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Abstract 33 

To gain novel insights into how the human brain processes self-produced auditory 34 

information during reading aloud, we investigated the coupling between neuromagnetic 35 

activity and the temporal envelope of the heard speech sounds (i.e., speech brain tracking) in 36 

a group of adults who 1) read a text aloud, 2) listened to a recording of their own speech (i.e., 37 

playback), and 3) listened to another speech recording. Coherence analyses revealed that, 38 

during reading aloud, the reader’s brain tracked the slow temporal fluctuations of the speech 39 

output. Specifically, auditory cortices tracked phrasal structure (<1 Hz) but to a lesser extent 40 

than during the two speech listening conditions. Also, the tracking of syllable structure (4–8 41 

Hz) occurred at parietal opercula during reading aloud and at auditory cortices during 42 

listening. Directionality analyses based on renormalized partial directed coherence revealed 43 

that speech brain tracking at <1 Hz and 4–8 Hz is dominated by speech-to-brain directional 44 

coupling during both reading aloud and listening, meaning that speech brain tracking mainly 45 

entails auditory feedback processing. Nevertheless, brain-to-speech directional coupling at 4–46 

8 Hz was enhanced during reading aloud compared with listening, likely reflecting speech 47 

monitoring before production. Altogether, these data bring novel insights into how auditory 48 

verbal information is tracked by the human brain during perception and self-generation of 49 

connected speech.  50 

 51 
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1. Introduction 58 

To produce understandable speech, humans rely on self-monitoring of speech output. 59 

Such monitoring is based on neural integration of self-generated sensory information, which 60 

links speech production to speech perception (for a review, see Hickok, 2012). Still, how this 61 

self-produced sensory information is used to control speech remains unclear.  62 

Current theories of language production consider a feedback monitoring system that 63 

monitors speech output to correct errors during production (for reviews, see Hickok, 2012; 64 

Houde and Chang, 2015). Evidence about the importance of such a system comes from 65 

adaptations of the speaker’s speech output to compensate for sensory (i.e., auditory and 66 

somatosensory) feedback manipulations (Bauer et al., 2006; Burnett et al., 1998; Guo et al., 67 

2017; Houde, 1998; Liu et al., 2018; Shiller et al., 2009; Tremblay et al., 2003). But such 68 

feedback monitoring system cannot account for extremely fast self-corrections of speech 69 

observed in humans (Blackmer and Mitton, 1991; Nozari et al., 2011), as they require 70 

extended neural processing time. Hence, most of the current models of language production 71 

additionally include an internal speech monitoring system, which monitors speech before 72 

production. Consensus about the neural bases of such an internal system is however lacking 73 

(Gauvin et al., 2016). Indeed, some authors consider that internal speech is monitored via 74 

sensory networks similar to those involved in monitoring feedback speech (Hickok, 2012; 75 

Indefrey, 2011), while others consider that it recruits distinct neural structures such as, e.g., 76 

brain structures involved in conflict monitoring (Hickok, 2012; Nozari et al., 2011). 77 

A potential way to gain insights into the neuronal bases of internal and feedback 78 

speech monitoring systems is to study the coupling between the speaker's voice and its own 79 

brain activity during connected speech production. Previous magnetoencephalography 80 

(MEG) studies focusing on connected speech listening demonstrated speech-sensitive 81 

coupling between the slow modulations of the speaker's voice and listeners' (mainly auditory) 82 
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cortex activity (Bourguignon et al., 2013; Clumeck et al., 2014; Ding et al., 2016; Gross et 83 

al., 2013; Molinaro et al., 2016; Peelle et al., 2013; Vander Ghinst et al., 2016). This coupling 84 

henceforth referred to as speech brain tracking, mainly occurs at syllable (4–8 Hz) and 85 

phrasal/sentential (<1 Hz) rates. It is considered to play a pivotal role in parsing connected 86 

speech into smaller units (i.e., syllables or phrases/sentences) to promote subsequent speech 87 

recognition (Park et al., 2018; Zion Golumbic et al., 2012). Additionally, it might help predict 88 

the precise timing of events in the speech stream such as syllables and phrases/sentences 89 

(Zion Golumbic et al., 2012). Such predictions probably facilitate speech comprehension as 90 

well as coordination of turn-taking transitions during verbal conversation (Friston and Frith, 91 

