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Abstract

Proteins are the chief effectors of cell biology and their functions are typically carried
out in the context of multi-protein assemblies; large collections of such interacting
protein assemblies are often referred to as interactomes. Knowing the constituents of
protein complexes is therefore important for investigating their molecular biology. Many
experimental methods are capable of producing data of use for detecting and inferring
the existence of physiological protein complexes. Each method has associated pros and
cons, affecting the potential quality and utility of the data. Numerous informatic
resources exist for the curation, integration, retrieval, and processing of protein
interactions data. While each resource may possess different merits, none are definitive
and few are wieldy, potentially limiting their effective use by non-experts. In addition,
contemporary analyses suggest that we may still be decades away from a comprehensive
map of a human protein interactome. Taken together, we are currently unable to
maximally impact and improve biomedicine from a protein interactome perspective –
motivating the development of experimental and computational techniques that help
investigators to address these limitations. Here, we present a resource intended to assist
investigators in (i) navigating the cumulative knowledge concerning protein complexes
and (ii) forming hypotheses concerning protein interactions that may yet lack conclusive
evidence, thus (iii) directing future experiments to address knowledge gaps. To achieve
this, we integrated multiple data-types/different properties of protein interactions from
multiple sources and after applying various methods of regularization, compared the
protein interaction networks computed to those available in the EMBL-EBI Complex
Portal, a manually curated, gold-standard catalog of macromolecular complexes. As a
result, our resource provides investigators with reliable curation of bona fide and
candidate physical interactors of their protein or complex of interest, prompting due
scrutiny and further validation when needed. We believe this information will empower
a wider range of experimentalists to conduct focused protein interaction studies and to
better select research strategies that explicitly target missing information.
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Introduction

Protein complexes are assemblies of proteins within multi-component macromolecules.
They are commonly defined by stable interactions that are likely to be observed in
homeostatic cells; protein complexes are nevertheless understood to frequently contain
labile and/or dynamical components that may not be apparent in the steady state.
These stable and dynamical macromolecules are the prime effectors of cell biology.
Thus, identifying the compositions and topologies of protein complexes from raw and
partially processed protein-protein interactions (PPI) data is an important area of
research. Because mutations in protein coding genes can alter the protein product,
including changes to protein length, amino acid sequence, expression level, and
subcellular localization, such changes can lead to the formation of altered PPI networks
(a.k.a. interactomes) that cause cellular dysfunction and disease [1–4]. Hence, to
understand health and disease, we must understand their associated interactomes.
However, comprehensive interactome mapping has proven challenging for at least three
reasons: 1) experiments to directly identify protein interactions are relatively expensive
and 2) time consuming, e.g. compared to indirect genomic/transcriptomic methods;
moreover 3) any single proteomic approach is likely to miss many PPIs (high false
negatives) and incorrectly assign many spurious PPIs (false positives) [5–8].

Currently there are several well-known biological single/multiple protein search
engines derived from interaction data as well as protein complex search engines that are
manually curated from literature. Here we summarize a few of the most well-developed
resources to contextualize our own offering.

• STRING [10] is arguably the most famous protein interaction search engine.
STRING integrates different properties of molecular interactions including
experimental repositories, computational prediction methods, and public text
collections, to calculate a final link score and map them to a single interaction
network: It is a single protein search engine.

• GeneMania [11] is single/multi-protein search engine: GeneMania [12] is known
to be more refined compared to other protein search engines. It gathers data from
a very limited number of publications and maps them to a single gene network to
predict gene functions. Among protein search engines listed here, only GeneMania
accepts multiple gene entry and extends the list with functionally similar genes.

• BioPlex [13, 14] is a single protein search engine with physical interactions,
currently cataloging 5900 immunoprecipitation-mass spectrometry experiments;
this was achieved using one cell type (HEK-293T), ectopically expressing a large
number of affinity tagged human open reading frames.

There are also two search engines for finding protein complexes:

• Complex Portal [15, 16] is a manually selected resource of macromolecular
complexes. All complexes are derived from physical molecular interaction evidence
extracted from the literature and cross-referenced in IntAct [17], or by curator
inference from information on homologs in closely related species. The search
engine requires a complex name or complex ID and returns a network of protein
complex interactions, structure, and functional information.

• Similar to Complex Portal, Corum [18] is a manually curated database of
experimental data from mammalian protein complexes.

