity, recombination rate, chromatin openness, MAF, and 345 

GERP) the following model was fitted: 346 

$ � %& " ' " 5 " (; ' ~ +�,, ∑ -����� �, 5 ~ +�,, ∑ 6����� �,  ( ~ +�,, .����, -� �  � �
�

!�
, and 347 

6� � "�"�
�

!�
  (3) 348 

where ��  (7�) is the matrix of minor-allele counts at the mk (ml) SNPs in bin k (l), and ��� (���) is 349 

the variance component associated to additive effects in bin k (dominance effects in bin l). The 350 

significance of the variance partition was assessed by a likelihood ratio test, comparing the 351 

REML of the evaluated model to that of a baseline model. Two types of variance partition were 352 

analyzed by model (3): partition by one feature (baseline: DGBLUP in Ames/PHZ51+B47 and 353 
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GBLUP in NAM/PHZ51), and partition by both gene proximity and another feature (baseline: 354 

partition by gene proximity only). Model (3) was fitted in Ames/PHZ51+B47 or NAM/PHZ51, 355 

by REML using the R package regress v1.3-15 (Clifford and McCullagh 2005). 356 

Variance partition and SNP enrichment 357 

For each hybrid i, the proportion of variance explained by marker effects in GBLUP was 358 

estimated by 
�#���	�

�#���	
����

�, where �L��  is the ith diagonal element of matrix G adjusted for fixed effects, 359 

i.e., -A � �. � M�-�. � M�, with M � %�%�%��$%� being the matrix of projection onto the 360 

column space of Q. The proportion of variance explained by additive marker effects in DGBLUP 361 

was estimated by 
�#���	�

�#���	
��%&���


����
�, and similarly for dominance effects: 

%&���
�

�#���	
��%&���


����
� [model (1)]. 362 

Finally, in functional polygenic models, the proportion of variance explained by additive marker 363 

effects at bin k* was estimated by 
���' ��

�
��
�

∑ ��' ����
�

� �∑ %�(����
�

� ���
�, and similarly for dominance effects at bin 364 

l*: 
%��( ��

�
��
�

∑ ��' ����
�

� �∑ %�(����
�

� ���
� [model (3)]. Proportions of variance in whole panels for a given type of 365 

effects were then obtained by averaging estimated proportions over hybrids. In functional 366 

polygenic models, SNP enrichment for additive effects at bin k* was calculated by the ratio of 367 

N�
�

∑ ���O ������� P N�
�

∑ I∑ ��O������ " ∑ Q�A
������ K� PR , i.e., the proportion of genomic variance 368 

explained by bin k*, over ��� 0∑ ��� " ∑ ��� 2⁄ , i.e., the proportion of SNPs in bin k* (and 369 

similarly for dominance effects at bin l*).  370 

Validation of prediction models in NAM/PHZ51 371 

Models fitted in Ames/PHZ51+B47 were assessed for prediction accuracy (Pearson correlation 372 

between observed genotype means and their predicted values) in NAM/PHZ51. Our validation 373 
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scheme was meant to reflect the merit of prediction models in practical applications of genomic 374 

selection, so prediction accuracies were estimated separately in each NAM/PHZ51 population. 375 

Therefore, prediction accuracy for any prediction model (e.g., DGBLUP) could be tested for 376 

significance of average prediction accuracy (non-zero mean, by a one-sample t-test) and 377 

estimated difference in accuracy compared to another model (non-zero difference, by a two-378 

sample t-test paired by population) over NAM/PHZ51 populations. 379 

Assessment of genotype-by-panel interactions 380 

Interactions between genotypes and panels (environments) were assessed by Pearson correlation 381 

in genotypes means between panels, for hybrids which were common to both panels (S)). These 382 

hybrids were derived from crosses between PHZ51 and one of 23 check genotypes (B73, B97, 383 

CML52, CML69, CML103, CML228, CML247, CML277, CML322, CML333, Il14H, Ki3, 384 

Ki11, M162W, M37W, Mo17, Mo18W, NC350, NC358, Oh43, P39, Tx303, and Tzi8). 385 

Genotype-by-panel interactions were also assessed by the following polygenic model, based on 386 

Jarquín et al. (2014): 387 

$ � %A&A " 'T " (; 'T ~ +�,, -��� "  0-  UU�2����, ( ~ +�,, .����, - � ��� �⁄  388 

where E was the n×2 design matrix attributing genotypes to panels (environments), either 389 

Ames/PHZ51+B47 or NAM/PHZ51;  %A � 0U �2 and &A captured effects of panels and population 390 

structure; 'T were polygenic genomic effects with main variance and panel-specific variance 391 

being quantified by ��� and ���, respectively;   refers to the Hadamard (element-wise) product. For 392 

a given hybrid i, correlation in 'T between different panel j and j’ was defined by S* �393 

