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26 Abstract

27 Identification of induced pluripotent stem (iPS) progenitor cells, the iPS forming cells in early 

28 stage of reprogramming, could provide valuable information for studying the origin and 

29 underlying mechanism of iPS cells. However, it is very difficult to identify experimentally 

30 since there are no biomarkers known for early progenitor cells, and only about 6 days after 

31 reprogramming initiation, iPS cells can be experimentally determined via fluorescent probes. 

32 What is more, the ratio of progenitor cells during early reprograming period is below 5%, 

33 which is too low to capture experimentally in the early stage. 

34     In this paper, we propose a novel computational approach for the identification of iPS 

35 progenitor cells based on machine learning and microscopic image analysis. Firstly, we 

36 record the reprogramming process using a live cell imaging system after 48 hours of infection 

37 with retroviruses expressing Oct4, Sox2 and Klf4, later iPS progenitor cells and normal 

38 murine embryonic fibroblasts (MEFs) within 3 to 5 days after infection are labeled by 

39 retrospectively tracing the time-lapse microscopic image. We then calculate 11 types of cell 

40 morphological and motion features such as area, speed, etc., and select best time windows for 

41 modeling and perform feature selection. Finally, a prediction model using XGBoost is built 

42 based on the selected six types of features and best time windows. Our model allows several 

43 missing values/frames in the sample datasets, thus it is applicable to a wide range of 

44 scenarios. 

45     Cross-validation, holdout validation and independent test experiments showed that the 

46 minimum precision is above 52%, that is, the ratio of predicted progenitor cells within 3 to 5 

47 days after viral infection is above 52%. The results also confirmed that the morphology and 
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48 motion pattern of iPS progenitor cells is different from that of normal MEFs, which helps 

49 with the machine learning methods for iPS progenitor cell identification. 

50  

51 Keywords

52 iPS progenitor cell; Machine learning; XGBoost; Cell reprogramming; Morphology features 

53

54 Author Summary

55 Identification of induced pluripotent stem (iPS) progenitor cells could provide valuable 

56 information for studying the origin and underlying mechanism of iPS cells. However, it is 

57 very difficult to identify experimentally since there are no biomarkers known for early 

58 progenitor cells, and only after about 6 days of induction, iPS cells can be experimentally 

59 determined via fluorescent probes. What is more, the percentage of the progenitor cells during 

60 the early induction period is below 5%, too low to capture experimentally in early stage. In 

61 this work, we proposed an approach for the identification of iPS progenitor cells, the iPS 

62 forming cells, based on machine learning and microscopic image analysis. The aim is to help 

63 biologists to enrich iPS progenitor cells during the early stage of induction, which allows 

64 experimentalists to select iPS progenitor cells with much higher probability, and furthermore 

65 to study the biomarkers which trigger the reprogramming process.
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67 Introduction

68 Induced pluripotent stem (iPS) cells are cells with embryonic-like state reprogrammed 

69 from mouse embryonic or adult fibroblasts by introducing the defined factors[1]. Since 

70 Takahashi and Yamanaka[1] first proposed the methods of reprogramming somatic cells to 

71 iPS cells, it has become an important method for clinical cell therapy, and revolutionized 

72 regenerative medicine[2], such as platelet deficiency[3], spinal cord injury[4], macular 

73 degeneration[5], Parkinson’s disease[6] and Alzheimer’s disease[7]. However, obstacles still 

74 remain in scientific and clinical applications for iPS cells because of potential tumorigenicity 

75 and low efficiency of reprogramming technique[8-10]. Tumorigenicity is attributed to the 

76 introduction of tumorigenic factors such as Oct4, Sox2, Klf4 and c-Myc, of which 

77 over-expression is generally associated with tumors. Inefficiency concerns low frequency for 

78 reprogramming cells, which is less than a small proportion of 5%. In some induction 

79 protocols, the ratio of progenitor cells during the early stage of reprogramming is even under 

80 0.5%.  

81 The above-mentioned obstacles are mainly due to poor understanding of molecular 

82 mechanisms in iPS cell reprogramming, which ultimately prevented this technology from a 

83 wide range of scientific and clinical applications. Theoretical mechanisms models are 

84 proposed such as two-step process model[11] and seesaw model[12], most of which focus on 

85 how factors such as Oct4, Sox2, Klf4, and c-Myc induce pluripotency. Experimental 

86 approaches based on epigenetic profiling, RNA screening or single-cell analysis for 

87 uncovering the mechanisms are limited by the low reprogramming efficiency or the lack of 

88 biomarkers for progenitor cells [13-20]. 
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89  Recent studies found that iPS progenitor cells differed from normal MEFs in 

90 morphology, motion or proliferation rate. Smith et al.[21] found that iPS progenitor cells 

91 showed smaller cellular area and higher proliferative rate than normal MEFs via time-lapse 

92 imaging. Zhang et al.[22] also found that iPS cells exhibited distinct morphology features and 

93 different proliferative rate comparing with larger and quiescent differentiated cells. Li et al. 

94 [23] showed the mesenchymal-to-epithelial transition, a process with significant 

95 morphological changes, was a key cellular mechanism for induced pluripotency. Megyola et 

96 al.[24] demonstrated that migratory motions for progenitor cells were often distinct in 

97 direction and distance to bring distant progenitor cells together. Most of these studies relied 

98 on time-lapse microscopy, which allowed studying/tracing cellular events in early 

99 reprogramming by direct observation [24]. Since iPS progenitor cells exhibit unique 

100 morphology and motion features, computational methods, especially machine learning based 

101 methods, could provide an alternative method to identify iPS progenitor cells in the early 

102 stage of reprogramming process through learning the morphology and motion patterns of iPS 

103 progenitor cells.