Despite these resources there remains a disconnect between tools that populate
interaction networks and sources of manually curated knowledge about protein
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complexes: as of now, the protein complex search engines do not identify and retrieve
putative and candidate interactors from the remaining, as-yet-un-curated data. Part of
the difficulty of identifying potential members of a complex is that the search space of
possible interactions is understood to be extremely large [2, 9], albeit not definitively
quantified as yet. In light of this, and the above-stated challenges, the objective of this
research is to aid molecular biologists by leveraging existing collections of experimental
data and applying machine learning techniques to identify probable but yet unconfirmed
interactions (candidate complex membership). Doing so will enable researchers to better
target their experimental hypotheses and consequently, reduce the number of
experimental trials required. We achieve this by applying network-based, random walk
statistical algorithms to integrate existing heterogeneous data sets that describe various
properties of PPIs. Unfortunately, manually curated data sets that describe bona fide
physiological interaction networks are few, and such databases grow very slowly.
However, the algorithm can be trained using this curated data to make appropriate
inferences from more voluminous but lower quality automatically curated data sets. For
this research, data from the “gold standard” database, Complex Portal, were used to
train the algorithm. Once trained, the algorithm can be used to predict which
unconfirmed interactions from the lower quality data are probable candidates for
verification via targeted experiments; we computationally validated this application by
using Leave-One-Out Cross Validation (LOOCV) to assess the accuracy of the
algorithm in predicting the current members of a complex. Therefore, we demonstrate
that by appropriately merging the two types of data resources, the false-positive
prediction rate can be reduced while promising new candidates can be effectively
distinguished from noise focusing downstream experimental strategies and improving
biological understanding.

Use Case

In our interface, a typical use case includes feeding a network with the current
understanding of a protein complex, including its known members and ontological
associations (e.g. as defined by EMBL-EBI Complex Portal), in order to retrieve
additional candidate members through expanding the network as follows:

1. Choosing the species of interest (only human has been extensively tested by us up
to now).

2. Selecting the target protein complex using the ‘protein complex tab’ in the main
panel - consequently, members of the selected complex will appear in the sidebar.

3. Choosing the number of additional candidate interactors to be shown in the aiding
interface.

4. Optionally, adding other proteins to the target complex membership, in the case
of un-curated evidence or private knowledge of their membership.

5. Calculating discriminant scores1 using the information fed to the algorithm. The
algorithm will automatically reduce the size of the network to those proteins that
are part of the cell component ontological annotation of the target protein
complex.

6. Checking the result in the ‘interactions network tab’ in the main panel as shown
in Figure 1.

1Discriminant score is calculated by aggregating weighted score of all direct interactions of a node
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7. Reviewing the studies that the support the inclusion of the additional candidate
complex members retrieved.

Fig 1. Interface design: View of the closest interactors networks.

Materials and Methods

The approach to infer potential members of a protein complex is to fuse data from
multiple heterogonous data sets including coexpression, colocalization, and cross-linking
among others.To translate all the information to the protein level, we mapped networks
with heterogeneous nodes into protein nodes using BiomaRT [38] and PaxDB [39].
Then, we applied ridge regression to weight all the sub-networks using existing protein
interactions in Complex Portal as dependent variable. Once the weighted networks are
complete, protein-protein interactions are predicted using networking scanning
algorithms. Each of these components is described in more detail below.
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Data Collection

Different properties of human protein interactions were gathered as shown in Figures 1
& 2:

1. Coexpression - Two genes are connected if their expression levels correlate
across conditions in a gene expression study. We used data from GeneMania
which collected data associated with a publication from the Gene Expression
Omnibus (GEO) [25].

2. Colocalization - Genes expressed in the same tissue, or proteins found in the
same location. Two genes are linked if they are both expressed in the same tissue
or if their gene products are both identified in the same intracellular location. We
extract colocalization data from GeneMania.

3. Prediction - Predicted functional relationships between genes by mapping known
functional relationships from another organism via orthology. We used
GeneMania prediction data.

4. Physical Interaction - Two gene products are linked if they were found to
interact in primary research; protein-protein interactions are store in databases
such as BioGRID [26] and IntAct. Some of these records use gene name or uniprot
ID to represent nodes. As the result, we had two layers of physical interaction
data (one with genes as nodes and another one with uniprot IDs).

5. Pathway Interaction - represents protein-protein interactions observed within a
functional pathway, extracted from databases such as: Reactome [27], NCI [28]
and Panther [30].

