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Abstract 6 

Feedforward Convolutional Neural Networks (ffCNNs) have become state-of-the-art models both 7 

in computer vision and neuroscience. However, human-like performance of ffCNNs does not 8 

necessarily imply human-like computations. Previous studies have suggested that current ffCNNs 9 

do not make use of global shape information. However, it is currently unclear whether this 10 

reflects fundamental differences between ffCNN and human processing or is merely an artefact 11 

of how ffCNNs are trained. Here, we use visual crowding as a well-controlled, specific probe to 12 

test global shape computations. Our results provide evidence that ffCNNs cannot produce 13 

human-like global shape computations for principled architectural reasons. We lay out 14 

approaches that may address shortcomings of ffCNNs to provide better models of the human 15 

visual system. 16 

 17 

Introduction 18 

Vision is a complex process that remained beyond the reach of computer systems for decades. 19 

Only recently, deep feedforward Convolutional Neural Networks (ffCNNs) have shown 20 

tremendous success in an impressive number of computer vision tasks, ranging from object 21 

recognition (Krizhevsky, Sutskever, & Hinton, 2012) and segmentation (Girshick, Radosavovic, 22 

Gkioxari, Dollár, & He, 2018), to image synthesis (Goodfellow et al., 2014; Karras, Laine, & Aila, 23 

2018) and scene understanding (Eslami et al., 2018). ffCNNs and the human visual system share 24 

several similarities. For example, ffCNN neural activities show high correlations with human and 25 

non-human primate neural activities (Khaligh-Razavi & Kriegeskorte, 2014; Nayebi et al., 2018; 26 
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Yamins et al., 2014) and the receptive fields of neurons in the earlier layers of ffCNNs are 27 

qualitatively similar to those in the retina and early visual cortex (Lindsey, Ocko, Ganguli, & Deny, 28 

2019; Zeiler & Fergus, 2014). Because of these similarities, ffCNNs were proposed as models of 29 

the human visual system (Khaligh-Razavi & Kriegeskorte, 2014; Kietzmann, McClure, & 30 

Kriegeskorte, 2018; Nayebi et al., 2018; VanRullen, 2017; Yamins et al., 2014). However, human-31 

like performance of ffCNNs does not necessarily imply human-like computations. Importantly, 32 

several studies have shown that ffCNNs usually rely on local features while humans strongly rely 33 

on global shape information (Baker, Lu, Erlikhman, & Kellman, 2018; Brendel & Bethge, 2019; 34 

Doerig et al., 2019; Kim, Bair, & Pasupathy, 2019).  35 

There are two main options to explain why ffCNNs do not process global shape like humans. 36 

First, this difference may come from training. ffCNNs are typically trained on ImageNet (Deng et 37 

al., 2009). It is interesting and surprising that local features seem to be the easiest way for these 38 

networks to classify natural images. However, a different training set in which local features are 39 

not predictive of the classes may require networks to rely on global shape computations. To 40 

address this possibility, Geirhos et al. (2018) created a new dataset in which textural information 41 

was of no avail for object recognition. They used a textural algorithm (Gatys, Ecker, & Bethge, 42 

2016) to randomly swap textures in ImageNet. For example, the texture of a cat image was 43 

replaced by elephant-skin texture. This training dataset biased an ffCNN (ResNet50; He, Zhang, 44 

Ren, & Sun, 2016) towards shape-level features, because textural information was no longer 45 

useful for classifying this dataset. They validated the network’s shape-bias by showing increased 46 

robustness to local noise and textural changes.  47 

Alternatively, ffCNNs may be incapable of matching human global computations for principled 48 

architectural reasons. Even though Geirhos et al.’s network was able to ignore local features, it 49 

may not use global computations in the same way as humans. One difficulty in addressing this 50 

question is that there is no consensus about how to experimentally diagnose how deep networks 51 

compute global information.  52 

To specifically investigate local vs. global processing in humans and machines, we use visual 53 

crowding as an experimental probe. In crowding, perception of a target deteriorates in the 54 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/744268doi: bioRxiv preprint 

https://doi.org/10.1101/744268
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

presence of flanking elements (Fig. 1a). Interestingly, the global configuration of flankers across 55 

the entire visual field determines crowding. For example, adding flankers as far away as 8.5 56 

degrees from the 200 arcsec target can improve performance depending on the global 57 

configuration (uncrowding; Fig.1a; Manassi, Lonchampt, Clarke, & Herzog, 2016; Manassi, Sayim, 58 