104 Usually cell detection, segmentation and tracking are firstly required for computational 

105 methods to study cell images. Li et al.[25] proposed DCELLIQ for cell nuclei tracking based 

106 on neighboring graph and integer programming technique. Dzyubachyk et al.[26] relied on 

107 coupled active surfaces algorithm for cell segmentation and tracking in time-lapse 

108 fluorescence microscopy images. Maška et al.[27] presented a tracking method for fluorescent 

109 cells based on coherence-enhancing diffusion filtering and Chan-Vese model. Türetken et 

110 al.[28] proposed an integer programming approach for tracking elliptical cell populations in 
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111 time-lapse image sequences. Payer et al.[29] developed a recurrent fully convolutional 

112 network architecture for instance segmentation and tracking with training network using an 

113 embedding loss based on cosine similarities.

114 Recently machine learning/deep learning methods have been extensively developed for 

115 the prediction and study of cell images. Using cell images, Erdmann et al.[30] introduced a 

116 machine learning based framework for image-based screen analysis. Valen et al.[31] tried to 

117 solve cell image segmentation problem utilizing deep convolutional neural networks, and 

118 demonstrated its effectiveness in segmenting fluorescent images of cell nuclei. Chen et al.[32] 

119 achieved high classification accuracy in label-free white blood T-cells against colon cancer 

120 cell via a deep learning method. Similarly with a deep convolutional neural network method, 

121 Kraus et al.[33] analyzed the microscopic images for yeast cell and other pheromone-arrested 

122 cells, and Gao et al.[34] achieved a high ranking in the human epithelial-2 cell image 

123 classification competition hosted by ICPR2014. Together with principal component analysis, 

124 machine learning method can be used to infer regulatory network patterns underlying stem 

125 cell pluripotency[35]. The ability of machine learning has been demonstrated with its 

126 extensive application for cellular image data, however, it has been seldom used in the 

127 identification of iPS progenitor cells in the early stage.   

128 In this article, we propose a machine learning based approach to detect iPS progenitor 

129 cells during the early stage of reprogramming. Given the cell images recorded via live-cell 

130 imaging system during the reprogramming process, the paper aims to identify iPS progenitor 

131 cells against normal MEFs in the same stage. Since the iPS progenitor cell to normal MEFs 

132 ratio is usually below 5%, this makes the identification problem very difficult. In the paper we 
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133 use Imaris, a software from Bitplane, to analyze and process microscopic cell images from 

134 live-cell imaging system. Surpass, a module of Imaris is then used to extract cell numerical 

135 information in the same time period. We then develop a machine learning method for 

136 identification of iPS progenitor cells based on the extracted morphological and motional 

137 features. The prediction model is built with XGBoost based on the selected six types of 

138 features and time windows. In our method, cell division is not considered, and frames 

139 contained in selected time windows are uniform. The model performance is evaluated by 

140 three different validation methods. When tested on labeled datasets with a ratio of about 1:5 

141 between progenitor cells and normal MEFs, the prediction precision to identify iPS progenitor 

142 cells is above 52% during the first 1-3 days of reprogramming after adding iCD1 medium. 

143 The image-based machine learning method allows experimentalists to select iPS progenitor 

144 cells with much higher probability, and furthermore to study the biomarkers which trigger the 

145 reprogramming process. 

146

147 Materials and Methods

148 The workflow used in the paper is presented in Fig 1, which mainly includes feature 

149 extraction, preprocessing with missing values, feature selection, machine learning for training 

150 and validation. In this workflow, we acquire time-lapse images through experiments firstly, 

151 then we label iPS progenitor cells and normal MEFs manually to generate datasets by tracing 

152 images retrospectively. Next, we generate 11 types of morphology and motion features with 

153 Imaris software. After the feature extraction, we perform time window selection and a 

154 two-step feature selection. Finally, we build the prediction model based on the selected six 
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155 types of features and six time windows. The machine learning algorithm for modeling is 

156 XGBoost, a gradient boosting tree[36]. In the following sections, we will describe the steps of 

157 our model in detail.

158 Fig 1. Flow chart of the machine learning based approach for iPS progenitor cell 

159 identification

160 In time-lapse imaging, we record the reprogramming process periodically among 54 fields 

161 after 48h of viral infection. For retrospective labeling, the figure only shows the labeled cell 

162 images of the first frame of all eight phases. Only datasets from phase 1, 2 and 3 are used for 

163 model training and testing.

164

165 Cell culture and generation of iPS cells

166 Mouse embryonic fibroblasts (MEFs) are derived from E13.5 embryos carrying the Oct4 

167 promoter-driven GFP reporter gene[37] and maintain in DMEM (HyClone) supplemented 

168 with 10% FBS (Gibco). To generate iPS cells, MEFs within two passages are seeded at a 

169 density of 5×104 cells/well in 6-well plates and cultured overnight. The next day, MEFs are 

170 infected with retroviral supernatants containing the DsRed gene and three reprogramming 

171 factors (Oct4, Sox2, Klf4) twice in a 48h process. After 48h of infection, iCD1 medium[38] is 

172 changed every day to achieve high reprogramming efficiency. iPS cell colonies are obtained 

173 5-7 days post-treatment in iCD1 based on the Oct4-GFP expression. 