CorIXL�� , XL���K � �����
�

������
���

��
� ��

�

��
���

� (Jarquín et al. 2014). This model was fitted in 394 
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Ames/PHZ51+B47 and NAM/PHZ51, by REML using the R package regress v1.3-15 (Clifford 395 

and McCullagh 2005). 396 

   397 
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RESULTS 398 

Hybrid panels differed by their genetic diversity and their genetic basis for grain yield 399 

Hybrid panels displayed contrasting levels of diversity 400 

The genotypic variability in Ames/PHZ51 and Ames/B47 was well represented by the diversity 401 

in the Goodman association panel (Flint-Garcia et al. 2005) (Figure 2). The entire Ames hybrid 402 

panel (Ames/PHZ51+B47) involved hybrids with some affinity to semi-tropical lines (e.g., CML 403 

247) but, for the most part, it comprised hybrids closely related to SS lines like B73 and NSS 404 

lines like Mo17 (Figure 2). Compared to Ames/PHZ51+B47, NAM/PHZ51 was less diverse, as 405 

its genetic composition was relatively consistent (Figure 2). Indeed, NAM/PHZ51 was produced 406 

by crosses between a single NSS tester (PHZ51) and bi-parental populations which were all 407 

derived from a cross involving B73 as a common parent (i.e., NAM RILs are 50% B73). 408 

Moreover, female parents in NAM/PHZ51 were selected for similar flowering time to PHZ51, 409 

hence narrowing down further the genetic diversity in this panel. 410 

 Genome-wide patterns across panels were similar for linkage disequilibrium but not for allele 411 

frequency 412 

Linkage disequilibrium (LD) patterns were quite similar in both hybrid panels. After adjustment 413 

for population structure and relatedness (following Mangin et al. 2012), LD values were very 414 

concordant between Ames/PHZ51 and Ames/B47 (r=0.95), and fairly concordant between 415 

Ames/PHZ51+B47 and NAM/PHZ51 (r=0.77) (Figure S1). Average LD values along 416 

chromosomes decayed at similar rates, reaching 0.1 at 160 kb in Ames/PHZ51+B47 and 151 kb 417 

in NAM/PHZ51. However, despite relatively fast LD decay, variance in LD values over SNP 418 

pairs was large (Figure S1). Allele frequencies among female parents were very concordant 419 

between Ames/PHZ51 and Ames/B47 (r=0.98), and fairly concordant between 420 
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Ames/PHZ51+B47 and NAM/PHZ51 (r=0.88) (Figure S2). However, for a subset of markers, 421 

frequency spectra were clearly dissimilar, since SNPs at relatively low frequency in 422 

NAM/PHZ51 (< 0.5) had frequencies between 0 and 1 in Ames/PHZ51+B47 (Figure S2). Such 423 

differences in allele frequency may result in inconsistencies in genetic effects across panels 424 

because of dominance and epistatic interactions (Mäki-Tanila and Hill 2014). 425 

Genetic bases for grain yield were inconsistent across panels  426 

Three agronomic traits were analyzed for heterosis in Ames/PHZ51+B47 and NAM/PHZ51: 427 

days to silking (DTS), plant height (PH), and grain yield adjusted for differences in flowering 428 

time among hybrids (GY). The relatively low accuracy of genotype means for GY (as reflected 429 

by low broad-sense heritability and entry-mean reliability; Table 1) suggested variability due to 430 

genotype-by-environment interactions. Accordingly, genotypic effects appeared highly 431 

inconsistent for GY between Ames/PHZ51+B47 and NAM/PHZ51 (Table 2). For GY, 432 

correlations across panels based on genotype means of checks (S)) and genomic marker effects 433 

(S*) were not significantly different from zero (p > 0.10; Table 2). In contrast, consistency in 434 

genetic bases was higher for PH (S) � 0.65, S* � 0.78; p < 0.001) and DTS (S) � 0.93, 435 

S* � 1.0; p < 0.001) (Table 2). Although S* may reflect interactions with genetic backgrounds 436 

across panels, S) merely assessed consistency in the performance of identical checks across 437 

panels, reflecting only differences between environments (locations, years, management 438 

regimens, etc.). Because S) and S* were generally concordant, marker-by-panel interactions, as 439 

quantified by both S) and S*, likely reflected sensitivity of marker effects to environments. 440 