2015; Zion Golumbic et al., 2012). It is then sensible to hypothesize that similar speech brain 92 

tracking is also at work during connected speech production and contribute to self-produced 93 

speech monitoring systems. If confirmed, this could bring unprecedented insights into how 94 

humans handle self-generated auditory information during language production. Additionally, 95 

investigating coupling directionality (i.e., speech → brain vs. brain → speech coupling) 96 

during connected speech production could bring critical information about the neural bases of 97 

speech production monitoring systems in humans: feedback (speech → brain coupling) vs. 98 

internal (brain → speech coupling).  99 

To address these issues, the present MEG study relied on the comparison of speech 100 

brain tracking while subjects listened to recordings of texts read aloud (by a reader or 101 

themselves) and while they read themselves a text aloud. This approach was first chosen 102 

because previous studies from our group that investigated speech brain tracking during 103 

listening relied on live (Bourguignon et al., 2013; Clumeck et al., 2014) or recorded 104 

(Clumeck et al., 2014; Destoky et al., 2019; Vander Ghinst et al., 2019, 2016) voices 105 

continuously reading a text aloud. Second, it was also based on the shared neurocognitive 106 

processes between natural speech production and reading aloud (Sulpizio and Kinoshita, 107 
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2016). Indeed, reading aloud is recognized as a type of speech production such as, e.g., 108 

spontaneous narrative, narrative recalls, conversation, picture description (see, e.g., Bóna, 109 

2014). The last stages of language production in those different speech situations are similar: 110 

all include phonological encoding (i.e., assigning a segment to a position in a metrical frame), 111 

phonetic encoding (i.e., retrieving the motor plans required for articulation), and articulation 112 

(i.e., producing the gestures leading to an acoustic sound) (Kawamoto et al., 2015). Settling 113 

on reading aloud also makes it possible to control speech content and linguistic form, which 114 

are two speech features previously reported to affect brain rhythms (Alexandrou et al., 2017). 115 

Reading aloud decreases the subjects’ need to focus on semantic/lexical access, other 116 

cognitive processes or speech style, which can potentially bias speech brain tracking and 117 

directionality assessments during language production (Bóna, 2014). Finally, comparing the 118 

neural processes at play during listening to somebody reading aloud and during reading aloud 119 

allows relying on auditory verbal information that shares common rhythmicity and prosody. 120 

In practice, this MEG study investigates, using coherence and directionality analyses, 121 

speech brain tracking in subjects who (i) read a text aloud, (ii) listened to a recording of a 122 

different text, and (iii) listened to a recording of their own speech while reading aloud (i.e., 123 

playback). It was specifically designed to (i) identify cortical areas that track the slow 124 

fluctuations of self-produced speech, (ii) determine the causal nature of this tracking, and (iii) 125 

assess tracking differences between reading aloud and listening.  126 

 127 

2. Methods 128 

2.1. Participants 129 

Eighteen healthy native Spanish speakers without any history of neuropsychiatric 130 

disease or language disorders were studied. One participant was excluded from the study due 131 

to excessive artifacts in the data. The study therefore reports on 17 participants (range 20–32 132 
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years; mean age 23.9 years; 9 females and 8 males). Sixteen participants were right-handed 133 

according to Edinburgh handedness inventory (score range 40–100 %; mean ± SD, 70.6 ± 134 

19.1 %) (Oldfield, 1971). Handedness appraisal was missing from the last participant. 135 

Thirteen participants had a university degree, 1 was a master student, and 3 were trained 136 

professional with high school or secondary school degree (degree obtained at age ~18 or ~16 137 

respectively when no grade is repeated). The study was approved by the BCBL Ethics 138 

Committee. Participants were included in the study after written informed consent. 139 

2.2. Experimental paradigm 140 

The experimental stimuli were derived from 2 narrative texts of ~1000 words. The 141 

topics of the texts were maximally neutral: the first elaborated on the origin of life and human 142 

spirituality, while the second was an attempt to define what is a “discourse”. Both texts were 143 

read aloud by a male and a female native Spanish speaker and recorded with a high quality 144 

microphone. Reading pace was of 152 ± 35 words/min (mean ± SD across the four 145 

recordings). 146 

Participants underwent four experimental conditions (read, listen, playback, and rest) 147 

lasting ~5 minutes each while they were sitting in the MEG chair with their head inside the 148 