174

175 Time-lapse imaging

176 Reprogramming process is recorded using an Olympus IX81 live cell imaging system 
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177 equipped with a 10× UPlanFL objective, iXon3 EMCCD Camera. The date on which viral 

178 supernatants are removed and iCD1 medium are added is defined as Day 0. From Day 0, 

179 MEFs images are taken for a total time of 135 hours and 40 minutes. For the first 48 hours 

180 and 40 minutes, both bright-field and red fluorescence images are acquired at 10-minute 

181 intervals. After two days of the dual-channel imaging, a green fluorescence channel is added 

182 to indicate the expression of Oct4-GFP and acquisition intervals are adjusted to 30 minutes. 

183 Motorized Stage Control is used to follow cells in the same field and a total of 54 fields are 

184 selected at each time for further analysis.

185 Cell images taken within the first 48 hours and 40 minutes since Day 0 are used to 

186 construct the dataset because after this time the Oct4-GFP is added to identify the progenitor 

187 cells experimentally and the paper tries to identify/predict progenitor cells using 

188 computational methods as early as possible.

189

190 Cell segmentation and numerical feature extraction

191 The original files are time-lapse microscope images in TIFF format, whose pixels are 

192 770 * 746 and the actual size is 1000 microns * 967 microns. Because some fields do not 

193 show distinct Oct4-GFP signals and result in no signals for iPS cells in these fields, we only 

194 use images from 33 fields for modeling. Imaris (Version 7) software is used to segment cells 

195 in the images of these 33 fields and extract the corresponding numerical features for the 

196 segmented cells. During this process, the parameter values of cell and nucleus intensity are set 

197 the same for all the cells in each field, and cell tracking duration parameter of greater than 

198 5000s is used. Imaris utilizes red fluorescent channel for cell segmentation and tracking. The 
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199 image segmentation is based on the Watershed Algorithm, which is very sensitive to weak 

200 edges and intensity in images. 

201 Features are computed for each segmented/identified cell image at different time frames 

202 by Imaris, and these features denote the morphological and movement information of the 

203 segmented cells during reprogramming. Overall 11 types of features are extracted (volume, 

204 area, sphericity, ellipsoid-prolate, ellipsoid-oblate, nucleus-cytoplasm volume ratio, 

205 displacement, speed, Intensity-stdDev, Intensity-Max, Intensity-Min) and each type contains 

206 features in several frames of the selected uniform time windows. The detailed list of features 

207 is presented in Part 1 of the S1 File. 

208

209 Cell image dataset generation    

210 Cell image datasets for machine learning consist of normal MEFs cell images and 

211 progenitor cell images within the first 48 hours and 40 minutes. The datasets will be used by 

212 our machine learning method in the training and testing processes. 

213 At first, we manually label iPS progenitor cell and normal MEFs cell images identified 

214 by Imaris software within the first 48 hours and 40 minutes. Experimentally iPS cells can be 

215 determined only by Oct4-GFP expression signal, which cannot be observed until the seventh 

216 day after transfection with Yamanaka's factors. Cells showing green fluorescence in images 

217 are considered as iPS cells. We can then label iPS progenitor cells in the early reprogramming 

218 process by cell image backtracking. The corresponding cell images are retrospectively traced 

219 frame by frame from GFP expression to the first 48 hours and 40 minutes (Fig 1). Due to 

220 three one-hour iCD1 medium changes, the total reprogramming period is divided into four 
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221 periods, the first period is 16 hours and 50 minutes long, from 18 hours to 24 hours and 40 

222 minutes denoted as phase 1 in the paper, the second from 25 hours and 50 minutes to 40 hours 

223 and 40 minutes denoted as phase 2, and the third from 41 hours and 50 minutes to 48 hours 

224 and 40 minutes denoted as phase 3. In this paper, we focus on these three periods (phases 1, 2 

225 and 3) only because of tiny ratio for iPS progenitor cells in the first 16 hours and 50 minutes, 

226 which is even less than 2%. 

227 Two rules are applied in the paper for generating the cell image datasets, (1) cell division 

228 is not considered; (2) frames from the same window of each phase are selected for modeling 

229 among uniform time periods. When cell division is taken into account, features in the mother 

230 cell and its daughter cells are not comparable, for example, the area of mother cell is much 

231 bigger than that of its daughter cells, thus the machine learning model will fail to process this 

232 cell. The second rule guarantees that time dimension (time period and length) for the cell 

233 image data samples should be uniform. 

234 For each cell, not every image in different frames can be identified by Imaris due to the 

235 fact that different parameter settings (cell or nucleus intensity threshold, cell tracking duration) 

236 by Imaris will lead to different segmented cell images in a frame. This results in cell image 

237 data missing in some frames, thus our method allows a certain number of missing cell images 

238 in the selected uniform time periods and tries to find the maximum number of continuous 

239 cells images in this uniform time period. 

240 Overall three cell image sets are generated for three phases, each with an approximately 

241 1:5 ratio between progenitor cell images and normal MEFs cell images. For phase 1, 78 IPS 

242 progenitor cells and 391 normal MEFs are labeled; for phase 2, 84 IPS progenitor cells and 
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243 420 normal MEFs are labeled; for phase 3, 74 IPS progenitor cells and 370 normal MEFs are 

244 labeled. Each of these three initial cell image sets are divided into the training and test sets: 

245 70% of cell images for each time phases are selected randomly as training set with the 

246 remainder (30%) as test set. The ratio between progenitor cell images and normal MEFs cell 

247 images is kept approximately 1:5 for these training and testing sets. For the the training sets, 

248 there are 55 iPS progenitor cells and 274 normal MEF cells in phase 1, 59 iPS progenitor cells 

249 and 294 normal MEF cells in phase 2, as well as 52 iPS progenitor cells and 259 normal MEF 

250 cells in phase 3. 