Therefore, DTS, PH, and GY would represent three distinct levels of sensitivity to genotype-by-441 

environment interactions, being respectively weak, moderate, and strong.  442 

  443 
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444 
Figure 2 – The two hybrid panels differ by their number of testers and their level of 445 

diversity. Principal component analysis (PCA) plot of hybrids, by set. Black dots refer to inbred 446 

lines in the Goodman association panel (Flint-Garcia et al. 2005), a subset of the Ames panel. 447 

B73: SS reference line; Mo17: NSS reference line; CML247: CIMMYT semi-tropical reference 448 

line. 449 

  450 
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Table 1 – Phenotypic information by panel and trait 451 

Panel Trait Environments Mean H2 
��
�   

Ames 
 

DTS 11IA 11IN 11NC 11NE 11NY 11MO  
12NC 12NE 12MO 

66.4 0.78 0.95 

PH 11IA 11IN 11NC 11NE 11NY 11MO  
12NC 12NE 12MO 

219 0.69 0.92 

GY 11IA 11NC 11NE 11MO 
12NC 12NE 12MO 

-0.02 0.29 0.62 

NAM 
 

DTS 10IA 10IN 10MO 
11IA 11IN 11NC 11NY 

70.6 0.55 0.81 

PH 10IA 10IN 10NC 10MO 
11IA 11IN 11NC 11NY 

247 0.30 0.69 

GY 10IA 10IN 10MO 
11IA 11NC 

-0.20 0.16 0.35 

Trait: days to silking (DTS), plant height (PH), grain yield adjusted for DTS (GY). Environments 452 

refer to year (2010, 2011, 2012) and locations [Kingston (NC), Ames (IA), West Lafayette (IN), 453 

Lincon (NE), Columbia (MO), and Aurora (NY)]. Mean: average phenotypic value. H2: broad-454 

sense heritability on a plot basis. ���: average entry-mean reliability. 455 

Table 2 – Interactions between genotypes and environments/panels 456 

Trait ��: correlation in checks’ genotype means 
(p-value) 

��: correlation in genomic effects (p-value) 

DTS 0.93 (1.0×10-10) 1.0 (4.6×10-21) 

PH 0.65 (8.2×10-4) 0.78 (2.9×10-8) 

GY 0.34 (0.13) 0.30 (0.13) 
Trait: days to silking (DTS), plant height (PH), grain yield adjusted for DTS (GY). S+: 457 

correlation in estimated genotype means, only for checks, tested in both panels; p-values were 458 

estimated by t-tests. S*: correlation in genomic breeding values, based on a polygenic marker-459 

by-panel interaction model; p-values were estimated by likelihood ratio tests. 460 

 461 
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Heterosis for plant height and grain yield appeared to be caused by dominance gene action 462 

Polygenic dominance effects captured genotypic variability for all traits 463 

To assess the general relevance of polygenic dominance effects, genotypic variability captured in 464 

our assay was partitioned into additive and dominance components in a dominance GBLUP 465 

(DGBLUP) model. For all traits, dominance accounted for a significant portion of genotypic 466 

variability in Ames/PHZ51+B47 (p ≤ 2.2×10-11), capturing 35%, 23%, and 41% of genomic 467 

variance for DTS, PH, and GY (Figure 3a). These estimates corresponded to average degrees of 468 

dominance (ratio of dominance-to-additive standard deviations) of 0.73, 0.54, and 0.83 469 

respectively. Therefore, overdominance did not seem to be pervasive in Ames/PHZ51+B47 470 

(average degrees of dominance lower than one). 471 

 Genomic relationships for epistatic effects were highly correlated with those for additive 472 

and/or dominance effects (e.g., r > 0.99 between additive and additive×additive relationships). 473 

Therefore, we did not assess epistatic effects by partition of genomic variance. Despite this 474 

limitation, we further investigated the plausibility of dominance as a genetic mechanism 475 

underlying heterosis, by using evidence based on oligogenic effects (QTL effects) and 476 

directional effects. 477 

Effects of QTL were significant for days to silking but they did not suggest dominance gene 478 

action 479 

Effects of QTL were inferred by GWAS models and Bayesian sparse linear mixed models 480 

(BSLMMs). Signals from GWAS models and BSLMMs were concordant, and revealed multiple 481 

significant QTL effects for DTS (Figure S3). There were five and seven high-confidence QTL 482 

(FDR ≤ 0.05 and WPIP ≥ 0.5) for DTS in Ames/PHZ51+B47 and NAM/PHZ51, respectively 483 
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(Figure S3, Table S1). For PH and GY, no QTL effects were significant except for one QTL for 484 