MEG helmet. During the read condition, participants continuously read aloud one of the two 149 

texts printed on A4 pages. During the listen condition, they listened to the audio recording of 150 

the other text read by the reader of their gender. Texts were assigned to conditions in a 151 

counterbalanced manner. During the playback condition, participants listened to their own 152 

voice recorded (see 2.3. for recording data acquisition details) earlier during the read 153 

condition. Obviously, playback condition was performed in all subjects after the read 154 

condition. This playback condition was used (i) to assess the impact of possible sensory 155 

prediction about upcoming speech (as subjects had some hints about speech content and 156 

production from the prior read condition) on speech brain tracking and on tracking 157 
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directionality, and (ii) to control for potential differences in speech rhythm between listen and 158 

read. For both listen and playback conditions, sounds were played with VLC running on a 159 

MacBook pro and delivered at 60 dB (measured at ear-level in every participant) through a 160 

front-facing flat-panel loudspeaker (Panphonics Oy, Espoo, Finland) placed ~2 m from the 161 

participants. During rest condition, participants were asked to fixate the gaze at a point on the 162 

wall of the magnetically shielded room (MSR) and try to reduce blinks and saccades to the 163 

minimum. The order of the conditions was either read–listen–rest–playback or listen–read–164 

rest–playback. 165 

2.3. Data acquisition  166 

Neuromagnetic signals were recorded at the Basque Centre on Cognition, Brain and 167 

Language (BCBL) with a whole-scalp-covering neuromagnetometer installed in a MSR 168 

(Vectorview & MaxshieldTM; MEGIN Elekta Oy, Helsinki, Finland). The 306-channel MEG 169 

sensor layout consisted in 102 sensor triplets, each comprising one magnetometer and two 170 

orthogonal planar gradiometers characterized by different patterns of spatial sensitivity to 171 

right beneath or nearby cortical sources. The recording pass-band was 0.1–330 Hz and the 172 

signals were sampled at 1 kHz. The head position inside the MEG helmet was continuously 173 

monitored by feeding current to five head-tracking coils located on the scalp and observing 174 

the corresponding coil-induced magnetic field patterns by the MEG sensors. Head position 175 

indicator coils, three anatomical fiducials, and at least 150 head-surface points (covering the 176 

whole scalp and the nose surface) were localized in a common coordinate system using an 177 

electromagnetic tracker (Fastrak, Polhemus, Colchester, VT, USA). 178 

An optical fiber microphone was placed inside the MSR to record participants’ voice 179 

during the read condition. To maximize sound quality, the microphone was taped to the edge 180 

of the MEG helmet, ~5 cm away from subjects’ mouth. Sound signals were recorded with 181 

Audacity at a sampling rate of 44.1 kHz. Electrooculograms (EOG) monitored vertical and 182 
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horizontal eye movements, and electrocardiogram (ECG) recorded heartbeat signals. All 183 

these signals were recorded time-locked to MEG signals. 184 

High-resolution 3D-T1 cerebral magnetic resonance images (MRI) were acquired on a 185 

3 Tesla MRI scan (Siemens Medical System, Erlangen, Germany). 186 

2.4. Data preprocessing  187 

As reading aloud is typically associated with many sources of high-amplitude artifacts 188 

in electrophysiological signals (e.g., head movements, muscle artifacts, eye movements, etc.),  189 

special care was taken during data preprocessing to subtract as much as possible these 190 

artifacts from raw MEG data.  191 

Continuous MEG data were first preprocessed off-line using the temporal signal space 192 

separation (tSSS) method (correlation coefficient: 0.9 and the segment length of the temporal 193 

projection set equal to the file length) to subtract external interferences, to correct for head 194 

movements, and to dampen movement artifacts induced by reading aloud (Taulu et al., 2005; 195 

Taulu and Simola, 2006). To further suppress heartbeat, eye-blink, and eye-movement 196 

artifacts, 30 independent components were evaluated from the MEG data low-pass filtered at 197 

25 Hz using FastICA algorithm (dimension reduction, 30; non-linearity, tanh) (Hyvärinen et 198 

al., 2001; Vigario et al., 2000). Independent components displaying a correlation exceeding 199 