6. Cross-Linking - Chemical protein cross-linking with analysis by
mass-spectrometry is a method used to extract structural information about
protein interactions and protein complexes at the peptide-peptide contact level.
The output describes the cross-linked residues in two peptides and their proximity;
We gathered our data from XlinkDB [31]. Cross-linking network links are binary in
our network, and each edge represents a link with distance less than 25 Angstrom.

7. Disease Similarity - We used a previously described method [34] to calculate
the disease similarity based on common phenotypes using disease records from
OMIM [32] as well as phenotype annotation and graph structure from Human
Phenotype Ontology (HPO) [27]. We only considered the five closest diseases in
our network using the k-nearest neighbors algorithm.

8. Domain Interaction - Classifying protein sequences by their functional analysis
into families and predicting the presence of domains and important sites [37].
Domain interactions are considered useful in predicting the ability of two proteins
to interact within the context of a pathway or gene ontology term.

Mapping

In cases where multiple links exist between two nodes, we adopt the maximum score.
When integrating heterogeneous data we initially used the assumption that different
types of nodes map to one another in a binary fashion. For example, the assumption
that a gene could produce all of its protein products with equal probability. This
rational was applied to map connections from gene-level and disease-similarity networks
to protein networks. BiomaRt [38] was initially used to construct this bipartite mapping
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Fig 2. Data sources. Data gathered from different levels of abstraction.
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between these networks. However, our analysis showed that such an assumption would
increase the error and false positive rate. To overcome this problem, we used the
PaxDB [39] database to calculate the protein abundance ratio of proteins resulting from
the same gene. PaxDB is a whole proteome abundance database across organisms and
tissues. Yet, we have other data layers that do not result from gene or protein
interaction, and we could not find any method to optimally integrate them at this time.

Network Scanning Algorithms

The random walk algorithm with restart parameter and the label propagation algorithm
(LPA) have been well-described in the literature [19–21]. The basic idea of the random
walk algorithm is that we start a metaphorical walker at a node that is known to be a
member of a protein complex. This walker then traverses the network by randomly
following different links in the network. If we repeat the process with many walkers, we
can determine which other proteins can be reached from the starting protein. We can
also estimate the probability that each of these proteins will be visited by a walker. It is
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natural to assume that local neighbors of the starting node would be visited more often.
LPA [22] is a generalization of the local neighborhood approach where a discriminant
score is calculated by the sum of weighted scores of its direct interactions.

fi =
n∑

j=1

wijyj (1)

If you iterate discriminant scoring to n neighbors, it will converge to the random walk.
In a restart random walk, a random walker will stay in the initial node with a
probability of r and go to other nodes with probability of 1-r. The RRW algorithm has
been used in proteomic studies and is known to perform best with r being set at
0.7-0.75 [20,23,24].

f = (1− r)
∞∑
j=1

(rW )ny (2)

Under the condition that rW ≤ 1 and 0 < r < 1 , the infinite sum in Eq.2 could be
simplified to Eq.5. We implemented symmetric normalization demonstrated in Eq. 4 to
guarantee that rW ≤ 1 is valid. Previous literature [29] extensively investigated the
performance of LPA with different normalization methods and noted that symmetric
normalization had the highest precision among all.

di =

n∑
j=1

wij (3)

Where D is the diagonal matrix of row sums of the weighted matrix, the normalized
symmetric version of the weighted matrix W replaces W in the Eq.5.

W = D−1/2WD−1/2 (4)

f = (1− r)(I − rW )−1y (5)

Multiple Kernel Network

An identified link between two proteins represents an assembly of incomplete biological
significance. It is often required to integrate data from different properties into a single
network. Having d normalized networks, {W1,W2, ..Wd}, we want to construct a

single weighted networks Ŵ =
∑

d αdW d with αd > 0 that is optimized to predict the
existence of interactions. If we try to solve this problem using linear regression, our
regression equation could be written as:

α∗ = argmin
n∑

ij=1

(yiyj −
d∑

k=1

αkw
k
ij)

2 (6)

Where yi is the output vector of node i and wk
ij represents the edge between node i and

j. To find a vector of network weights that minimizes the cost function, we used ridge
regression. Ridge regression is a technique that is normally used when there is
multicollinearity among different variables or there is correlation between independent
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variables. When multicollinearity occurs, least squares estimates are small but their
variances are large values and may be far from the true values.Using a fast assumption
from the previous literature [11] [29], we calculated αd as follow:

α = (ΩtΩ + S)−1(Ωtt+ Sα) (7)

Where S is the precision matrix and calculated as diagonal matrix Shh = trace(W t
kWk),

Ω is a matrix of n2xk that each column is the vectorized version of Wd , t = vec(yyT )
and α is set to constant value α = 1

d .