GY in NAM/PHZ51 (Table S1).  485 

GWAS and BSLMM signals for DTS showed limited consistency between 486 

Ames/PHZ51+B47 and NAM/PHZ51 (Figure S3), with no overlap of high-confidence QTL 487 

across panels (Table S1). This inconsistency could be due to genetic interactions (dominance 488 

and/or epistasis), genotype-by-environment interactions, or differential amount of information 489 

about SNP effects (different levels of power, due to differences in allele frequency and sample 490 

size).  491 

To test whether dominance contributed to QTL effects we conducted a GWAS for 492 

additive and dominance QTL effects in Ames/PHZ51+B47. Multiple additive effects appeared 493 

significant for DTS, with significant QTL effects (FDR ≤ 0.05) in chromosomes 3, 1, and 9 494 

(Figure 3c). But dominance effects were not significant (FDR > 0.30) (Figure 3c), so factors 495 

causing the inconsistency in QTL effects for DTS probably did not involve dominance. Besides, 496 

genetic effects did not appear to be sensitive to environments for DTS (Table 2), and there were 497 

no systematic differences in allele frequency that could explain difference in significance of QTL 498 

across panels (Table S1). Thus, it is plausible that higher-order genetic interactions (epistasis) 499 

caused the difference in QTL significance for DTS across panels.   500 

Effects of inbreeding pointed to dominance for plant height and grain yield and higher-order 501 

genetic interactions for days to silking 502 

Under directional dominance, inbreeding should be linearly related to fitness, but such 503 

relationship will tend to be nonlinear under higher-order epistatic interactions such as 504 

dominance×dominance interactions (Crow and Kimura 1970). To test whether dominance 505 

contributed to genotypic variability by directional effects, we assessed linear and quadratic 506 
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effects of genomic inbreeding (F) on agronomic traits. For PH and GY in Ames/PHZ51+B47, 507 

only linear effects of genomic inbreeding were significant (Figure 3b). Moreover, these effects 508 

were on par with their expected impact on fitness, since genomic inbreeding was negatively 509 

associated with PH and GY. For DTS in Ames/PHZ51+B47, only the quadratic effect of 510 

genomic inbreeding was significant (Figure 3b). Such nonlinear effect implied epistatic gene 511 

action for DTS, in the form of SNP×SNP interactions or SNP×background interactions (e.g., 512 

differential effects of markers in SS, NSS or semi-tropical genotypes). Along with the lack of 513 

dominance QTL effects, the lack of linear effects suggested that dominance is not a predominant 514 

genetic mechanism underlying heterosis for DTS. 515 

Despite the high significance of directional effects for all traits in Ames/PHZ51+B47, 516 

similar effects were not significant in NAM/PHZ51 (Table S2), possibly because of lower 517 

variance and lower range of genomic inbreeding values in this panel (Lynch and Walsh 1998). In 518 

fact, variances of F and F2 were respectively 3.9 and 58 times smaller in NAM/PHZ51 (where 519 

maximum F was only 0.15) compared to Ames/PHZ51+B47 where F could be as high as 0.55, 520 

for hybrids such as B37×B47 (Table S2). 521 

 522 
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Figure 3 – Dominance gene action is a plausible mechanism on hybrid vigor for plant height (PH) and grain yield (GY), but 524 

not for days to silking (DTS), in Ames/PHZ51+B47. (a) Partition of variance by additive and dominance effects in genome-wide 525 

polygenic models; genomic heritability: proportion of variance among genotype means captured by additive (Add.) or dominance 526 

(Dom.) marker effects; p: p-values from likelihood ratio tests. (b) Estimated effects of genomic inbreeding (point and 95% confidence 527 

interval). Effects are shown in unit of standard deviations for each trait. F: linear effect; F (Quad.): quadratic effect. (c) Quantile-528 

quantile plot for joint estimates of additive effects (‘Add.’) and dominance effects (‘Dom.’). Effects of SNPs were deemed significant 529 

if their false discovery rate (FDR) was lower than 0.05 and if they were not within 1 Mb of SNPs of more significant effects (effects 530 

with lower p-values). SNPs with significant effects are designated by chromosome number and genomic position in Mb. 531 
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Heterosis for all traits may be caused by complementation in proximal gene regions  533 

Polygenic effects were enriched in genic regions for all traits 534 

Partition of genomic variance by proximity to annotated genes was significant for all traits in 535 