251 In this paper, the initial cell dataset is used for cross-validating the proposed method, and 

252 the training dataset is used for missing value processing and feature selection. For different 

253 analytic steps, the specific data sample size depends on the time period from which the data 

254 has been collected. Numerical features are calculated for all cell images in the datasets and 

255 saved in CSV files. All datasets are standardized utilizing z-score.

256

257 Missing values processing

258 Processing missing values for the cells in the corresponding frames is an important step 

259 for our model. Imaris cannot continuously identify all the cells in the frame due to different 

260 parameter settings or complex three-dimensional cell environment. This implies that there 

261 exists a certain number of cell images with missing feature values in the uniform time periods. 

262 A certain number of missing images in the frames are permitted for cells to guarantee a 

263 modest data size, and missing cell features are estimated with an imputation method. To 

264 choose the most appropriate approach, we first analyze the impact of the number of missing 
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265 frames on the model, and then analyze the effect of three different imputation methods under 

266 the corresponding missing frame numbers. Details for the three imputation methods are as 

267 follows: 

268  set_mean. The missing value is set to the average value of all nonempty frames for a 

269 specific type of feature in its sample from the selected time window. 

270  set_KNN. The missing value is set to the weighted average value of five nearest 

271 nonempty neighbor frames for a specific type of feature in its sample. The calculation 

272 of weight uses k-Nearest Neighbor (KNN) algorithm. The formula is as

273    (1)
2frame

)(
1, valueMissing

i ji
wfeaturew

jjj frame
j

frameframe


 

274 where j represents the index of five nearest frames neighbor for missing frame i.    

275  set_mean_mod. Missing value is set to the average value of five nearest nonempty 

276 neighbor frames for a specific type of feature in its sample.

277

278 Time window and feature selection

279 Because of the two rules used in dataset generation (Section Cell image datasets 

280 generation), although images are provided up to 49 hours, it is unable to construct the model 

281 based on the whole period. From a total of 49 hours, numerous time periods can be chosen, 

282 and the model needs to select best time windows among all these eligible time periods. Time 

283 window selection includes start frame selection and window length selection. Start frame 

284 represents the moment that the time window starts from, and window length represents frame 

285 number that the time window contains. For each time window with a selected time frame and 

286 window length, we train and validate the proposed method on the corresponding dataset 
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287 generated. Validation is performed with 5-fold cross validation and the evaluation metric is 

288 precision.   

289 Morphological and motion feature selection is used to improve the performance. Since it 

290 is difficult to guarantee image recording time to be accurately consistent for every batch 

291 through experiments, model performance needs to be robust among wider time periods. Every 

292 type of features contains multiple frames of features from the corresponding best time 

293 windows. Features in a time window are treated as a bundle so we can learn the dynamic cell 

294 growth process. 

295 There are two steps for feature selection. The first step is recursive feature elimination. 

296 Firstly, we use all 11 types of features to train the model with 5-fold cross validation and 

297 calculate its precision as initial unimportance score. Then we delete each type of feature at a 

298 time and obtain 11 precision values as new unimportance scores. We compare every new 

299 score with the initial score, and remove the feature type with the largest unimportance score 

300 higher than initial score. The recursive process will be repeated on feature set until the model 

301 performance can be no longer improved or there is no feature. We then rank the importance of 

302 all 11 types of features and delete the least important feature types. Second, we calculate the 

303 Pearson correlation coefficient for the selected feature types from step 1 to remove the highly 

304 correlated features with a correlation coefficient of 0.60 or above. 

305

306 Machine learning model and validation

307 XGBoost, a Boosting algorithm, is used in this paper for feature selection and IPS cell 

308 recognition. XGBoost integrates many weak tree-classifiers together to form a strong 
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309 classifier. This algorithm applies numerous strategies to prevent overfitting, and it is widely 

310 utilized in data science such as cell analysis [39-43]. Hyperparameters of XGBoost are tuned 

311 using grid-search for model training with selected features and best time windows. 

312 For model validation, firstly we use 5-fold cross-validation on the initial cell image 

313 datasets from the time windows of the three phases. Dataset generated from initial cell-sets 

314 contains about 70 iPS cells for each phase. The ratio of iPS cells and normal MEFs keeps as 

315 1:5 in each dataset. 

316 In order to test the model’s ability/robustness to predict the iPS progenitor cells around 

317 the neighborhood of the corresponding training time window, holdout validation is performed. 

318 Because iCD1 medium change is operated manually during the experiments, it is 

319 impracticable to guarantee that for per batch data the duration of medium change is accurately 

320 consistent with the existing data. This inconsistency might lead to a non-exact match between 

321 the timeline after medium change and the timeline used in the model training process. The 

322 holdout validation is designed as follows, for the model trained on time window i~j, we 

323 examine the model's performance on several neighbor time windows, including time windows 

324 i-3 ~ j-3, i-2 ~ j-2, i-1 ~ j-1, i ~ j, i+1 ~ j+1, i+2 ~ j+2, and i+3 ~ j+3, where i represents start 

325 time frame of the window and j represents the terminal frame. The training dataset from time 

326 window i~j is generated from the initial training image data sets (70% of the initial total 

327 dataset), and test datasets of the seven neighbor time windows are generated from the test 

328 datasets (30% of the initial total dataset).