Result

Ridge regression was used to integrate multiple networks into a single network; stable
links were predicted using a label propagation algorithm. We incrementally added the
network layers and used Leave-One-Out Cross validation (LOOCV). LOOCV is a
special case of Leave P Out Cross-validation with p=1 whereby, during each run,
statistics are gathered on the sample that was ’left-out’. In a typical scenario an input
vector, e, represents protein complex members, where the indices corresponding to the k
protein complex members are assigned a value of 1. In the first step, one of the k
proteins will be ‘left out’ and the corresponding index in vector e will be changed to 0.
Using the restart random walk formula and parameter, r, discriminant scores of all the
nodes will be calculated as follow:

f = (1− rŴ )−1(1− r)e (8)

After leaving out the calculated discriminant scores of k-1 indices that had a value of 1
in the input vector, we calculated the rank of the left out protein. The process has to be
repeated k times to gather statistics for all the protein members of a complex. The
lower the rank of a protein, the better the performance of the algorithm in predicting
the complex membership of that protein. The process can be segregated into the
following steps:

i. We trained our network by (1) randomly removing 10% of our records (protein
complexes in Complex Portal) (2) building a matrix containing the remaining 90%
of the records and (3) measuring the weight of layers using Ridge Regression as
explained in the previous section. Then we repeated the three steps 10 times.
Finally, we calculated the average weight of each layer in all runs. Note, the results,
displayed in Figure 4, indicate our approach is agnostic to 10% random data loss.

ii. We constructed different combination of layers2 to compare their performance as
follows:

• PPIs 3

• Biological pathways

• PPIs + protein cross-linking

• PPIs + biological pathways

• PPIs + protein cross-linking + biological pathways

• PPIs + protein cross-linking + biological pathways + genetic interactions 4

• PPIs + protein cross-linking + biological pathways + disease similarities

• PPIs + protein cross-linking + biological pathways + disease similarities +
genetic interactions
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Fig 4. Validation result. Validation result from 10 trials.
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iii. LOOCV was carried out on all the protein complexes to compare the performance
of different combinations of layers. Each time, one protein was left out from a
target complex and the rest of the proteins were used as a seed to find the closest
interactors in the network using the restart random walk algorithm.

iv. Finally, a cumulative distribution of the ranks was plotted to determine the
contribution of each layer when predicting the known members of a protein complex,
permitting the evaluation of the performance of different combinations of layers.

We observed the following results: (i) the network layers associated with biological
pathways, followed by PPIs, contained the most useful information; (ii) the protein
cross-linking network layer did not contribute much information - which is not

2Different layers of data and their sources are discussed in Data Collection section
3including both gene and protein physical interaction
4coexpression, colocalization, and electronic prediction
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Fig 6. Comparing different combination of layers. Leave One Out
Cross-validation result.
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unexpected considering the sparsity of data; (iii) the disease similarities network layer
appeared to reduce the accuracy of algorithm; and finally, (iv) the optimum scenario
observed during our testing can be attributed to a combination of PPIs, biological
pathways, protein cross-linking, electronic prediction, colocalization, and coexpression
network layers.

Discussion

Mapping different layers of information is laborious due to the non-linear nature of
connections between them and known false positive detection rate in interactomic
databases. LOOCV showed that disease similarities network did not positively
contribute to detecting the current members of protein complexes when aggregated with
other layers into a monoplex protein interaction network. It is possible that
implementing disease similarities with the rest of the layers as a multiplex network and
filtering disease similarities to those the target complex is known to interact with or
contribute to (Complex Portal represents diseases with their Orphanet ID) could
improve the performance of the algorithm as was investigated in previously [34]. This
would require feeding the algorithm with the list of protein members and the diseases
they are associated with. Although protein cross-linking data did not prove to be of
abundant value in the current study, we are hopeful that its value will increase with
data size and that the peptide-peptide contacts provided will obviate the need for other
forms of structural information (except for in cross-validation). Future work will focus
on: (i) wet lab validations of a select putative candidate members of protein complexes
produced by our algorithm; (ii) extending the complex membership prediction algorithm
to also contain RNA-protein and DNA-protein interfaces aggregated from available
resources (PDB and NDB databases [41]); and (iii) extending this method to numerous
organisms.
The number of available protein complex records in a manually curated database such
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as Complex Portal is limited and so is the average number of links in curated complexes
(less than 5). Consequently, it is implausible to tune each complex by matching it to
other complexes with similar functional associations. In this paper, we presented a tool
to predict potential members of a protein complex using heterogeneous data sets
integrated into a single network. We tuned our network using the total available links as
one entity. While we were not able to integrate all the available information (such as
disease similarity, and structural information from domains), we still achieved robust
predictive results when we applied LOOCV. In fact, the result does not seem to be
sensitive to losing 10% of the links. We believe that it is necessary to study proitein
complexes within the context of their broader interaction networks. We acknowledge the
divide between an ideal protein complex search engine and present resources to describe
protein complexes, including those presented here; but we believe our approach can be
of significant utility to molecular biologists aiming to close potentially non-obvious
knowledge gaps in interactome-related studies. Considering the dynamic nature of the
interactome, providing more data sources and features in the interface is necessary and
will be pursued in future versions.
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Supporting information