Ames/PHZ51+B47 and NAM/PHZ51, based on likelihood ratio tests combined by Fisher’s 536 

method (p < 0.01; Table S3; Figure 4a). As suggested by the high correlation in significance (-537 

log10(p)) between Ames/PHZ51+B47 and NAM/PHZ51 (r=0.92), the higher significance of 538 

partitions in NAM/PHZ51 could be due to a systematic increase in statistical power, due in part 539 

to the larger sample size in NAM/PHZ51 (n=1640 vs. n=1106). 540 

Observed SNP enrichments by gene-proximity classes were concordant across panels and 541 

traits; they indicated that the magnitude of polygenic effects tended to be higher near genic 542 

regions (Figure 4b). Moreover, the proportion of variance explained by gene-proximal SNPs was 543 

consistently larger than explained by gene-distal SNPs, except for additive effects in non-genic 544 

regions for DTS in Ames/PHZ51+B47 (43% of genomic variance in non-genic regions vs. 22% 545 

in genic regions; Table S4). Therefore, there was supporting evidence for genotypic variability 546 

arising through genetic effects in genic regions, especially for PH for which enrichment near 547 

annotated genes was highly significant in both panels. 548 

Enrichment of polygenic effects in low-recombination regions and evolutionarily constrained 549 

loci was unclear 550 

Partition of genomic variance explained by recombination rate, chromatin openness, MAF, and 551 

GERP scores was significant for DTS in NAM/PHZ51 only (all features), for PH in both panels 552 

(all features except MAF), and for GY in NAM/PHZ51 only (all features except MAF) (Figure 553 

4a, Table S3). SNP enrichments in both panels indicated that the magnitudes of polygenic effects 554 

tended to be larger at low-diversity loci (low MAF and high GERP scores) and in euchromatic 555 
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regions (open chromatin and moderate-to-high recombination rates) (Figure S4). However, none 556 

of them were significant after accounting for gene proximity, based on likelihood ratio tests 557 

combined by Fisher’s method (p > 0.01; Table S3). Because evolutionary constraint and 558 

chromatin structure are positively associated with gene density, enrichment at these features may 559 

have been due to SNP enrichment by gene proximity. 560 

  561 
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 562 

Figure 4 – Effects of SNPs on hybrid vigor are enriched in proximal gene regions for days to silking (DTS), plant height (PH) 563 

and grain yield (GY), in Ames/PHZ51+B47 and NAM/PHZ51. (a) Significance of variance partition by gene proximity (Gene), 564 

structural features (Rec., MNase HS) or evolutionary features (MAF, GERP), and variance partition after accounting for gene 565 

proximity (Gene+Rec., Gene+MNase HS, Gene+MAF, Gene+GERP); p-values were obtained by likelihood ratio test comparing the 566 

functional model to a baseline model with no partition for the feature of interest (e.g. Gene vs. unpartitioned model, Gene+MAF vs. 567 

Gene); dashed lines correspond to thresholds for significance in either panel, after adjustment by Bonferroni correction. Text refers to 568 
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significant features after Bonferroni correction, based on p-values in either panel (open boxes) or p-values in both panels combined by 569 

Fisher’s method (full boxes) (Table S3). (b) Enrichment of SNP heritability, for additive effects (Add.) and dominance effects (Dom.), 570 

by bin for gene proximity (Gene). Proximal: ≤ 1 kb of an annotated gene; Distal: > 1 kb from an annotated gene. 571 
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Genomic prediction models were improved by dominance effects and functional features 573 

Polygenic dominance effects increased prediction accuracy for plant height 574 

Predictions from GBLUP models trained in Ames/PHZ51+B47 were significantly accurate in 575 

NAM/PHZ51 (prediction accuracy significantly different from zero) for DTS and PH, but not for 576 

GY (Table 3). The absence of predictive ability for GY may be explained by very strong 577 

genotype-by-environment interactions (Table 2). Prediction accuracy was highest for DTS, 578 

consistently with genomic heritability in Ames/PHZ51+B47 being the highest (Figure 3a) and 579 

genetic effects being the most concordant across panels (Table 2). Predictions from DGBLUP 580 

models trained in Ames/PHZ51+B47 and tested in NAM/PHZ51 were significantly more 581 

accurate than GBLUP for PH (p = 0.021), with no significant differences in accuracy for DTS 582 

and GY (Table 3). Therefore, accounting for polygenic dominance effects should not be 583 

detrimental to genomic prediction models (despite the higher complexity of DGBLUP compared 584 

to GBLUP) and may even increase their accuracy. 585 

QTL effects, as estimated from BSLMMs (sparse effects), generated predictions that 586 

were significantly accurate in NAM/PHZ51 for DTS (Table S5). Predictions from sparse effects 587 

were also significantly accurate for PH, but they actually recapitulated polygenic effects, since 588 

their predictions were highly correlated to those from a purely polygenic model (RR-BLUP) (r = 589 

0.87 for PH vs. r = 0.63 for DTS; Figure S6). Despite QTL effects being highly significant for 590 