329 Moreover, in order to further test our model’s ability to predict the iPS progenitor cell on 

330 a time window which doesn’t overlap with the window in the training process, an independent 
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331 test is performed. Model performance is tested on time windows which are far away from the 

332 training time windows. Since we have three time phases, we first select test time windows in 

333 phase 2 and 3 for the models trained on time windows of phase 1 and 2 respectively. For 

334 testing our model developed for phase 3, we select the independent test time windows also in 

335 phase 3, but without any overlap with the corresponding training time windows.

336

337 Evaluation metrics

338 In this paper, precision is mainly used for evaluation defined as,

339 FPTP
TPprecision




340 where TP and FP represent the number of true positive and false positive prediction. This 

341 metric evaluates the accuracy for the positive sample predicted by the model. Biologists need 

342 a cell sample set enriched with true iPS progenitor cells so that in the early stage of 

343 reprogramming progenitor cells can be studied with high probability.   

344

345 Results and Discussion      

346

347 Missing frames processing and imputation method

348 First, the effect of missing frames and imputation methods on the model’s performance 

349 was analyzed. Experiment for missing value was performed under six kinds of missing frame 

350 numbers, which were numbers below or equal to five, four, three, two, one and zero. Model 

351 performance was tested for each missing frame number with three imputation methods on 

352 time periods of two window lengths (10 and 19 frames) located in three phases, which were 
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353 time period/window 19h30min ~ 21h10min from phase 1 (TP1), 25h50min ~ 27h30min from 

354 phase 1 (TP2), 41h50min ~ 43h30min from phase 2 (TP3), 18h10min ~ 21h20min from phase 

355 2 (TP4), 26h ~ 29h10min from phase 3 (TP5) and 42h ~ 45h10min from phase 3 (TP6). 

356 Two window lengths (10 and 19 frames) were selected because a reasonable number of 

357 continuous cell images could be traced. A short window will have more data but the motion 

358 and morphological pattern of iPS progenitor cells cannot be learned while a long window will 

359 result in a much smaller dataset. For each length, we chose three time windows randomly to 

360 study whether different lengths would affect model performance under uniform missing frame 

361 number. Datasets were generated from the training datasets, which were about 52~59 iPS 

362 cells and 259~294 normal MEFs for time windows with 10 frames, 43~50 iPS cells and 

363 238~264 normal MEFs for time windows with 19 frames. Model was evaluated by the 

364 average precision with 5-fold cross validation over 20 times. 

365 Fig 2 showed the comparison results of different missing frame numbers and imputation 

366 methods. For each missing number and imputation method, Fig 2(a) described the average 

367 precision over six time windows (TP1 to TP6), indicated by blue boxes for set_KNN, red 

368 boxes for set_mean and green boxes for set_mean_mod. Also shown in Fig 2(a) was the 

369 average precision over all three imputation methods, indicated by grey boxes. Fig 2(b) 

370 described the standard deviations of the corresponding precision values in Fig 2(a). Detailed 

371 precisions for all six time periods (TP1~TP6) were provided in Figure S1 of the S1 File. 

372 Fig 2. Model comparison for different missing frame number and imputation methods

373 Fig 2(a) shows the average precision over six time periods (TP1 to TP6) for each missing 

374 frame number and imputation method set_KNN (colored as blue), set_mean (colored as red), 
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375 set_mean_mod (colored as green) and all three imputation methods (colored as gray). Fig 2(b) 

376 shows the standard deviation, as a function of missing frame number, of imputation method 

377 set_KNN (colored as blue), set_mean (colored as red), set_mean_mod (colored as green) and 

378 all three imputation methods (colored as gray).

379 Fig 2(a) showed that precision was higher when several missing frames were allowed. 

380 For missing frame number of 0, the average precision of all method was only 0.585 and all 

381 the average precisions of non-zero missing frame numbers were higher than 0.585. Fig 2(a) 

382 also showed that the maximum average precision of all method was about 0.632 under 

383 missing frames of 4, 4.7% higher than precision under no missing frames and 0.9% higher 

384 than precision under missing frame number of 2. On one hand, the size of the dataset is larger 

385 when missing value is permitted, on the other hand, the missing frame may introduce new 

386 pattern for classification because iPS progenitor cells proliferate more frequently than normal 

387 MEFs, and cell division can partly result in missing value. When cells divide at a certain 

388 frame in their time periods, the feature values of all subsequent frames are missing.

389 In Fig 2(b), the maximum standard deviation of all methods as indicated by gray box 

390 was 0.061 under missing 4 frames. For each specific method, the maximum standard 

391 deviation was 0.081 for Set_mean under 5 missing frames. The precision with two missing 

392 frame numbers had the minimum standard deviation for all method (0.048 as indicated by 

393 gray boxes) and at the same time it was also very close to the maximum precision (0.623 

394 compared with the maximum value of 0.632 in Fig 2(a)). In addition, Set_mean_mod showed 

395 the minimum standard deviation of all 3 imputation methods for all missing frame numbers 

396 (indicated by green boxes), an indication of stable performance. Although Set_mean_mod 
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397 also showed smallest standard deviation for missing frame number of 1, its precision value of 

398 missing frame number was smaller than that of missing frame number of 2. Therefore, we 

399 used missing frame number less than or equal to two and select imputation method as 

400 set_mean_mod in our model. 

401

402 Time window selection

403 Time window selection was performed to select best time windows with high precision 

404 for each phase. Since Imaris could not detect all cell images in every frame, the whole time 

405 periods of three phases were divided into numerous time windows. For time window selection 

406 (including start frame and window length), we set start frame to 21 time points which were 

407 18h20min, 18h40min, 19h, 19h20min, 19h40min, 20h, 20h20min, 26h10min, 26h30min, 

408 26h50min, 27h10min, 27h30min, 27h50min, 28h10min, 42h10min, 42h30min, 42h50min, 

409 43h10min, 43h30min, 43h50min, 44h10min in three phases. Meanwhile, we set window 

410 length to 12 different values including 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29 frames. 