& Herzog, 2012). This strong dependency of performance on global configurations provides a 59 

qualitative signature which can easily be tested in models. Importantly, (un)crowding is 60 

ubiquitous since elements rarely appear in isolation. Furthermore, (un)crowding occurs across 61 

multiple paradigms and is not restricted to vision (Herzog & Fahle, 2002; Oberfeld & Stahn, 2012; 62 

Overvliet & Sayim, 2016; Sayim, Westheimer, & Herzog, 2010). Hence, (un)crowding is not an 63 

idiosyncratic effect related to a specific paradigm. It rather reflects a general strategy used by 64 

the brain. This kind of general strategy for vision is precisely what we expect models to explain. 65 

In ffCNNs, crowding may occur by pooling the target and nearby flankers along the processing 66 

hierarchy. We hypothesize that this mechanism may not produce uncrowding because simple 67 

pooling can only deteriorate target-relevant information when flankers are added (Fig. 1b). 68 

However, intuitions are not to be trusted in complex systems with millions of parameters. 69 

Furthermore, new global processing strategies may emerge in shape-biased networks such as 70 

Geirhos et al.’s. Hence, it is currently unclear whether ffCNNs can carry out human-like global 71 

computations that lead to (un)crowding. Here, we thoroughly investigated (un)crowding in 72 

AlexNet (Krizhevsky et al., 2012), an ffCNN that was used as a model of the human visual system 73 

(Khaligh-Razavi & Kriegeskorte, 2014; Zeiler & Fergus, 2014), ResNet50 (He et al., 2016), a more 74 

sophisticated ffCNN, and the shape-biased network by Geirhos et al. (2018). We provide 75 

experimental evidence suggesting that it is the architecture of ffCNNs that prevent them from 76 

performing human-like global computations, and not the training procedure.  77 
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 78 

Figure 1. a. (Un)crowding: In crowding, perception of a target deteriorates in the presence of nearby flankers. In this 79 

experiment, observers reported the horizontal offset direction of two vertical bars (i.e., a vernier) presented at 9° of 80 

eccentricity. The vernier was presented either alone (red dashed line) or surrounded by a flanker configuration (x-81 

axis). The y-axis shows the offset for which observers correctly report the vernier offset direction in 75% of the trials 82 

(threshold; performance is good when the threshold is low). When the vernier is presented alone, the task is easy 83 

(red dashed line). Adding a flanking square (column 1) makes the task much harder, a classic crowding effect. When 84 

more squares are added, performance recovers almost to the unflanked level (second column, uncrowding). 85 

Uncrowding strongly depends on the configuration (columns 2 to 8). For example, column 4 shows a configuration 86 

of flankers with a strong uncrowding effect. In comparison, column 5 has the same flankers but in a different 87 

configuration producing strong crowding. Reproduced from Doerig et al. (2019). b. Crowding in ffCNNs: In the 88 

feedforward framework of vision, embodied by ffCNNs, crowding occurs by pooling of visual features across a 89 

hiererachy of local feature detectors. In this example, a stimulus with five squares and a vernier target is presented. 90 

Each circle represents a neuron and shows the elements in its receptive field. In early layers, receptive fields are 91 

small and the vernier is in the receptive field of a single neuron (green). Neighbouring neurons respond to parts of 92 

the squares (blue). At this level, the vernier is well represented. In the next layer, however, information about the 93 

vernier is pooled with information of the sourrouding flanker. Vernier-related information is “corrupted” by the 94 

flankers, making the offset direction harder to decode (crowding; blue-green). In subsequent layers, even more 95 

target-unrelated information is pooled. For this reason, we hypothesize that adding more flankers may always lead 96 

to more crowding in ffCNNs.  97 
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 98 

Methods 99 

Code and supplementary material are available online at https://github.com/adriendoerig/Doerig-Bornet-100 

Choung-Herzog-2019.  101 

Experiment 1a 102 

We presented different (un)crowding stimuli to AlexNet (pretrained on ImageNet) and assessed 103 

how information about the target vernier is preserved along the network hierarchy. We used 104 

decoders to detect vernier offset direction based on the activity in each layer (Fig. 2). Each layer 105 

had its own decoder, consisting of batch normalization (Ioffe & Szegedy, 2015), followed by a 106 

hidden layer of 512 units, followed by an ELU non-linearity (Clevert, Unterthiner, & Hochreiter, 107 