DTS, a BSLMM simultaneously fitting sparse and polygenic effects did not result in significant 591 

gains in prediction accuracy for any trait, compared to RR-BLUP. Therefore, even when QTL 592 

effects could capture a significant part of the genotypic variability, they did not seem useful for 593 

genomic prediction. Likewise, directional effects (genomic inbreeding) explained a significant 594 

part of genotypic variability in Ames/PHZ51+B47 (Figure 3b, Table S2), but incorporating them 595 
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into DGBLUP models resulted in small and non-significant differences in prediction accuracy in 596 

NAM/PHZ51 populations (Table S6). 597 

Partition of polygenic effects by gene proximity increased prediction accuracy for all traits 598 

The amplitude of polygenic effects was inflated near annotated genes in both panels for all traits 599 

(Figure 4b). Accordingly, partitioning genomic variance by gene proximity increased prediction 600 

accuracy for DTS (p = 3.3×10-4), PH (p = 0.023), and GY (p = 0.085), compared to a DGBLUP 601 

model (Table 4). 602 

Other features than gene proximity also resulted in significant gains in prediction 603 

accuracy. Partitioning genomic variance by recombination-rate classes increased prediction 604 

accuracy for GY (Table 4); besides, recombination rate and GERP scores contributed to 605 

improvements that were significant, but only when enrichment by gene proximity was omitted 606 

from prediction models for DTS (Table 4). Even when classes based on MNase HS and GERP 607 

scores did not yield significant gains in prediction accuracy, the high SNP enrichments achieved 608 

by these features (~32-fold for open-chromatin regions and ~8-fold for GERP > 0) could be of 609 

practical interest for SNP selection in prediction analyses (Figure S4, Table 4). Therefore, 610 

although gene proximity appeared most useful and meaningful in our study, the value of 611 

structural and evolutionary features for genomic prediction would deserve further investigation. 612 
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Table 3 – Prediction accuracy in NAM/PHZ51 by polygenic dominance effects in 613 

Ames/PHZ51+B47 614 

Trait Prediction accuracy (p-value) Difference in prediction accuracy (p-value) 
GBLUP Dominance GBLUP 

DTS 0.331 (< 0.001) -0.013 (0.21) 

PH 0.235 (< 0.001) +0.023 (0.021) 

GY -0.001 (0.96) -0.010 (0.33) 

Prediction accuracy: average correlation between observed and predicted phenotypes in 615 

NAM/PHZ51 over 24 populations by the GBLUP model; Difference in prediction accuracy: 616 

difference between the dominance GBLUP (DGBLUP) model and the GBLUP model. 617 

Significance of average prediction accuracies (non-zero mean) and estimated differences in 618 

prediction accuracy (non-zero difference) was assessed by t-tests paired by NAM population. 619 

Table 4 – Prediction accuracy in NAM/PHZ51 by functional features in Ames/PHZ51+B47 620 

Trait Prediction accuracy Difference in prediction accuracy 
Dominance GBLUP Gene 

proximity 
Rec. MNase HS MAF GERP 

DTS 0.319*** +0.013*** +0.019* +0.007 -0.012 +0.012* 

PH 0.259*** +0.029* +0.007 +0.019 +0.001 +0.019 

GY -0.011 +0.010 +0.025** +0.012 -0.007 +0.010 

 Gene proximity Gene 
proximity 

Rec. 
+Gene 

MNase HS 
+Gene 

MAF 
+Gene 

GERP 
+Gene 

DTS 0.332*** _ +0.011 +0.001 N/A -0.001 

PH 0.288*** _ N/A -0.002 0.000 -0.006 

GY -0.001 _ +0.014* +0.003 0.000 0.000 

Prediction accuracy: average correlation between observed and predicted phenotypes in 621 

NAM/PHZ51 by the dominance GBLUP (DGBLUP) model; Difference in prediction accuracy: 622 

difference between a given model and the DGBLUP model (top) or polygenic functional model 623 

by gene proximity (bottom). Gene proximity: proximity to genes (≤ 1 kb of an annotated gene); 624 

Rec.: recombination rate; MNase HS: chromatin openness; MAF: minor allele frequency; GERP: 625 
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genomic evolutionary rate profiling score. Significance of average prediction accuracies (non-626 

zero mean) and estimated differences in prediction accuracy (non-zero difference) was assessed 627 

by t-tests, paired by NAM population (*, **, ***: p-values below 0.05, 0.01, and 0.001, 628 

respectively). N/A: the fitting algorithm could not converge to a solution. 629 

  630 
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DISCUSSION 631 

Do additive and dominance gene actions adequately capture true genetic effects? 632 

All traits displayed a significant proportion of variance explained by dominance effects (Figure 633 