411 For the total of 252 (12 times 21) time windows, we first generated datasets for each time 

412 window with 11 types of morphological/motion features. All datasets were generated based 

413 on the training dataset and contained about 38~59 iPS progenitor cells and about 190~295 

414 normal MEFs. Then we selected the optimal time window through 5-fold cross-validation 

415 based on 20 XGBoost runs. 

416 The model performance on these different time windows was shown in Fig 3. In this 

417 figure, shorter window lengths were marked in red colors and longer window lengths were 

418 marked in blue colors. We observed that precision of longer window lengths was lower than 
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419 that of shorter window lengths in three phases, and this trend was less pronounced for phase 3. 

420 The size of the dataset may be the major reason for this trend. Due to the two rules in dataset 

421 generation, the amount of samples satisfying conditions decreases gradually with the 

422 increasing window length. For window length of 29 frames, there are just about 38 iPS 

423 progenitor cells and 262 normal MEFs in phase 1, about 44 iPS progenitor cells and 283 

424 normal MEFs in phase 2, about 36 iPS progenitor cells and 242 normal MEFs in phase 3. As 

425 compared with the window length of 7 frames, there are about 53 iPS progenitor cells and 290 

426 normal MEFs in phase 1, about 55 iPS progenitor cells and 285 normal MEFs in phase 2, 

427 about 57 iPS progenitor cells and 300 normal MEFs in phase 3. On the other hand, the 

428 number of samples is much less for later start frame than that for previous time since some 

429 cells have divided. For instance, there are only about 30 iPS progenitor cells and 200 normal 

430 MEFs for the last start frame with length of 29 frames in phase 3. 

431 Fig 3. Time window selection 

432 The three subplots represent the precision values for different time windows based on 21 start 

433 frames (x axis) and 12 window lengths (7 frames to 29 frames) for phases 1, 2, and 3 (from 

434 top to bottom) respectively, and the black bash line in each subplot indicates a precision value 

435 of 0.55.

436 Selection of best time windows according to maximum precision resulted in an unstable 

437 prediction performance. For instance, precision achieved the maximum value on the time 

438 window starting at 43h30min with length of 29 frames while all its adjacent time windows 

439 had poor performance with lower precision. It is unlikely to achieve the same performance on 

440 a new dataset of the same time window. 
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441 We selected the best start frame for each phase respectively. To exclude the start frame 

442 with high prediction precision for only 1 or 2 window lengths, 14 candidates of best start 

443 frames were selected when precision was above 0.55 for at least three successive window 

444 lengths. For each candidate best start frame, the average precision was calculated over the 

445 successive window lengths whose precision was above 0.55 and the average precision values 

446 were shown above each candidate best start frame in Fig 3. We only selected one best start 

447 frame for each phase according to the average precision values of the candidate best start 

448 frames, resulted in 19h40min, 26h10min and 42h30min for phases 1, 2 and 3, respectively.

449 Secondly, the candidate best window lengths were selected whose precision values were 

450 all above 0.55 for 3 best start frames of step 1, resulting in window lengths 11, 13, 15 and 17 

451 frames. For each window length, the precision values, average precisions and the 

452 corresponding standard deviation of 3 different best start frames were provided in Table S1 of 

453 S1 File. The average precision of 0.640 for window length of 13 frame was the highest while 

454 its standard deviation was the smallest (0.01), thus window length of 13 frames was selected 

455 as the best window length.

456

457 Two-step feature selection  

458 We performed a two-step feature selection method on three phases respectively. Firstly, 

459 we generated datasets from best time windows based on the training cell image datasets. The 

460 dataset of each phase contained 11 types of morphological and motion features, all of which 

461 contained about 50~59 iPS progenitor cells and about 200~295 normal MEFs. 

462 For the first step, an iterative feature removal procedure was performed on the 
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463 corresponding dataset of each phase to study the importance of each feature type. Average 

464 precision was calculated via 5-fold cross-validation over 20 runs on the dataset of each phase, 

465 and later sets as initial unimportance score. Next, we removed each type of features and 

466 calculated the unimportance scores (average precision). Feature with maximum score would 

467 be deleted only if this score was greater than the initial unimportance score, which would then 

468 be updated as the maximum score. This step was repeated until no score was greater than 

469 initial score or no more feature could be selected. 

470 Results from step 1 feature selection were shown in Fig 4. For phase 1 precision was no 

471 longer improving after removing ellipsoid-oblate, displacement and volume; for phase 2 

472 precision was no longer improving after removing displacement and volume; for phase 3 

473 precision was no longer improving after removing displacement, ellipsoid-prolate, area and 

474 volume. In the end, eight types of features were selected for phase 1, nine types of features 

475 were retained for phase 2, and seven types of features were retained for phase 3. Selected 

476 features from this step were indicated in Fig 4 by star symbols. The corresponding precisions 

477 for best windows with 13 frames before feature selection were 0.624, 0.607, 0.646 for phases 

478 1, 2 and 3, respectively, and after feature selection, these precision values had increased to 

479 0.691, 0.613 and 0.682 respectively.

480 Fig 4. Feature ranking and selection

481 This figure shows how the precision values change with the deleted feature in a recursive 

482 fashion. Least important features are removed earlier.

