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SIGNIFICANCE 11 

Unsustainable exploitation of natural resources is a major driver of biodiversity loss. Up to a 12 
third of the world’s biodiversity is considered threatened by trade, but a lack of traceability 13 
methods for traded products impedes evaluation of international supply chains and the global 14 
impacts of trade on biodiversity. In this study, we pioneer the use of target capture-based 15 
genomic DNA barcoding. We compare this with standard DNA barcodes and complete plastid 16 
genome sequences for the identification of plants species in trade and for tracing their 17 
geographic origin. The target-capture barcoding approach described here presents a major 18 
advance for tracing the geographic origin of plant-based food and medicines and establishing 19 
the identity of illegally traded species. It enables better understanding and targeting of 20 
conservation action, and enhances capacity to assess the quality, safety and authenticity of 21 
traded products.   22 

ABSTRACT 23 

Uncontrolled and unsustainable trade in natural resources is an increasingly important threat to 24 
global biodiversity. In recent years, molecular identification methods have been proposed as 25 
tools to monitor global supply chains, to support regulation and legislative protection of species 26 
in trade, and enhancing consumer protection by establishing whether a traded product contains 27 
the species it is supposed to contain. However, development of an effective assay that routinely 28 
provides species-level identification and information on geographical origin of plants remains 29 
elusive, with standard plant DNA barcodes often providing only ‘species group’ or genus-level 30 
resolution. Here, we demonstrate the efficacy of target-capture genomic DNA barcoding, based 31 
on 443 nuclear markers, for establishing the identity and geographic origin of samples traded 32 
as the red-listed medicinal plant Anacyclus pyrethrum (L.) Lag. We also use this approach to 33 
provide insights into product adulteration and substitution in national and international supply 34 
chains. Compared with standard plant DNA barcodes and entire plastid genome sequences, the 35 
target capture approach outperforms other methods, and works with DNA from degraded 36 
samples. This approach offers the potential to meet the ‘holy-grail’ of plant DNA barcoding, 37 
namely routine species-level DNA-based identification, and also providing insights into 38 
geographic origin. This represents a major development for biodiversity conservation and for 39 
supporting the regulation and monitoring of trade in natural plant products. 40 
 41 
Keywords: DNA barcoding, sustainability, hybrid-capture, genomic barcoding, endangered 42 
species, medicinal plants, supply chain, international trade  43 
  44 
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Human exploitation of natural resources is a major challenge for biodiversity conservation and 45 
sustainable development. Global trade and consumer demand for natural products provide 46 
increasing threats to species (1, 2), and at the same time lead to markets where regulation and 47 
authentication is extremely difficult (3–5). Most traded plant products are from wild 48 
populations and over-harvested: increasing scarcity results in higher prices, and incentivises 49 
adulteration, substitution and poaching (6–9). In recent decades, international conventions 50 
including the Convention on Biological Diversity (CBD) and the Convention on International 51 
Trade in Endangered Species (CITES) have sought to regulate the trade of threatened species. 52 
In parallel, the World Health Organisation has developed guidelines for safety monitoring of 53 
herbal medicines in pharmacovigilance systems (4) and the Food and Agriculture Organisation 54 
regulates international trade of cultivated plant products (10). However, implementing these 55 
regulations and guidelines is hampered by difficulties identifying plant products in trade. 56 
Multiple, complex and interacting supply chains can co-exist for a single plant product (11, 57 
12). Traded plants are often not identifiable to species by their morphology or chemistry, as 58 
they may be dried, powdered, processed, or commercialised in mixtures with other products. 59 
In addition, the design, implementation and enforcement of successful conservation actions, 60 
and/or assessments of product quality and authenticity, often require the identification of the 61 
geographic origin of species in trade. This is difficult as the development of efficient methods 62 
to trace and identify traded products to their geographical area of origin are still in their infancy.   63 

DNA barcoding is highly effective for species-level identification in animals using a 64 
portion of the mitochondrial marker Cytochome Oxidase 1 (COI). In plants, standard DNA 65 
barcoding involve using varying combinations of one to four plastid DNA regions (rbcL, matK, 66 
trnH-psbA, trnL) and/or the internal transcribed spacers of nuclear ribosomal DNA (nrDNA 67 
ITS). Although these markers are very informative in many cases, no single marker or 68 
combination of these markers routinely provides complete species-level resolution, especially 69 
in species-rich groups (13, 14), let alone provide population level assignment.  70 