0.15 with any EOG or ECG signals were subtracted from MEG data. The mean ± SD of 200 

rejected components was 7.2 ± 1.4 (read), 5.1 ± 1.8 (listen), 4.9 ± 2.0 (rest), and 5 ± 2.0 201 

(playback).  Finally, when the maximum MEG amplitude exceeded 5 pT (magnetometers) or 202 

1 pT/cm (gradiometers), data within one second before and after the excessive amplitude 203 

were marked as artifact-contaminated to avoid analysis of MEG data compromised by any 204 

other artifact source that would not have been removed by the temporal signal space 205 

separation or independent component analysis. 206 
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Speech temporal envelopes were obtained from all sound recordings as the rectified 207 

sound signals low-pass filtered at 50 Hz. Speech temporal envelopes were further resampled 208 

at 1000 Hz time-locked to MEG signals. 209 

2.5. Coherence analysis 210 

To perform frequency and coherence analyses, continuous data obtained in all 211 

conditions (listen, playback, read and rest) were split into 2-s epochs with 1.6-s epoch 212 

overlap, leading to a frequency resolution of 0.5 Hz (Bortel and Sovka, 2014). MEG epochs 213 

containing periods marked as artifact contaminated were discarded from further analyses. 214 

Also, for each participant, only the minimum amount of epochs across all conditions was 215 

used for subsequent analyses. These steps led to 703±45 artifact-free epochs of MEG and 216 

voice envelope signals for each participant and condition. 217 

Coherence is an extension of Pearson correlation coefficient to the frequency domain 218 

that determines the degree of coupling between two signals, providing a number between 0 219 

(no linear dependency) and 1 (perfect linear dependency) for each frequency (Halliday, 220 

1995). Coherence was previously used to assess the coupling between voice and brain signals 221 

at the frequencies corresponding to phrasal/sentential (<1 Hz) and syllable (4–8 Hz) rates 222 

(Bourguignon et al., 2013; Luo and Poeppel, 2007; Molinaro and Lizarazu, 2017; Peelle et 223 

al., 2013; Poeppel, 2003; Vander Ghinst et al., 2016). 224 

Coherence was first estimated at the sensor level. Data from gradiometer pairs were 225 

combined in the direction of maximum coherence as done in Bourguignon et al. (2015). 226 

Coherence at phrasal/sentential level was taken at the frequency bin corresponding to 0.5 Hz, 227 

and coherence at syllable level was taken as the mean across coherence at frequency bins 228 

comprised in 4–8 Hz. 229 

Coherence was also evaluated at the source level using a beamformer approach since 230 

this method has a high sensitivity to activity coming from locations of interest while 231 
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attenuating external interferences such as reading-induced head movement, eye movements, 232 

or muscle artifacts (Hillebrand et al., 2005). To do so, individual MRIs were first segmented 233 

using Freesurfer software (Martinos Center for Biomedical Imaging, Massachusetts, USA; 234 

Reuter et al., 2012). Then, the MEG forward model was computed for three orthogonal 235 

tangential current dipoles placed on a homogeneous 5-mm grid source space that covered the 236 

entire brain (MNE suite; Martinos Center for Biomedical Imaging, Massachusetts, USA; 237 

Gramfort et al., 2014) and further reduced to its two first principal components. Finally, 238 

coherence maps were produced within the computed source space at 0.5 Hz and 4–8 Hz using 239 

Dynamic Imaging of Coherent Sources (DICS) (Gross et al., 2001), and further interpolated 240 

onto a 1-mm grid. Both planar gradiometers and magnetometers were used for inverse 241 

modeling after dividing each sensor signal by its noise variance. Despite the fact that raw 242 

magnetometer signals are considered noisier than planar gradiometers, in the framework of 243 

signal space separation, signals from both sensor types are reconstructed from the same inner 244 

components, corresponding to the magnetostatic multipole expansion, and have therefore 245 

similar levels of residual interference after suppression of signals from external sources 246 

(Garcés et al., 2017). This explains why both sensor types were used for source 247 

reconstruction. The noise variance was estimated from the continuous rest MEG data band-248 

passed through 1–195 Hz, for each sensor separately. As the analyses described in a further 249 

paragraph require extracting the time course of some sources, we used the additional 250 

constraint that beamformer weight coefficients are real-valued. This constraint is sensible 251 

since one can easily argue that electrical currents in the brain are real--valued. Practically, it 252 

leads to using the real part of the cross-spectral density matrix in DICS beamformer 253 

computation.  254 

To compute group-level coherence maps, a non-linear transformation from individual 255 