483 The removing order of feature type in Fig 4 indicated the importance of each feature 

484 type. We observed from Fig 4 that three types of features, nucleus-cytoplasm ratio, sphericity 
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485 and intensity-StdDev, were important among all three phases. Nucleus-cytoplasm ratio was 

486 the top important factor in three phases. Sphericity and intensity-StdDev were among the top 

487 4 common features of three phases. Intensity showed clear different patterns between normal 

488 MEFs and progenitor cells. As shown in Fig 5(a), the progenitor cells in the blue circles 

489 showed a uniform intensity distribution between nucleus and cytoplasm, while for normal 

490 MEFs in the yellow boxes, the cytoplasm showed weaker intensity as indicated by the 

491 blurring edges. Also shown in Fig 5(a), the nucleus and cytoplasm of progenitor cells in the 

492 blue circles and normal MEFs in the yellow boxes were enlarged and colored by light blue 

493 and green respectively. It is clear that nucleus-cytoplasm ratio for progenitor cells are much 

494 larger than that of normal MEFs. From Fig 5(a), the cell area of progenitor cells is also 

495 smaller on average than normal MEFs, indicating the importance of sphericity since area is 

496 closely related to sphericity by the equation from Part 1 of the S1 File. The selected features 

497 are consistent with the experimental results that iPS progenitor cells exhibit higher 

498 nucleus-cytoplasm ratio, smaller total area, and higher proliferation rate than normal 

499 MEFs[21].

500 Fig 5. iPS progenitor cells vs. MEFs and Feature correlation

501 (a) shows the examples of iPS progenitor cell images (blue circles) and normal MEFs images 

502 (yellow boxes) taken from phase 1, 2 and 3 of field 2 (Left, middle and right). Nucleus and 

503 cytoplasm of the enlarged progenitor cells and normal MEFs are colored in light blue and 

504 green respectively. (b) shows the Pearson coefficients between remaining types of features in 

505 three phases after the first step of feature selection. Note in this figure ellipsoid-prolate is 

506 denoted as E-prolate, intensity-StdDev as I-stdDev, intensity-min as I-Min, intensity-max as 
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507 I-Max, nucleus-cytoplasm volume ratio as Ratio, ellipsoid-oblate as E-oblate. 

508 In order to further study the correlations of different features, as a second step we 

509 calculated the Pearson correlation coefficients between the selected features. The results for 

510 three phases were shown in Fig 5(b). In our model, two feature types were considered 

511 strongly correlated if the coefficient was greater than 0.6 and one of them was removed. 

512 When two different feature types were strongly correlated with a third feature type, both of 

513 them were removed with the purpose of keeping as less number of features as possible. For 

514 phase 1, the coefficient between sphericity and area was 0.77 in phase 1, and the coefficient 

515 between sphericity and ellipsoid-prolate was 0.66, thus area and ellipsoid-prolate were 

516 removed from the list. Similarly, they were removed for phase 2 as well. The strong 

517 correlation between sphericity, ellipsoid-prolate and area is caused by the fact that Imaris 

518 extracts features from two-dimensional cell images assuming cell thickness as constant. 

519 Furthermore, since ellipsoid-oblate was associated with cell thickness, it was removed from 

520 the feature list as well for phase 2 and phase 3. Overall, six types of features (Sphericity, 

521 I-Min, I-stdDev, I-Max, Ratio, Speed) were selected for all the models. 

522

523 Cross-validation 

524 With selected features, a grid-search scheme was used for hyperparameter optimization 

525 of XGBoost with 5-fold cross-validation, and the datasets were generated based on the 

526 training sets for three phases. Three hyperparameters such as learning_rate, n_estimators and 

527 gamma were set to 0.01, 385 and 0 respectively. We had validated our model with three 

528 different experiments as shown in Fig 1. 
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529 For cross-validation, datasets were generated from initial whole cell image dataset. 

530 Dataset for phase 1 contained about 63 iPS progenitor cells and about 326 normal MEFs. 

531 Dataset for phase 2 contained about 82 iPS progenitor cells and about 427 normal MEFs. 

532 Dataset for phase 3 contained about 72 iPS progenitor cells and about 359 normal MEFs. For 

533 each phase, 5-fold cross validation was performed 10 times on every best time windows with 

534 6 selected feature types, resulting in a total of 117 for window length of 13 frames. Fig 6(a) 

535 showed precision scores for 3 different phases, and all of the precision values were above 

536 0.580. For phase 1, the precision value was highest, 0.732. 

537 Fig 6 Model validation 

538 In all sub-figures, X axis indicates the start frame of the best time windows and the 

539 corresponding window length (13 frames) is indicated in the inlet. (a) 5-fold cross-validation 

540 precisions over 10 runs. (b) the standard deviation of the average precision of the 

541 neighborhood time windows in Figure 6(d). (c) the standard deviation of the average 

542 precision of the distant windows in Figure 6(e). (d) the average precision of seven 

543 neighborhood time windows calculated over 10 holdout validation runs. (e) the average 

544 precision over 10 independent tests for six best time windows on their corresponding distant 

545 windows.   

546

547 Holdout validation

548 Holdout validation was used to test the model’s ability to predict the iPS progenitor cells 

549 in the neighborhood of the time window in which the model had been trained. Since in real 

550 application, it is difficult to generate the dataset whose images have the exact start time as in 
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551 the training dataset, holdout-validation is very important for testing the model’s generality on 

552 the neighborhood time windows. For each phase, the training dataset for window length of 13 

553 frames was generated. In phase 1, the window start frame I was 19h40min as shown in Fig 

554 6(d). Models trained on this dataset was then tested on seven test datasets corresponding to 

555 start frames I, I-1, I-2, I-3, I+1, I+2 and I+3, illustrated in Fig 1 and Fig 6(d). There was no 

556 overlap between the training and testing datasets. 