The development of high throughput sequencing (HTS) using new sequencing 71 
chemistries and platforms offer opportunities to extend the concept of DNA barcoding in plants 72 
(15–17). In addition to sequencing standard barcoding loci in a more cost-effective fashion, 73 
two major approaches have been proposed for increasing the resolution (and coverage) of plant 74 
DNA barcoding. Shallow pass shotgun sequencing (genome skimming) is now frequently used 75 
to recover organellar genomes and nuclear ribosomal DNA sequences, increasing the amount 76 
of data per sample, leading to some increases in resolution (18–22), and workflows and 77 
bioinformatic pipelines are becoming increasing refined for this approach (23–25). However, 78 
at present, cost constraints mean that most genome skimming barcoding projects only have 79 
sufficient sequencing depth to recover comparative data from multiple samples for multi-copy 80 
regions such as plastid genomes and ribosomal DNA; these regions represent a limited number 81 
of independent loci, ultimately constraining resolving power (26–28). Target capture 82 
sequencing offers the potential to overcome this, by efficiently targeting hundreds of low-copy 83 
nuclear markers providing access to a much greater number of independent data points per unit 84 
of sequencing effort (29). Like genome skimming, target capture is successful in sequencing 85 
degraded DNA samples (30, 31), and can be used to sequence hundreds of samples at the same 86 
time (32). It can also be designed to recover standard DNA barcodes in the same assay (33). 87 
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Although target capture has been advocated as a powerful tool for molecular identification of 88 
plants, its utility in a barcoding context remains untested to-date (16, 22, 34).  89 

We evaluated the power of target-capture DNA barcoding with an investigation of the 90 
traceability of plant products, focusing on an internationally traded and vulnerable medicinal 91 
plant species, Anacyclus pyrethrum (L.) Lag., widely used in traditional Arabic and Ayurvedic 92 
medicine. This exemplar case includes a well-established international trade chain (35), and 93 
classic challenge for plant molecular identification such as a recent radiation, frequent 94 
hybridization (36, 37) and a large genome size (38, 39).  95 

The genus Anacyclus (Asteraceae) comprises 12 species of annual and perennial weedy 96 
herbs with partly overlapping geographic ranges around the Mediterranean basin (36, 40, 41). 97 
Some species are abundant and have wide geographical ranges (for example, A. clavatus 98 
(Desf.) Pers. and A. radiatus Loisel.), whereas others are rare and have restricted ranges (for 99 
example, A. maroccanus (Ball) Ball and A. pyrethrum (L.) Lag.). Only A. pyrethrum is used in 100 
traditional herbal medicine.  101 

Anacyclus pyrethrum is endemic to Morocco, Algeria and southern Spain (36, 41), and 102 
has a long history of use in Islamo-Arabic, European, and Indian Ayurvedic medicine (42–45). 103 
In the 13th century, Ibn al-Baytār wrote that the plant was “known across the world” and traded 104 
from the Maghreb to all other areas (46). Its popularity as a medicinal plant stems from the 105 
many pharmacological activities of its roots (47). In Morocco, two varieties of A. pyrethrum 106 
are distinguished, var. pyrethrum and var. depressus, the first being more potent and up to ten 107 
times more expensive than the second (48). Today, both varieties are harvested from the wild 108 
and used extensively for the treatment of pain and inflammatory disorders across Morocco (48–109 
52) and Algeria (53–55), as well as the Middle East (42) and the Indian sub-continent (56, 57). 110 
A. pyrethrum is still traded today from the Maghreb to India (58, 59) and Nepal (56), and is 111 
known to be over-harvested and is increasingly difficult to find in local markets in Morocco 112 
(48, 50, 52, 60). Collectors are proficient in identifying the plant and its two varieties, but 113 
material is possibly misidentified and adulterated along the chain of commercialisation (48, 50, 114 
61, 62). 115 

Here we apply target-capture genomic barcoding to distinguish Anacylus species and 116 
geographical races, to identify traded Anacylus root samples in the national and international 117 
supply chains, and compare this novel approach with plastid genome and nrDNA ITS barcodes. 118 