2015), finally projecting to a softmax layer composed of 2 nodes coding for left and right offsets. 108 

The decoders were trained using Adam optimizers (Kingma & Ba, 2014) to minimize the cross-109 

entropy between the predicted and the presented vernier offsets. Each image in the training set 110 

consisted of a vernier plus a non-overlapping random configuration of flankers (composed of 111 

18x18 pixels squares, circles, hexagons, octagons, stars or diamonds). These configurations had 112 

between 1 and 7 columns and between 1 and 3 rows of flankers of the same shape. We added 113 

Gaussian noise to each image. Training was successful, i.e., the network was well able to detect 114 

the vernier offset direction in the training images. 115 

 116 
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Figure 2. Different stimuli were fed to AlexNet. AlexNet’s weights were pretrained on ImageNet and were frozen 117 

during the experiment. To investigate how well information about the vernier offset is preserved throughout the 118 

network hierarchy, we trained decoders to discriminate the vernier offset direction in each layer. In the training set, 119 

the vernier and a flanker configuration were simulatneously shown, but never overlapped (top). In the testing set, 120 

we presented 72 different (un)crowding configurations and measured performance for each configuration and each 121 

layer. In these testing images, the vernier was always surrounded by the flanker configuration (bottom). In this 122 

example, configurations of squares are shown, but we also used different shapes (see main text).  123 

 124 

Our main question was how the network generalizes to the (un)crowding stimuli. Importantly, 125 

during training, the vernier target and the flanking configurations were presented 126 

simultaneously but never overlapped (Fig. 2). During testing the vernier was surrounded by 127 

different flanker configurations, as in the psychophysical (un)crowding stimuli (Fig. 2). The 128 

testing set consisted of 72 different configurations of flankers with Gaussian noise. There were 129 

6400 trials per configuration with the configuration presented at different locations. For each 130 

layer of AlexNet, performance was measured as the proportions of correct vernier offset 131 

discrimination made by the decoder. We repeated this entire procedure 5 times, including 132 

training and testing, and report averaged performances. 133 

Experiment 1b 134 

We tested an ffCNN with a more sophisticated architecture (ResNet50) and the same ffCNN 135 

explicitly biased towards global shape computations (Geirhos et al.’s shape-biased version of 136 

ResNet50). To this end, we applied exactly the same procedure as in experiment 1a to both the 137 

original version of ResNet50 and Geirhos et al.’s shape-biased version. The only difference was 138 

that we used 64 hidden units instead of 512, because this achieved better performance (i.e., 139 

better classification performance on crowded conditions). 140 

Experiment 2 141 

In experiment 2, we investigated which parts of the stimulus configurations the network mainly 142 

relies on by using an occlusion sensitivity measure (similarly to Zeiler & Fergus, 2014). We used 143 

the networks with decoders trained in experiment 1. For a given configuration, we collected the 144 
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vernier offset decoder’s output at each layer. Then we slid a 6x6 pixels Gaussian noise patch over 145 

the entire configuration and measured for each patch position P and network layer L how much 146 

the noise patch affected the vernier offset discrimination. The noise patch had the same 147 

statistics as the background noise, effectively removing parts of the stimulus. The rationale is 148 

that when the patch occludes parts of the stimulus, which are important for classification, 149 

decoder predictions should be strongly affected. On the other hand, if the patch occludes an 150 

unimportant part of the stimulus, decoder predictions should not be affected. Since the global 151 

stimulus configuration matters for uncrowding, we were interested to see if the network relies 152 

on the global configuration or if it simply focused on the region close to the vernier.  153 

For each patch location P and layer L, we quantified how much the noise patch biased vernier 154 

offset classification towards or away from the correct response: 155 

𝑠𝑐𝑜𝑟𝑒𝑃,𝐿 =
{𝑇⃗ ∙ (𝑦𝑃,𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑥𝐿⃗⃗⃗⃗ )}𝑙𝑒𝑓𝑡_𝑣𝑒𝑟𝑛𝑖𝑒𝑟

2
+

{𝑇⃗ ∙ (𝑦𝑃,𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑥𝐿⃗⃗⃗⃗ )}𝑟𝑖𝑔ℎ𝑡_𝑣𝑒𝑟𝑛𝑖𝑒𝑟