557 For each time window, average precision value was computed over 10 holdout validation 

558 runs, and the results were shown in Fig 6(d). The minimum average precision values were 

559 0.616 for window length of 13 frames and start frame I-2 in phase 1, 0.522 for window length 

560 of 13 frames and start frame I-2 in phase 2 and 0.566 for window length of 13 frames and 

561 start frame I-3 in phase 3. These minimum precisions were all smaller than the corresponding 

562 precisions in Fig 6(a); what is more, Fig 6(d) also showed the average precision values for 

563 phase 1, 2 and 3 were all smaller than the cross-validation resulted in Fig 6(a), indicating the 

564 difficulties for predicting the neighborhood time windows. 

565 For each result of the 3 phases in Fig 6(d), the standard deviations of average precisions 

566 were computed for window length of 13 frames in Fig 6(b). The maximum deviation was 

567 0.042 for window length of 13 frames in phase 1 and this indicated the trained models were 

568 relatively stable in terms of prediction precision in a wide range of neighborhood windows. 

569

570 Independent test

571 Finally, to test the model’s ability to predict the iPS progenitor cells on a distant time 

572 window without overlapped frames with the training window, we performed an independent 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 22, 2019. ; https://doi.org/10.1101/744920doi: bioRxiv preprint 

https://doi.org/10.1101/744920
http://creativecommons.org/licenses/by/4.0/


27

573 test. If the training cell trajectory is long and contains enough typical iPS progenitor cells, the 

574 trained model on one window should be able to identify the motion and morphological 

575 patterns of iPS progenitor cells against normal MEFs, regardless of the selected time window. 

576 For phase 1, the model trained on time window 19h40min~21h40min (length of 13 

577 frames) was tested on time windows of phase 2, including time windows starting from 

578 26h20min (S11), 26h40min (S12), 27h (S13), 27h20min (S14), 27h40min (S15), and 28h 

579 (S16), shown in the first panel of Fig 6(e). Similarly, for phase 2, the model trained on time 

580 windows 26h10min~28h10min (length of 13 frames) was tested on six time windows of 

581 phase 3 starting from 42h10min (S21), 42h30min (S22), 42h50min (S23), 43h10min (S24), 

582 43h30min (S25), 43h50min (S26), shown in the middle panel of Fig 6(e). Lastly, for phase 3, 

583 model testing was performed on the distant time windows without overlapped frames from 

584 the same phase, shown in the right panel of Fig 6(e). For time windows 42h30min~44h30min, 

585 we selected test time windows starting from 45h10min (S31), 45h30min (S32), 45h50min 

586 (S33), 46h10min (S34), 46h30min (S35).

587 Results of the independent test runs were shown in Fig 6(e). The minimum precision was 

588 0.523 for window length of 13 frames for S16 in phase 1. The average precision of phase 1 

589 was lower than those of holdout validation and cross-validation, however, the average 

590 precision of phase 2 and 3 were both better than cross-validation and holdout validation. For 

591 the prediction of distant time windows, our model could have worse performance than that of 

592 neighborhood windows, but our model could also outperform the cross validation and holdout 

593 validation (indicated by the standard deviation in Fig 6(c)). The reason was the independent 

594 test datasets for phase 2 and 3 were closely related to the training dataset. The standard 
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595 deviations of the independent tests were much higher than those of the holdout validation, 

596 which could also be seen from the large fluctuations of the precision values in Fig 6(e). 

597 Nevertheless, the minimum average prediction precision was above 52% among all the 

598 experiments, and maximum average precision was about 0.750 for the independent test in 

599 phase 3.

600

601 Conclusion

602 In this paper, we proposed a machine learning based model together with time-lapse 

603 image analysis to predict/identify iPS progenitor cells during the first 3-5 days after 

604 reprogramming initiation. The model generated a variety of morphological and motion 

605 features among different time windows, then relied on a two-step feature selection algorithm 

606 to select the most important features. The proposed computational approach is very unique 

607 from previous experimental techniques which identify the iPS progenitor cells by 

608 retrospectively tracking the cell images manually frame by frame from the image frame of 

609 GFP expression. 

610 By the experimental study of the enriched iPS progenitor cells in the early stage of 

611 reprogramming, the proposed method could provide a new technique or attempt for 

612 experimenters to improve the iPS reprogramming efficiency and to study the underlying 

613 mechanism of iPS reprogramming. Morphological and motion features, especially sphericity, 

614 intensity-StdDev and nucleus-cytoplasm volume ratio, have been found most important for 

615 the progenitor cell classification, which is consistent with the experimental observations.  

616 Cross-validation of the proposed method trained and tested on the same time window 
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617 showed that the prediction precision is above 0.580 for all three phases. Since in real 

618 applications, it is very difficult to match imaging timeline precisely between different 

619 experiments, holdout validation and an independent test are also performed to test the model’s 

620 ability to predict iPS progenitor cells in the neighborhood time windows and distant time 

621 windows, respectively. The results showed our model can predict the iPS progenitor cells 

622 with a minimum precision of 52% for neighborhood windows and distant windows, and the 

623 maximum average precision is about 0.750 for the independent test in phase 3. The prediction 

624 performance of our model tends to have a larger fluctuation for distant windows than for 

625 neighborhood windows, indicated by the larger standard deviation of independent test runs. 

626 For future works, models on different time windows for each phase can be combined to 

627 achieve higher prediction accuracy. 

628
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