 119 
RESULTS  120 

We constructed a reference database of DNA sequences from fresh and herbarium specimens, 121 
consisting of 83 individuals of 10 Anacyclus species, and 5 individuals representing outgroup 122 
species. Four datasets were retrieved from our shotgun and target capture sequencing methods, 123 
standard barcode markers (matK, trnH-psbA, the trnL intron and rbcL), nrDNA (ITS), along 124 
with complete plastid genomes (from shotgun genome skimming) and hundreds of nuclear 125 
markers (from target capture). We then used this reference database to assess the identity and 126 
geographic origins of 110 root samples acquired from traded materials. We show that the target 127 
capture approach is the most powerful method to identify plant species in trade and their 128 
geographic origin. 129 
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Data recovery for plastome, standard barcode loci, nrDNA and skimming and target 130 
capture data  131 

The data recovery based on target capture outperforms shotgun sequencing (Figure 1). On 132 
average, 2.3 million reads were obtained from shotgun sequencing per sample after quality 133 
control filtering and 1.6 million reads for target capture. The shotgun data produced, ITS, 134 
plastome and standard barcodes, with retrieval rates of 93% of samples for ITS, 56% for the 135 
plastid genomes and 46% to 55% for the standard barcodes (Figure 1); 73% of the samples 136 
were retrieved using target capture with 303X coverage for the targeted nuclear loci (Table 137 
S3). The resulting aligned matrices for each of the datasets were 633 bp from ITS (including 138 
5.8S), 4408 bp from the standard barcoding markers (1523 bp matK, 1438 bp rbcL, 500 bp 139 
trnH-psbA, 947 bp trnL), and 289,236 bp from 443 nuclear loci recovered from the target 140 
capture approach (for the standard barcodes, we included the full length of the coding regions 141 
of rbcL and matK). The bioinformatics workflow for data analyses is described in Figure S1. 142 

Comparative levels of species discrimination using different approaches 143 

The data from shotgun sequencing (nrDNA, plastome phylogenies, standard barcodes) 144 
highlight the complex evolutionary history of Anacyclus. The nrDNA phylogeny lacks 145 
resolution in general (Figure S2-3). The outgroups Tanacetum, Matricaria, Achillea, 146 
Othanthus and Tripleurospermum have well-supported bootstrap values, but within the genus 147 
Anacyclus, only A. atlanticus Litard. & Maire, A. maroccanus and A. radiatus are highly 148 
supported. The plastome phylogeny shows very good support at genus level for the Anacyclus 149 
node, and at species level for the outgroups. The lack of variation in the plastid genome within 150 
the genus Anacyclus results in little phylogenetic support with no species-specific clusters 151 
recovered (Figure S4-5). The standard barcode markers, matK, rbcL, trnH-psbA and trnL 152 
(Figure S6-9) displayed low levels of resolution at the species level.  153 

The 443 loci recovered by target capture, led to a well-resolved phylogeny and high 154 
levels of species discrimination: all the genera in the Matricariinae tribe and all interspecific 155 
relationships are well-supported, with most nodes showing posterior probabilities (PP) of 1 156 
(Figure S10-11). Within Anacyclus, all species, sub-species and varieties are well supported. 157 
PP are lower for A. monanthos (PP = 0.75). The complex of hybrid species composed of A. 158 
clavatus, A. homogamos, and A. valentinus is polyphyletic and shows signs of hybridization 159 
and incomplete lineage sorting. Intraspecific nodes have PP varying between 0.27 and 1, 160 
mostly depending on species population structure. 161 
 162 
 163 
Assessment of Anacyclus trade 164 
 165 

Interviews with 39 harvesters, middlemen, retailers, and wholesalers in various 166 
Moroccan cities, indicate that the national and international trade of Anacyclus pyrethrum 167 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 22, 2019. ; https://doi.org/10.1101/744318doi: bioRxiv preprint 

https://doi.org/10.1101/744318
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

follow two separate supply chains. Retailer herbalists in Moroccan cities are supplied by 168 
middlemen who acquire the plant from local harvesters from rural communities. These retailers 169 
typical hold between a few hundred grams to one kilogram of the plant material in their shops. 170 
In contrast, wholesalers who export the plant internationally, hire professional harvesters who 171 
travel across the species geographical range to collect plant material. Harvested roots are 172 
brought directly from the wild to the export companies in Rabat, Casablanca and Tangier, from 173 
where they enter the international market, including supply of samples to India. According to 174 
informants from export companies, between 3-10 tons of the plant product can be stocked at a 175 
time. 176 