MRIs to the standard Montreal Neurological Institute (MNI) brain was first computed using 256 
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the spatial-normalization algorithm implemented in Statistical Parametric Mapping (SPM8, 257 

Wellcome Department of Cognitive Neurology, London, UK; Ashburner et al., 1997; 258 

Ashburner and Friston, 1999) and then applied to individual MRIs and coherence maps. This 259 

procedure generated a normalized coherence map in the MNI space with 1-mm cubic voxels 260 

for each subject, condition and frequency of interest (i.e., 0.5 Hz and 4–8 Hz). Group-level 261 

maps were obtained by averaging the normalized coherence maps across participants and 262 

conditions. 263 

2.6. Directionality assessment 264 

The directionality of the coupling between the voice signals and the activity within 265 

brain areas displaying a significant local maximum of coherence (see 2.8.), was assessed with 266 

renormalized partial directed coherence (rPDC) (Schelter et al., 2009, 2006). To this aim, the 267 

time-course of brain electrical activity within these brain areas was estimated with the 268 

beamformer described in 2.5., in the direction maximizing the coherence with speech 269 

temporal envelope. Source and voice signals were low-pass filtered at 10 Hz and down-270 

sampled at 20 Hz. Then, for each source separately, a vector autoregressive (VAR) model of 271 

order 40 was fitted to the source and the voice data using the ARfit package (Schneider and 272 

Neumaier, 2001). The rPDC was then estimated based on the Fourier transform of the VAR 273 

model coefficients. This enabled for estimating rPDC at frequencies from 0 to 10 Hz with 0.5 274 

Hz resolution. 275 

 276 

2.7. Partial coherence to control for artifacts 277 

In the read condition, there was a discrepancy between sensor and source-level results 278 

(see Results section). In the sensor space, strong artifacts at the edge of the sensor array 279 

obscured the 4–8-Hz speech brain tracking. In the source space, artifacts were present but 280 
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genuine speech brain tracking in auditory cortices was clearly visible thanks to the use of the 281 

beamformer approach. To verify that this discrepancy pertained to that beamformer did 282 

effectively dampen artifacts—and hence strengthen results derived from source-space data—, 283 

we estimated the coherence between speech temporal envelope and MEG signals while 284 

partialling out the contribution of MEG signals recorded at sensors on the edge of the sensor 285 

array. 286 

The following analysis was performed separately at 0.5 Hz and 4–8 Hz. For each 287 

gradiometer pair on the edge of the sensor array (23 in total), we estimated the orientation in 288 

the 2-d space spanned by both gradiometer signals (Bourguignon et al., 2015) yielding the 289 

maximum coherence with speech temporal envelope. Partial coherence was then estimated 290 

between speech temporal envelope and all gradiometer signals (again optimizing on the 291 

orientation within all pairs) while partialling out edge gradiometer signal in its optimal 292 

orientation (Halliday, 1995). This led to as many sensor distribution of partial coherence as 293 

there are edge gradiometer pairs. For each sensor, we retained the minimum partial coherence 294 

value across all these edge gradiometer pairs. 295 

2.8. Statistical analyses 296 

2.8.1 Reading pace 297 

The word per minute rate produced in the read condition by the participants was 298 

compared to the one of the texts used in the listen condition with a paired t-test. 299 

2.8.2. Significance of subject-level coherence in the sensor space 300 

We evaluated the statistical significance of sensor-space coherence values, using 301 

surrogate-data-based statistics (Faes et al., 2004). For each participant, condition, and 302 

frequency range of interest (i.e., 0.5 Hz and 4–8 Hz), we extracted the maximum across 303 

gradiometer pairs of the mean coherence across the frequency range of interest. This 304 
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maximum genuine coherence was then compared to a distribution of 1000 surrogate values 305 

computed in the same way, but with speech temporal envelope replaced by its Fourier 306 

transform surrogate (Faes et al., 2004). Fourier transform surrogate preserves the power 307 

spectrum but destroys the phase information by replacing the phase of Fourier coefficients by 308 

random numbers in the range [–π ; π] (Faes et al., 2004). Genuine maximum coherence 309 

values were deemed significant when they exceeded the 95th percentile of their surrogate 310 