3a). However for DTS, there was conflicting evidence about the importance of dominance: (i) no 634 

significant dominance QTL effects despite significant additive QTL effects (Figure 3c) and (ii) 635 

significant quadratic effects of genomic inbreeding, without any linear effect (Figure 3b). Such 636 

evidence indicates that DTS should probably be analyzed under more complex genetic models 637 

involving epistatic interactions, possibly reflecting the complex molecular pathways underlying 638 

flowering time (e.g., photoperiod genes; Yang et al. 2013, Blümel et al. 2015, Minow et al. 639 

2018). In this study, genomic variance in Ames/PHZ51+B47 could not be partitioned reliably by 640 

additive, dominance, and epistatic effects. Indeed, genomic relationships for pairwise epistatic 641 

effects were highly correlated with those for additive effects. Moreover, epistatic effects in linear 642 

mixed models vary depending on how marker variables are centered, in a way that can be 643 

arbitrary (Martini et al. 2016, Martini et al. 2017). However, further analyses to investigate the 644 

contribution of epistatic effects to genomic variance is merited (Jiang and Reif 2015). 645 

Investigating epistatic effects would probably require large panels with more testers (male 646 

parents), but also efficient methodologies to restrict the number of interactions (e.g., only 647 

interactions between homeologs; Santantonio et al. 2018) and the types of effects involved (e.g., 648 

only SNP×SNP interactions such as additive×additive effects, or SNP×background interactions 649 

such as SNP×PC effects; Ramstein et al. 2018).  650 

For PH and GY, there was concordant evidence for prevalent dominance effects: (i) 651 

significant variance partition by dominance effects (Figure 3a) and (ii) a significant linear effect 652 

of genomic inbreeding, without any quadratic effect (Figure 3b). Therefore, additive and 653 
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dominance effects may parsimoniously capture genetic effects for PH and GY. These results 654 

contrast with those from previous studies on hybrid maize, which showed low contribution of 655 

non-additive genetic effects to genotypic variability. Critically, those studies were based on 656 

panels derived solely from crosses between different heterotic groups, e.g., Flint×Dent (Technow 657 

et al. 2014, Giraud et al. 2017) or SS×NSS (Kadam et al. 2016). Therefore, complementation 658 

effects were relatively consistent across hybrids, such that variability for specific combining 659 

ability (contributed by dominance and/or epistasis) was low. In contrast, one of our panels 660 

(Ames/PHZ51+B47) showed strong variation for complementation effects, because it represents 661 

a variety of genetic contexts (SS×NSS, SS×SS, Semi-tropical×SS, etc.). Therefore, it was better-662 

suited to represent the differential levels of complementation effects in maize and reveal the 663 

importance of dominance across maize hybrids. 664 

What is the biological basis for enrichment of SNP effects by gene proximity? 665 

Analyses of SNP enrichment pointed to genetic effects arising mostly from genic regions 666 

(proximal SNPs, ≤ 1 kb from annotated genes). The relevance of genic regions for depicting 667 

hybrid vigor is consistent with hypotheses about biological causes of heterosis related to gene 668 

expression, namely, (i) non-additive inheritance of gene expression and (ii) nonlinear effects of 669 

gene expression on agronomic traits (Springer and Stupar 2007, Schnable and Springer 2013). In 670 

maize, studies have generally reported that most genes have an additive mode of inheritance for 671 

expression levels (e.g., Swanson-Wagner et al. 2006, Stupar and Springer 2006, Zhou et al. 672 

2018), with proportions of non-additive gene actions ranging from ~10% (Paschold et al. 2012) 673 

to ~35% (Marcon et al. 2017). Proposed mechanisms for non-additive gene expression include 674 

complementation with respect to regulatory motifs or transcription factors, and presence/absence 675 

variation (Paschold et al. 2012, Marcon et al. 2017, Zhou et al. 2018). Importantly, studies on 676 
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gene expression in maize have also suggested that non-additive gene expression may not account 677 

entirely for heterosis (Swanson-Wagner et al. 2006, Stupar and Springer 2006). Therefore, the 678 

genome-wide patterns of apparent dominance at gene regions observed here (Figure 4b) might 679 

have also emerged from nonlinear effects of gene expression on agronomic traits. Evidence for 680 

this type of effects in maize include intermediate gene expression harboring minimal burden of 681 

deleterious mutations in diverse maize inbred lines (Kremling et al. 2018) and biological results 682 

in support for the gene balance hypothesis (Birchler and Veitia 2010), which postulates that 683 

genes that are highly connected (in pathways, protein complexes, etc.) should be expressed in 684 

relative amounts under a stoichiometric optimum (Birchler et al. 2001). Optimal expression 685 