Our examination of material in trade involved screening a total of 62 bags each 177 
containing an average of 25g of dry roots. Initial morphological examination of these samples 178 
identified obvious non-Anacyclus adulterants in 39/66 batches. The adulterants were present 179 
with a proportion from 3% to 100% with an average of 42%. The non-Anacyclus adulterants 180 
were found at high frequency in collections from traditional healers and herbalists, less so from 181 
collectors, wholesalers and export companies (Figures 2-3).  182 

We selected at random 110 individual roots for DNA analysis from the 62 root batches. 183 
Of these 98 had a morphology consistent with Anacyclus, and 12 which were classed as similar 184 
to Anacyclus but likely to be non-Anacyclus based on their morphology. We recovered shotgun 185 
sequence data from nine of these 12 non-Anacylus roots and using sequences queries against 186 
GenBank, the ITS and plastid sequences obtained a genus-level identification (= Plantago sp.). 187 

Of the 98 Anacyclus roots, 18 had no recoverable DNA sequences via any of our 188 
methods, with 80/80 of the remaining samples working for target capture vs 61/80 for shotgun 189 
sequencing). Extracting plastome sequences from the shotgun sequencing enabled 190 
identification of 7 roots to the species level, with the remainder identified as Anacyclus sp. 191 
(Figure 1). Neither ITS nor any of the standard barcodes were able to discriminate any of these 192 
samples below the genus level (Figure S6-9).  193 

The target capture data gave much higher resolution within Anacyclus. In our 194 
investigation of the national market in Morocco, our analyses of six individual root samples 195 
from four rural community collectors identified three Anacyclus var. pyrethrum and three var. 196 
depressus. Our analysis of five samples from three wholesaler ‘middle-men’ in Morocco 197 
identified two Anacyclus var. pyrethrum and three var. depressus. Our sequences from 18 198 
samples from 8 herbalists revealed 11 Anacyclus var. pyrethrum and seven var. depressus. 199 
Likewise, our seven samples from four traditional healer sources identified four Anacyclus var. 200 
pyrethrum, and three var. depressus. In the international market, our 16 sequenced samples 201 
from three export companies in Morocco identified eight Anacyclus var. pyrethrum, six var. 202 
depressus, and two A. homogamous. Our analysis of 28 samples from 17 herbalists in India 203 
identified three Anacyclus var. pyrethrum and 25 var. depressus.  204 

Geographical source  205 

Market samples in Morocco originate both from various Moroccan areas as well as Algeria, 206 
and material from all of these populations of origin can be found in Indian market samples 207 
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(Table S3, Figure S11). Of the 80 non-adulterated roots which we identified to species level 208 
using target capture, we were able to associate 58% to a specific geographic region (Figure 2, 209 
Table S2). Using phylogenetic analysis, root samples of A. pyrethrum var. pyrethrum clustered 210 
with reference material from the High Atlas, and A. pyrethrum var. depressus roots clustered 211 
with reference material from different regions in Morocco, including the Rif Mountains, the 212 
High Atlas and the Middle Atlas. Evidence for the international trade from Algeria to Morocco 213 
is highlighted by a distinctive clade that includes traded roots collected from west Algeria 214 
(Figure S12). The geographic origin was only resolvable with target capture data; standard 215 
barcoding markers, nrDNA and plastome data lacked variation, resolution or both. 216 

DISCUSSION 217 

This study illustrates the potential for target-capture based DNA barcoding to form the next 218 
wave of standard plant DNA-barcoding tools and provide the greatly needed species-level 219 
resolution. A key rate limiting step for the standard plant barcodes is that they are 220 
fundamentally recovering data from just one or two independent loci (plastid DNA and 221 
nrDNA), which often show trans-specific polymorphism and barcode sharing among related 222 
species (63). Even using complete plastid genome sequences suffers from the same problem, 223 
as the data are all physically linked in a single non-recombinant uni-parentally inherited locus 224 
(22). In this study, using entire plastid genomes or plastid barcode markers, and/or ITS we 225 
recovered very limited resolution below the genus level (Figure 1, Figure S4). In contrast, our 226 
target capture approach using hundreds of nuclear loci yields significantly higher molecular 227 
identification success and more accurate resolution to species and even population level (Figure 228 
1).  229 
Species identification, species in trade, and geographic origins of Anacyclus 230 