Project code is available at https://github.com/moghbaie/ComplexPlus

Acknowledgments

This research was supported in part by NIH grant R01GM126170 to J.L.

References

1. Sharma, A. et al. A disease module in the interactome explains disease
heterogeneity, drug response and captures novel pathways and genes in asthma.
Hum. Mol. Genet. 24, 3005–3020.

2. Menche, J. et al. Disease networks. Uncovering disease-disease relationships
through the incomplete interactome. Science 347, 1257601 (2015).

3. Barabasi, A.-L., Gulbahce, N. Loscalzo, J. Network medicine: a network-based
approach to human disease. Nat Rev Genet 12, 56–68 (2011).

4. Harris, C. C. Protein-protein interactions for cancer therapy. Proc Natl Acad Sci
USA 103, 1629–1660 (2006).

5. Hart GH, Ramani AK, Marcotte EM. How complete are current yeast and human
protein-interaction networks?. Genome Biol. 2006. doi: 10.1186/gb-2006-7-11-120.

6. Hakhverdyan, Z. et al. Rapid, optimized interactomic screening. Nat Methods 12,
553–560 (2015).

7. Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity
purification-mass spectrometry data. Nat Methods (2013).

8. Boulon, S. et al. Establishment of a protein frequency library and its application
in the reliable identification of specific protein interaction partners. Mol Cell
Proteomics 9, 861–879 (2010).

9. Stumpf, M. P. H. et al. Estimating the size of the human interactome. Proc Natl
Acad Sci USA 105, 6959–6964 (2008).

10. Franceschini A, Jensen LJ et al. STRING v9.1: protein-protein interaction
networks, with increased coverage and integration. Nucleic Acids Research. 2013
Jan. doi: 10.1093/nar/gks1094.

11. Sara Mostafavi, Debajyoti Ray, David Warde-Farley, Chris Grouios and Quaid
Morris. GeneMANIA: a real-time multiple association network integration
algorithm for predicting gene function. Genome Biology. 2008
June;https://doi.org/10.1186/gb-2008-9-s1-s4.

12. Rintaro Saito, Trey Ideker et al. A travel guide to Cytoscape plugins. Nature
Methods 9, pages 1069–1076 (2012).

13. Huttlin EL, Gygi SP, Harper JW et al. Architecture of the human interactome
defines protein communities and disease networks. Nature. 2017 May. doi:
10.1038/nature22366.

14. Huttlin EL, Gygi SP et al. The BioPlex Network: A Systematic Exploration of
the Human Interactome. Cell. 2015 Jul 16. doi: 10.1016/j.cell.2015.06.043.

August 22, 2019 12/14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/744656doi: bioRxiv preprint 

https://doi.org/10.1101/744656
http://creativecommons.org/licenses/by-nc/4.0/


15. Meldal BH, Orchard S et al. The complex portal–an encyclopaedia of
macromolecular complexes. Nucleic Acids Res . 2015 Jan 2015. doi:
10.1093/nar/gku975.

16. Birgit HM Meldal and et al. Complex Portal 2018: extended content and
enhanced visualization tools for macromolecular complexes. Nucleic Acids
Research. 2018 Oct 24. doi: 10.1093/nar/gky1001.

17. Samuel Kerrien, Henning Hermjakob and et al. The Intact molecular interaction
databse in 2012. Nucleic Acids Research.Volume 40, Issue D1,1 January 2012,
pages D841-D846.

18. Madalina Giurgiu, Andreas Ruepp et al. CORUM: the comprehensive resource of
mammalian protein complexes—2019 . Nucleic Acids Research, 2019 January 08.
doi: 10.1093/nar/gky973.
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