distribution. 311 

 312 

2.8.3. Significance of group-level coherence in the source space 313 

The statistical significance of group-level coherence maps was assessed with non-314 

parametric permutation test. First, participant- and group-level rest coherence maps at the 315 

frequencies of interest (i.e., 0.5 Hs and 4–8 Hz) were computed with rest MEG and voice (of 316 

read and listen conditions) signals. Group-level difference maps were obtained by subtracting 317 

f-transformed genuine (read, listen or playback) and rest group-level coherence maps for 318 

each frequency of interest. Under the null hypothesis that coherence maps are the same 319 

whatever the experimental condition, the labeling genuine or rest are exchangeable prior to 320 

difference map computation (Nichols and Holmes, 2002). To reject this hypothesis and to 321 

compute a significance threshold for the correctly labeled difference map, the sample 322 

distribution of the maximum of the difference map’s absolute value within the preselected 323 

brain areas was computed from a subset of 1000 permutations. The threshold at p < 0.05 was 324 

computed as the 95 percentile of the sample distribution (Nichols and Holmes, 2002). All 325 

supra-threshold local coherence maxima were interpreted as indicative of brain regions 326 

showing statistically significant coupling with the produced (read) or heard (listen and 327 

playback) sounds. 328 
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2.8.4. Comparison of source location between conditions 329 

The coordinates of significant local coherence maxima were statistically compared 330 

between conditions (listen vs. playback, listen vs. read, and playback vs. read) using the 331 

location-comparison approach proposed by Bourguignon et al. (2017). This method uses a 332 

bootstrap procedure (Efron, 1979) to estimate the sample distribution of coordinates of the 333 

two local coherence maxima under comparison and tests the null hypothesis that the distance 334 

between them is zero. Briefly, we generated 1000 group-level maps of the conditions under 335 

assessment by random bootstrapping from the individual maps, and identified the coordinates 336 

of the local maxima closest to the genuine maxima location. The resulting sample distribution 337 

of coordinate difference was then submitted to a multivariate location test evaluating the 338 

probability that this difference is zero (Bourguignon et al., 2017). That test tightly relates to 339 

the multivariate  test (Hotelling, 1931) and assumes that the sample distribution of 340 

coordinates difference is normal. 341 

For one local maximum, we further tested the—a posteriori—hypothesis that its 342 

bootstrap coordinate distribution was bimodal rather than unimodal, suggesting that two 343 

separate sources would contribute to that single local maximum. As a first step, we built a 344 

map of bootstrap source density with 1-mm cubic voxels, which we will denote D(r) with r = 345 

(x,y,z) indexing voxels. D(r) was initially set to be uniformly 0, and for each bootstrap source 346 

coordinate, we added a value 1 at the corresponding voxel. D(r) was further smoothed with a 347 

5-mm FWHM gaussian kernel. We then used matlab fminsearch function to fit two models to 348 

D(r): a Gaussian distribution, and a mixture of 2 Gaussian distributions. Formally, the first 349 

model was 350 

, 351 

and the second model was 352 

, 353 
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where 354 

 355 

is a 3-d Gaussian distribution with A its amplitude,  its center, and 356 

 357 

its—symmetric—covariance matrix. Hence, there were df1 = 10 parameters in M1(r) and df2 = 358 

20 in M2(r). We then used a Fisher test to compare statistically the proportion of variance 359 

explained by these two models. These proportions can be written as 360 

, with  and  the sum of squares across all 361 

voxels. Under the null hypothesis that M2 does not do any better than M1, the quantity 362 

 363 

follows a F distribution with df1 and df2 degrees of freedom. This null hypothesis can be 364 

disproved if F exceeds the percentile 95th of F10,20. 365 

2.8.5. Significance of individual subjects’ rPDC values and comparison between coupling 366 

directions 367 

We evaluated the number of participants showing statistically significant rPDC, using 368 

surrogate-data-based statistics (Faes et al., 2010). Statistical analyses were performed on 369 

rPDC at 0.5 Hz or 4–8 Hz depending on whether the source was identified on 370 

phrasal/sentential- or syllable-level coherence map. For each participant, selected brain area, 371 

and coupling direction, the genuine rPDC value (at 0.5 Hz or the mean across 4–8 Hz) was 372 

compared to a distribution of 1000 surrogate rPDC values derived from causal Fourier 373 