2
  156 

Where 𝑥𝐿⃗⃗⃗⃗ = (𝑥1, 𝑥2)𝐿 is the output of the decoder for layer L on the original stimulus without a 157 

noise patch (𝑥1 and 𝑥2 respectively correspond to the network’s prediction for a left- or right-158 

offset vernier), 𝑦𝑃,𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑦1, 𝑦2)𝑃,𝐿 is the output of the decoder for layer L with the noise patch at 159 

position P and 𝑇⃗  is a vector equal to (+1,−1) if the correct vernier offset is left and (−1,+1) 160 

otherwise. To avoid biases related to offset direction, we computed the mean score of the left- 161 

and right-offset versions of each stimulus.  162 

Using this procedure, we obtained maps indicating which regions of a stimulus are most 163 

important for vernier offset discrimination. We used four different stimuli from Manassi et al. 164 

(2016): a vernier alone, a vernier flanked by one square (leading to crowding in humans), a 165 

vernier flanked by a row of seven squares (leading to uncrowding in humans), and a vernier 166 

flanked by a row of seven alternating squares and stars (no uncrowding in humans). Additional 167 

stimuli are shown in the supplementary material. 168 

 169 
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Results 170 

Experiment 1a 171 

Unlike humans, AlexNet shows crowding but not uncrowding. The vernier offset is easily 172 

decoded from each layer when the vernier is presented alone, and performance drops when a 173 

single flanker is added. Crucially, performance deteriorates further when more flankers are 174 

added, regardless of the shape type (Fig. 3a). Squares produced more crowding than circles, 175 

hexagons, octagons or diamonds, presumably because the vertical bars of the squares interfered 176 

with the vernier more strongly. These results hold for all layers of AlexNet (supplementary 177 

material).  178 

Fig. 3b shows that only the number of flanking shapes and not their configuration affects 179 

crowding in AlexNet, contrary to humans. This pattern of results is similar in all layers of AlexNet 180 

(supplementary material).  181 

Experiment 1b 182 

We applied the same analysis to the original ResNet50 and Geirhos et al.’s shape-biased version 183 

of ResNet50. The results for both networks are qualitatively similar to the results for AlexNet in 184 

experiment 1a (Fig. 3c&d). First, this shows that using a more sophisticated architecture (i.e., 185 

ResNet50) does not allow ffCNNs to explain global uncrowding effects. Second, crucially, Geirhos 186 

et al.’s method to bias ffCNNs towards shape does not lead to human-like shape level 187 

computations.  188 
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 189 

Figure 3. a. Vernier offset discrimination performance for AlexNet with an increasing number of identical flankers. The 190 

x-axis shows different flanker configurations. Each color corresponds to one flanker shape, and brighter colors 191 

indicate more flankers (from darkest to lightest: 1, 3, 5 & 7 identical flankers). The single dark blue bar on the left 192 

corresponds to the vernier alone condition. The y-axis indicates the percentage of correct vernier offset responses. 193 

Unlike humans, for whom performance improves when more identical flankers are added (Fig. 1c, columns 1&2; 194 

Manassi et al., 2016), performance deteriorates or stagnates for AlexNet with all flanker shapes. The results of this 195 

figure are decoded from layer 5 of AlexNet. Decoding vernier offsets from the other layers in AlexNet led to similar 196 

results (see supplementary material). b. Vernier offset discrimination performance for AlexNet with 72 configurations. 197 

The x-axis shows different flanker configurations sorted by number of flankers. Different colors correspond to 198 
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different kinds of flanker configurations. The labels correspond to the number of flankers in the configuration, and 199 

an asterisk indicates alternating shapes (e.g. square-circle-square-circle-square). From left to right: vernier alone, 200 

single flanker, 3 identical flankers, 5 identical flankers, 5 flankers alternating between two shapes, 7 identical 201 

flankers, 7 flankers alternating between two shapes and configurations of 3x7 flankers. The y-axis indicates percent 202 

correct of vernier offset discrimination for each flanker configuration (the dashed lines shows the mean percent 203 

correct for each kind of flanker configuration). Unlike humans, who show strong uncrowding depending on the 204 

configuration, only the number of shapes seems to affect crowding in AlexNet – and not the configuration. Although 205 

certain configurations with three flankers have a higher percentage of correct response than certain configurations 206 

with a single flanker, this effect is driven by the shape type and not by the configuration of shapes. For example, Fig. 207 