levels under gene balance constitute nonlinear effects of gene expression, and may contribute to 686 

non-additive genetic effects (Birchler and Veitia 2010). Ideally, future research about the 687 

biological basis for enrichment of SNP effects in genic regions will involve gene expression data 688 

in diverse hybrid panels, and will shed light onto the relative importance of such phenomena on 689 

heterosis.   690 

The hybrid panels under assay were relatively large, so that we could gain useful insight 691 

about SNP enrichments by functional classes. However, some biological and genetic hypotheses 692 

could not be tested due to limited power and resolution in our analyses. For example, we could 693 

not account for enrichment in genic regions and concurrently assess the functional importance of 694 

evolutionary constraint or repulsion phase linkage. Moreover, because of high correlation 695 

between genomic relationships from different bins (r > 0.99), we did not consider finer partitions 696 

for different levels of deleteriousness (more than two GERP-score classes; Wang et al. 2017) or 697 

relevance of chromatin openness at different tissues (root and/or shoot; Rodgers-Melnick et al. 698 
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2016). Therefore, larger sample sizes will be critical to investigate finer partitions in functional 699 

models, allowing higher resolution and better control of confounding factors like gene density.  700 

Are enrichments in genic regions and dominance effects useful for genomic selection? 701 

The practical relevance of dominance effects and SNP enrichments were evaluated here by 702 

genomic prediction in each NAM/PHZ51 population, based on models trained in a different 703 

panel (Ames/PHZ51+B47). Therefore, prediction models were assessed for their ability to 704 

sustain accuracy across distinct population backgrounds. Enrichment of SNP effects increase the 705 

representation of loci that are more likely to be causal; therefore, enrichment procedures like 706 

QTL detection or variance partition can improve the accuracy of genomic prediction models. 707 

However, as genetic effects vary from one population background to another, enrichments about 708 

small functional classes (e.g., a few GWAS hits) lose their potential. This caveat was 709 

exemplified by differences in QTL effects for DTS between Ames/PHZ51+B47 and 710 

NAM/PHZ51, and the consequent lack of gain in accuracy by prediction models based on QTL 711 

effects (BSLMMs) (Table S5). Similarly, Spindel et al. (2016) showed benefits of major QTL 712 

effects for prediction of flowering time in rice, but only when QTL were detected on the target 713 

breeding populations. Contrary to enrichments about QTL, enrichments about larger functional 714 

classes (e.g., gene-proximal SNPs) should result in gains of prediction accuracy that are robust to 715 

differences in population backgrounds and consistent over traits, as was observed here (Table 4). 716 

Likewise, Gao et al. (2017) reported gains in genomic prediction accuracy by prioritizing genic 717 

SNPs, in mouse, drosophila, and rice (increases in predictive ability averaging +0.013, similar to 718 

those realized in this study). Therefore, gains in prediction accuracy by gene proximity should be 719 

expected under a broad range of population and species contexts. 720 
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While SNP enrichments by gene proximity appeared beneficial for all traits, 721 

incorporating dominance resulted in gains in prediction accuracy for PH only (Table 3). The 722 

absence of gain in prediction accuracy for DTS and GY illustrates possible reasons for 723 

disagreement between quality of fit and prediction accuracy often observed in genomic 724 

prediction studies. For DTS, incorporating dominance effects resulted in statistically significant 725 

improvements in fit, but a genetic model accounting for epistatic interactions appeared more 726 

plausible according to analyses of QTL and genomic inbreeding. Therefore, the choice of the 727 

prediction procedure should probably come from multiple pieces of evidence in favor of a given 728 

genetic model, rather than a single statistical test about the prediction model. In the case of GY, a 729 

genetic model based only on additive and dominance effects seemed plausible in 730 

Ames/PHZ51+B47, but the dependency of these effects on environmental backgrounds hindered 731 

predictions in NAM/PHZ51. Therefore, prediction of hybrid performance for GY should 732 

probably accommodate genotype-by-environment interactions, through models based on 733 

environmental covariates related to temperature, radiation, or soil water potential (Li et al. 2018, 734 

Millet et al. 2019). 735 

Conclusions 736 

Our analyses point to genetic models in hybrid maize which involve interactive effects 737 

and emphasize genic regions. While dominance may be relevant to all three traits, epistasis 738 

seemed particularly important for DTS, and interactions with environments seemed critical for 739 

GY. Consequently, genomic prediction models were improved by dominance effects for PH 740 

only, while they benefited from SNP enrichment in genic regions for all traits. These results call 741 

for further investigation about the biological basis of genetic complementation, and the 742 

underlying interactive effects which could enable more robust prediction of hybrid vigor. 743 
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