transform surrogate data (Faes et al., 2010). Causal Fourier transform surrogate data were 374 

generated with the estimated VAR model wherein coupling in the specific causal direction 375 
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being tested is abolished by setting to 0 the associated coefficients. Genuine rPDC values 376 

were deemed significant when they exceeded the 95th percentile of their surrogate 377 

distribution. 378 

Values of rPDC were compared between speech → brain and brain → speech 379 

directions using paired t-tests across participants. 380 

2.8.6. ANOVA assessment of coherence, rPDC, and partial coherence values 381 

Source-level coherence, rPDC and sensor-level partial coherence values were 382 

analyzed with 2-way repeated measures ANOVAs. In these assessments, the factors were the 383 

condition (listen, playback, and read), and the sensor/source location. ANOVAs were run 384 

separately for 0.5 Hz and 4–8 Hz coupling, and for speech → brain and brain → speech 385 

directions in case of rPDC assessment. This is justified by that coupling values within these 386 

two classes had relatively different variances. Analysing data together would have violated 387 

the homoscedasticity assumption of the ANOVA. For source-level coherence values, the 388 

dependent variable was the maximum coherence across a 10-mm sphere centered on 389 

significant local maxima of group-level coherence maps. For sensor-level partial coherence 390 

values, the dependent variable was the maximum partial coherence across subsets of 391 

gradiometer pairs showing the peaks of coherence. Formally, these subsections comprised the 392 

9 gradiometers of maximum coherence averaged across participants and conditions. There 393 

were 2 selections, one for the left and one for the right hemisphere. 394 

2.9. Data and software availability 395 

Data and analysis scripts are available upon reasonable request to the corresponding 396 

author. 397 

 398 
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3. Results 399 

3.1 Reading pace 400 

In the read condition, participants read at a pace of 158 ± 17 words per min (mean ± 401 

SD). This pace was not significantly different from the one they heard in the listen condition 402 

(t16 = 1.26, p = 0.23). 403 

3.2 Coherence results 404 

3.2.1 Coherence in the sensor space 405 

Figure 1 illustrates the results of speech brain tracking quantified with coherence in 406 

the sensor space. The maximum coherence between MEG signals and speech temporal 407 

envelope peaked at 0.5 Hz and at 4–8 Hz. These frequency ranges match the supra-second 408 

phrasal/sentential time-scale (0.5 Hz) and the 150–300-ms syllable time-scale (4–8 Hz). In 409 

both listening conditions (listen & playback), the topography of the coherence was 410 

characterized by clusters over bilateral posterior temporal sensors. In the read condition, 411 

coherence topographies were suggestive of the presence of strong artifacts but also of 412 

genuine bilateral activity arising from posterior temporal sensors (more convincingly so at 413 

0.5 Hz than at 4–8 Hz). 414 

Coherence in the sensor space was significant in all participants and conditions at 0.5 415 

Hz, and in 13 (listen), 12 (playback), and 17 (read) out of 17 participants at 4–8 Hz. Note that 416 

the detection rate of significant coherence in the read condition has likely been inflated by 417 

the presence of artifacts inherent to speech production. 418 

3.2.2 Coherence in the source space 419 

Figure 2A presents the source-space coherence maps obtained with DICS at 0.5 Hz 420 

and 4–8 Hz separately.  421 
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Table 1 presents the MNI coordinates of significant local coherence maxima observed 422 

in source-space maps.  423 

In both listening conditions (listen & playback) significant local coherence maxima 424 

localized in bilateral cortex around posterior superior temporal sulcus (pSTS) at 0.5 Hz and in 425 

bilateral supratemporal auditory cortex (STAC) at 4–8 Hz. The location comparison test 426 

revealed no statistically significant difference in location between these two conditions (ps > 427 

0.5; 4 comparisons: 2 frequencies × 2 hemispheres). 428 

In the read condition, source reconstruction results emphasized the presence of 429 

genuine speech brain tracking. Some artifacts remained that peaked nearby the pons (0.5 Hz, 430 

MNI [–1  –1  –35], coherence 0.049; 4–8 Hz, MNI [2  –14  –36], coherence 0.028), but they 431 

did not overshadow coherence local maxima related to genuine speech brain tracking (see 432 