3a shows that the networks are better at dealing with diamonds than squares (probably because squares interfere 208 

more with verniers due to the vertical orientation of their edges). Still, adding extra shapes always deteriorates 209 

performance compared to a single shape, regardless of the configuration. The results of this figure are decoded 210 

from layer 5 of AlexNet. Decoding vernier offsets from the other layers in AlexNet led to similar results (see 211 

supplementary material). c&d. Vernier offset discrimination performance for (shape-biased) ResNet50 with an 212 

increasing number of identical flankers. c. original version. d. Geirhos et al.’s shape-biased version. The results for 213 

both of these networks are qualitatively similar for the AlexNet results in panel a. One difference is that the decoder 214 

is always below chance level with diamonds. This indicates that information about the vernier offset survives, even 215 

though the diamond flanker flips the prediction. Adding additional diamond flankers brings performance closer to 216 

chance level, indicating that less information about the vernier offset survives, i.e., crowding increases when adding 217 

flankers. Another difference is that the squares lead to the least amount of crowding, contrary to AlexNet. The 218 

results of this figure are decoded from the output of the third bottleneck unit (see our shared code and He et al., 219 

2016). Decoding vernier offsets from the other layers led to similar results (see supplementary material). 220 

 221 

Experiment 2 222 

Uncrowding requires global computations across large regions of the visual space. The 223 

configuration in its entirety determines performance and not only the elements in the 224 

neighborhood of the target (Doerig, Bornet, et al., 2019; Manassi et al., 2016, 2012). As 225 

mentioned, it has been proposed that ffCNNs focus largely on local features. This is indeed what 226 

we observed in experiment 2 in AlexNet (Fig. 4), ResNet50 (supplementary material), and 227 

Geirhos et al.’s shape-biased version of ResNet50 (Fig. 4): only elements in a local region around 228 

the target matter for classification. The same results also hold for the eight other stimulus types 229 

we tested (supplementary material). Importantly, these results show that although Geirhos et 230 
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al.’s shape-biased network is biased towards global features, it does not perform human-like 231 

shape-based computations.  232 

 233 

Figure 4: Occlusion analysis. Results of the occlusion analysis for AlexNet (top) and the shape-biased ResNet50 234 

(bottom). Stimuli on the left lead to good performance in humans, while stimuli on the right lead to strong crowding 235 

in humans (Manassi et al., 2016). For both AlexNet and the shape-biased ResNet50, the network’s decisions rely 236 

only on local elements in the target neighborhood regardless of the global stimulus configurations. To create these 237 

maps, we summed the maps for each layer of Alexnet to show which stimulus regions are most relevant across the 238 

network. For the shape-biased ResNet50, we used the third convolutional layer in the first bottleneck, and the 239 

output of the first 9 bottleneck units (see our shared code and He et al., 2016). We then applied a threshold to each 240 

map at 0.4 times the maximal value in the map, for visibility. Per-layer results without thresholding can be found in 241 

the supplementary material, as well as animations showing what happens as the threshold value is changed. Results 242 

for the original ResNet50 and other layers of the shape-biased network are also shown in the supplementary 243 

material. 244 
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 245 

Discussion 246 

(Un)crowding is ubiquitous. It occurs in vision, audition and haptics (Manassi et al., 2016; 247 

Oberfeld & Stahn, 2012; Overvliet & Sayim, 2016; Whitney & Levi, 2011). This pervasiveness is 248 

not surprising because elements rarely appear in isolation. Any perceptual system needs to cope 249 

with crowding to process information in cluttered environments. (Un)crowding is a probe into 250 

how the visual system computes global information.  251 

Experiment 1 shows that current ffCNNs do not explain (un)crowding. In other words, training an 252 

ffCNN on a complex natural image recognition task does not automatically yield a network 253 

performing similarly to the human visual system. Experiment 2 suggests that this is due to the 254 

inability of ffCNNs to take the entire stimulus configuration into account. In ffCNNs, only 255 

elements in the target’s neighborhood affect performance. Global features do not affect how 256 

local parts are processed. In humans, on the other hand, the global configuration strongly affects 257 

processing of local parts. For example, vernier offset information can be “rescued” by certain 258 

global configurations.  259 

This difference could not be remedied by a different training protocol. Indeed, all our results also 260 

hold for Geirhos et al.’s shape-biased ffCNN. We suggest that although Geirhos et al.’s training 261 

procedure successfully biased the networks towards global features, it does not show human-262 

like global shape computations. Indeed, the network still seems limited to combining features by 263 

pooling along a feedforward cascade. Hence, unlike in humans, global configuration cannot 264 

affect processing of local parts.  265 

We suggest that the inability of ffCNNs to perform human-like object shape processing is deeply 266 

rooted in their feedforward pooling architecture. Global processing is not only an issue for 267 

ffCNNs but for other models too. We showed that no existing model of crowding based on local 268 

and feedforward computations can explain uncrowding (we did not address ffCNNs thoroughly 269 

in these previous studies; Doerig et al., 2019; Herzog & Manassi, 2015; Manassi et al., 2016; 270 