These data provide new insights into trade of A. pyrethrum and highlight the extent of 231 
adulteration and the scarcity of A. pyrethrum var. pyrethrum (Figures 2-3). Only a small 232 
proportion of the tested samples from herbalists and traditional healers were the potent A. 233 
pyrethrum var. pyrethrum, with the Indian market in particular dominated by var. depressus. 234 
In both Morocco and India some individual sellers had entirely or almost entirely adulterated 235 
product. All of the non-Anacyclus roots we sequenced were identified as Plantago spp. by shot-236 
gun sequencing, despite being sampled from six different localities including Morocco and 237 
India. As Plantago roots are similar in appearance to Anacyclus, it is possible that they are 238 
deliberately added as a ‘difficult to identify’ adulterant which may go unnoticed by non-239 
specialists.   240 

Our analysis of samples from collectors, wholesalers and export companies detected 241 
much less adulteration at this point in the supply chain. Collection of A. pyrethrum var. 242 
pyrethrum is carried out by professional harvesters employed by export companies who travel 243 
across the country and are considered poachers by local communities (64). Local harvesters 244 
have increasing difficulty to supply local trade chains (48, 64), which may finally result in 245 
increased adulteration rates in the poorly-governed, national value chains (Figure 2), as has 246 
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also been observed elsewhere (11, 12). Our results also identify previously unreported 247 
international trade in North Africa prior to export to the Indian sub-continent (Figure 2,3, S11). 248 
We provide evidence that export companies in Morocco source material not only in this 249 
country, but also from neighbouring Algeria. Applying this molecular identification approach 250 
enables us to distinguish samples at population level and uncover these hidden international 251 
sourcing channels.  252 

High national and international demand for A. pyrethrum likely encourages its 253 
overharvesting and adulteration. As the plant is a remedy of the Indian pharmacopoeia, its 254 
demand is likely to increase along with that of other Ayurvedic medicines (65). Although A. 255 
pyrethrum has been assessed to be vulnerable internationally (35) and endangered in Morocco 256 
on the IUCN Red List, the plant is not listed in the CITES appendices and its international trade 257 
is not regulated. Nonetheless, continued overharvesting is driving wild populations to critical 258 
levels and conservation policies are necessary. Common strategies to conserve overharvested 259 
medicinal plants often include collection and trade restrictions as well as cultivation (6). 260 
Cultivation is often proposed as a solution to both conservation issues and sourcing high 261 
quality, appropriately identified material (6, 7, 66). However, trade of cultivated plants has not 262 
been as successful as expected due to beliefs that plants harvested from the wild are more 263 
potent and thus preferable (67). This kind of demand requirements necessitate trade monitoring 264 
and restrictions. Only with fine-grained mapping of sourcing areas and supply chains, as our 265 
results highlight for A. pyrethrum, trade monitoring and conservation can be achieved. 266 

 267 
Future prospects for plant DNA barcoding 268 
Key criteria for developing new DNA barcoding approaches include resolving power (telling 269 
species apart), recoverability (enabling use on a wide diversity of tissue sources), and cost and 270 
efficiency (enabling scaling over very large sample sets).  271 

In terms of resolving power, the target capture approach used here provides a step-272 
change over plant barcodes based on plastid sequences and ITS. The key enabling step is access 273 
to multiple nuclear markers, removing the sensitivity of the identification to introgression of 274 
one or two loci as is the case for barcodes from rDNA or the plastid genome.  275 

In terms of recoverability, the successful recovery of sequences via target capture 276 
depends on how closely related the sampled species are to the reference set on which the baits 277 
were designed, and/or the level of variation in the loci that form the bait set (68, 69). In the 278 
current study, the baits were designed from Anacyclus and related genera. This optimizes their 279 
specificity to our study group and enabled their successful high-resolution application for 280 
assessing trade. A clear challenge for wider use in DNA barcoding, is applicability over much 281 
greater phylogenetic distances. The recently published universal angiosperm baits (70, 71), 282 
designed to recover 353 loci from a wide diversity of flowering plants offer great potential 283 
here. An immediate priority is to assess the degree to which this universal bait set (71) is 284 
variable enough to routinely provide species-level resolution. In addition, there is a need for a 285 
more general evaluation of when / how and at what scale to most effectively to combine taxon-286 
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specific bait sets (as used here) with universal bait sets, to simultaneously obtain very high 287 
resolution and sequencing success over wide phylogenetic distances.  288 

Another important aspect to recoverability is efficacy with degraded DNA. Drying, 289 
storage, and transportation affect the quality of plant material in trade and can cause extensive 290 
DNA degradation (12, 72, 73). In consequence, traded samples have similar challenges to 291 
working with ancient DNA, herbarium samples or archaeological remains. Target capture is 292 
particularly well suited to this challenge (68, 69, 74).   Although both shotgun sequencing can 293 
also be very effective on degraded material (30, 75, 76), in the current study, our recovery rate 294 
was greater for target capture than shotgun sequencing (Figure 1), and we recovered data from 295 
100% of the samples used for establishing the reference library and over 70% of the samples 296 
in trade. This 70% success rate for hundreds of nuclear loci providing high resolution from 297 
suboptimal tissue of traded samples is noteworthy. The other mainstream approach for highly 298 
degraded DNA is a portion of the  chloroplast trnL (UAA) intron, specifically the P6 loop (10–299 
143 bp) (77). This has been highly successful in recovering sequence data from degraded 300 
samples (78–84). However, this short region of the plastid genome has a low variation at the 301 
species level and does not typically discriminate among con-generic species (77).  302 

In terms of costs, although sequencing costs continue to fall, the current protocols for 303 
target capture (including library construction and sequencing) are still expensive, and equate 304 
to 70 USD per sample. This is manageable for well-resourced projects and high value 305 
applications, but still prohibitively expensive for many large-scale biomonitoring projects or 306 
less well-resourced projects. Ongoing work is required to optimize protocols to drive these 307 
costs down, as has been done for standard barcoding approaches (85).  308 

 309 
Conclusion  310 

In plants, the frequent sharing of plastid and ribosomal sequences among con-generic 311 
species, coupled with the difficulty of routinely accessing multiple nuclear loci, has acted as a 312 
constraint on the resolution of DNA barcoding approaches. Current advances in sequencing 313 
technology and bioinformatics are removing this constraint, and offer the potential for a new 314 
wave of high-resolution identification tools for plants. These approaches, such as target capture 315 
have the capability to distinguish species and populations, providing insights into diversity and 316 
ecology, as well as the multitude of societal applications which require information on the 317 
identification and provenance of biological materials.  318 
 319 
Materials and Methods 320 

Sample collection. Forty-two wild populations (n=72 individuals) of Anacyclus were sampled 321 
in Morocco and Spain to build a reference database. The sampling was complemented with 322 
eleven herbarium voucher specimens of species occurring elsewhere in the Mediterranean. The 323 
outgroups included two species of Matricaria, two species of Achillea, and one species of 324 
Otanthus. The specimen origins and vouchers number are listed in Table S4 and Figure S12. 325 
One hundred and ten trade vouchers consisting of 50g of roots were bought from collectors, 326 
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herbal shops, middle-men, traditional healer, wholesalers, and export companies in Morocco 327 
and India (Table S3).  328 

Trade information. During the acquisition of samples from collectors and traders in Morocco 329 
and India, semi-structured interviews were conducted to enquire about the trade of Anacyclus. 330 
In total, 39 informants were interviewed and asked where the plant material was sourced, to 331 
whom it was sold and in what quantities, for what price, and if there were several qualities of 332 
this medicinal plant. The quantity of this product was weighted in herbalist shops and estimated 333 
in export companies, estimates were given by informants. Interviews were carried out 334 
anonymously and followed the International Society of Ethnobiology Code of Ethics (86). 335 