Pachai, Doerig, & Herzog, 2016). There seems to be a principled difference in computational 271 

strategies, based on architecture, between humans and feedforward pooling systems. 272 
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Hence, despite their well-known power, further aspects need to be incorporated into ffCNNs. 273 

We propose that recurrent, global grouping and segmentation is crucial to explain how the brain 274 

deals with global configurations (Doerig, et al., 2019). Specifically, we propose that a flexible 275 

recurrent grouping process determines which elements are grouped into an object. In the case 276 

of (un)crowding, elements are first grouped together and then only elements within a group 277 

interfere with each other. If the configuration of flankers ungroups from the target, the target is 278 

released from crowding. Francis, Manassi, and Herzog (2017) proposed a spiking neural network 279 

with a dedicated recurrent grouping process, which is able to explain why (un)crowding occurs 280 

(see also Bornet et al., 2019). However, this model is tailored to group oriented edges and 281 

cannot generalize to grouping of more complex features. Deep learning models are promising 282 

because they are more flexible and can be trained to deal with any kind of stimulus.  283 

Doerig, Schmittwilken, Manassi, & Herzog (2019) showed that capsules networks (Sabour, Frosst, 284 

& Hinton, 2017), combining CNNs with a recurrent grouping and segmentation process, can 285 

explain (un)crowding, including temporal characteristics of uncrowding. Linsley et al. (2018) 286 

proposed recurrent grouping and segmentation modules to improve CNNs, and there are several 287 

other approaches to experiment with grouping and segmentation in recurrent network 288 

architectures (Lotter, Kreiman, & Cox, 2016; Nayebi et al., 2018; Spoerer, Kietzmann, & 289 

Kriegeskorte, 2019; Spoerer, McClure, & Kriegeskorte, 2017). More work is needed to compare 290 

and characterize computations in different recurrent architectures. 291 

Our results contribute to the expanding literature showing that there is much more to vision 292 

than combining local feature detectors in a feedforward hierarchical manner (Baker et al., 2018; 293 

Brendel & Bethge, 2019; Doerig et al., 2019; Funke et al., 2018; Kar, Kubilius, Schmidt, Issa, & 294 

DiCarlo, 2019; Kietzmann et al., 2019; Kim, Linsley, Thakkar, & Serre, 2019; Lamme & Roelfsema, 295 

2000; Linsley et al., 2018; Sabour et al., 2017; Spoerer et al., 2019, 2017; Tang et al., 2018; Wallis 296 

et al., 2019). In line with the present findings, many studies have highlighted other fundamental 297 

differences between ffCNNs and humans in local vs. global processing. For example, Baker et al. 298 

(2018) showed that ffCNNs but not humans are affected by local changes to edges and textures 299 

of objects. Brendel and Bethge (2019) showed that ffCNNs classify ImageNet images almost as 300 

well when using small local image patches than when using the entire images. These results 301 
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clearly show that image classification is underconstrained as a testbed. For this reason, well-302 

controlled psychophysical stimuli, which allow detailed analysis, should be used in addition to 303 

image classification (RichardWebster, Anthony, & Scheirer, 2018). Simply testing whether deep 304 

learning systems reproduce idiosyncratic illusions, without linking them to computational 305 

mechanisms, does not provide principled insights. Hence, an important question will be what are 306 

the crucial benchmarks targeting principled computational processes. Here, using crowding, we 307 

showed a fundamental difference in local vs. global processing between humans and ffCNNs, 308 

and suggest that grouping and segmentation are promising additions to make deep neural 309 

networks better models of vision.  310 

Historically, psychophysical results were seen as stepping stones towards object recognition 311 

models. Today, the picture has been reversed: we have powerful artificial vision models, but they 312 

do not reproduce even simple psychophysical results. The fact that ffCNNs can solve complex 313 

visual tasks in a different way than humans reveals that there are many ways of doing so. There 314 

are many roads to Rome. Despite the diversity of possible strategies to solve complex vision 315 

tasks, deep insights can be derived by comparing the crucial underlying computations adopted 316 

by different systems.  317 
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