Extraction and Library preparation. DNA from reference and traded vouchers was extracted 336 
from approximately 40 mg of dry leaf or root material using the DNeasy Plant Mini Kit 337 
(Qiagen). Total DNA (0.2-1.0 µg) was sheared to 500 bp fragments using a Covaris S220 338 
sonicator (Woburn, MA, USA). Dual indexed libraries were prepared using the Meyer and 339 
Kircher protocol (87) for shotgun sequencing and target capture. 340 
Target capture. We designed 872 low-copy nuclear markers and associated RNA probes by 341 
following the Hyb-Seq pipeline, with minor adjustments (SI). For target capture enrichment, 342 
twelve equimolar pools were prepared with ten to 24 samples and an average 300 ng of input 343 
DNA per pool. The RNA probes were hybridized for 16 hours before target baiting, and 14 344 
PCR cycles were carried out after enrichment following the MyBaits v3 manual. The enriched 345 
libraries and shotgun libraries were sequenced on two Illumina HiSeq 3000 lanes (150bp 346 
paired-end). 347 
Data Processing. The sequencing runs were trimmed and quality filtered using Trimmomatic 348 
(88). Low-copy nuclear markers and their alleles were retrieved for each sample. First, the 349 
reads were mapped against the selected low-copy nuclear loci (SI) using BWA v0.7.5a-r405 350 
(89). Duplicate reads were removed using Picard v2.10.4 (90). Alleles were phased for each 351 
marker and individual using SAMtools v1.3.1 (91). The last step of the pipeline combined the 352 
retrieved alleles into single gene matrices. Plastome and nrDNA sequences were recovered by 353 
pooling shotgun and target enrichment sequencing data. Plastid genomes were build using 354 
MITOBim v1.8 (23). nrDNA sequences were recovered using BWA by mapping the reads to 355 
the reference nrDNA of Anacyclus pyrethrum (KY397478) for Anacyclus species and traded 356 
samples, to the reference nrDNA of Achillea pyrenaica Sibth. ex Godr. (AY603247) for 357 
Otanthus and Achillea, and to the reference nrDNA of Matricaria aurea (Loefl.) Sch.Bip. 358 
(KT954177) for Matricaria samples.  359 
Phylogenomics. The recovered matrices (nuclear genes, nrDNA and plastomes) were aligned 360 
with MAFFT (92), refined with MUSCLE (93) and filtered with Gblocks (94). Phylogenies 361 
were inferred using RAxML v8.0.26 (95), with 1000 bootstrap replicates under the 362 
GTRGAMMA model. For the low-copy nuclear genes, the species tree was inferred from the 363 
individual nuclear gene trees under the multi-species coalescence (MSC) framework with 364 
ASTRAL-III v5.5.9 (96). The multi-alleles option in ASTRAL-III was used for reconciliation 365 
of the independent evolutionary histories of the alleles. The molecular identification of traded 366 
roots was assessed from the MSC tree and posterior probabilities (PP) greater than 0.95.  367 
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Results from morphological identification of the traded roots (described in (SI)) were combined 368 
with results from molecular identification, and samples were identified according to their 369 
position in the supply chain (Figure 2) and geographical origin (Figure 3). 370 
  371 
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 661 
Figure 1: Sequencing recovery and identification success for the traded samples. The figure 662 
shows the percentage of samples for which useful marker sequences were successfully 663 
retrieved for molecular identification by ITS, plastid barcodes, plastomes and nuclear markers. 664 
Where no sequence data was recovered or identification above the genus level, samples are 665 
classed as NDR (no data recovered). For the samples that produced useable sequence data, the 666 
proportion of samples that resulted in identification at the genus, species and population levels 667 
is given. 668 
 669 

Figure 2: National and international supply chains of A. pyrethrum. Pie charts represent the 670 
proportion of A. pyrethrum (light and dark blue represent var. depressus and var. pyrethrum 671 
respectively) and adulterated samples (orange and brown for A. homogamos and other 672 
adulterants) by each stakeholder. We were unable to obtain samples from wholesalers/middle-673 
men in India or professional collectors in Morocco (indicated by square boxes). 674 

 675 
Figure 3: Sample locations are shown with coloured circles according to the type of 676 
stakeholder. A pie-chart with the proportions of adulteration and identified species is 677 
represented for each location in (a) Morocco (native range) and (b) India (exported material), 678 
adulterated roots are shown in orange, adulteration with A. homogamos in in brown, and the 679 
two varieties of A. pyrethrum in blue. 680 
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