Figure 2A and Table 1 for peak coordinates and coherence values). 433 

The speech brain tracking elicited by the read condition appeared to be different from 434 

that during listening conditions at both 0.5 Hz and 4–8 Hz. We focus below on the 435 

comparison between read and listen, but similar results were obtained from the comparison 436 

between read and playback. 437 

At 0.5 Hz, right-hemisphere local coherence maxima in read and listen were distant 438 

of only 3 mm, a distance that was not statistically significant (F3,998 = 0.052, p = 0.98). In the 439 

left hemisphere, they were distant of 19 mm, which, surprisingly, was not deemed 440 

statistically significant either (F3,998 = 1.41, p = 0.24). Detailed analyses revealed that this 441 

lack of significance pertained to that coordinates of local coherence maxima in the listen 442 

condition had a bimodal — rather than unimodal — distribution, which hampered the 443 

location-comparison test. Indeed, maps of source density revealed that coherence in the listen 444 

condition peaked mainly at pSTS ([–66  –27  1]) but also at STAC ([–64  –13  6]). Also, a 445 

model with 2 Gaussian distributions explained 99.90% of the variance of the source density 446 
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map, which was significantly better than the 95.76% explained by a model based on a single 447 

Gaussian distribution (F10,20 = 7.40, p < 0.0001). In the 2-Gaussian model, individual 448 

distributions were centered on [–66.3  –27.5  1.1] and [–64.0  –15.1  5.5]. Relative 449 

importance of the two Gaussian distributions ( ) was 450 

5.3, indicating that group-level coherence in the listen condition peaked ~5.3 times more 451 

often in the first than in the second cluster. Also, the center of this second cluster was only 452 

8.6 mm away from the maximum in the read condition. Of notice, there was only one peak in 453 

the source density map of the read condition. These results indicate that reading aloud elicits 454 

speech brain tracking only in STAC while speech listening also recruits the cortex around the 455 

pSTS. 456 

At 4–8 Hz, local coherence maxima in the read condition localized in bilateral 457 

parietal operculum, i.e., more dorsally (above the sylvian fissure) than those in the listen 458 

condition by 19 mm (left hemisphere) and 11 mm (right hemisphere). The location-459 

comparison test confirmed that this difference in location between read and listen conditions 460 

was statistically significant (left hemisphere, F3,998 = 10.10, p < 0.0001; right hemisphere, 461 

F3,998 = 3.49, p = 0.015). 462 

3.2.3 Effect of conditions on the coherence strength 463 

Speech brain tracking values quantified with coherence at condition-specific 464 

dominant sources were compared with repeated measures ANOVA, separately at 0.5 Hz and 465 

4–8 Hz. 466 

At 0.5 Hz there was a main effect of condition on coherence level (F2,32 = 8.10, p = 467 

0.0014), no significant main effect of hemisphere (F1,16 = 0.20, p = 0.66), and no significant 468 

interaction (F2,32 = 1.95, p = 0.16). Post-hoc t-tests revealed that coherence values in listen 469 

(0.092 ± 0.039, mean ± SD of the mean coherence across hemispheres) and playback (0.090 470 

± 0.046) did not differ significantly (t16 = 0.21, p = 0.84), while values in read (0.057 ± 471 
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0.022) were significantly lower than those in listen (t16 = 3.95, p = 0.0012) and playback (t16 472 

= 3.47, p = 0.0031). 473 

At 4–8 Hz there was a main effect of condition on coherence level (F2,32 = 16.6, p < 474 

0.0001), no significant main effect of hemisphere (F1,16 = 2.23, p = 0.15), and no significant 475 

interaction (F2,32 = 0.06, p = 0.94). Post-hoc t-tests revealed that coherence values in listen 476 

(0.0183 ± 0.0052) and playback (0.0191 ± 0.052) did not differ significantly (t16 = 0.58, p = 477 

0.57), while values in read (0.0294 ± 0.0086) were significantly higher than those in listen 478 

(t16 = 4.28, p = 0.0006) and playback (t16 = 4.37, p = 0.0005). 479 

3.3. Directionality results 480 

rPDC was used to separate the relative contributions to speech brain tracking of 481 

signals reacting to speech (i.e., external feedback monitoring system) and signals preceding 482 

speech (i.e., internal speech monitoring system). 483 

Figure 3 presents rPDC values in all conditions.  484 

Table 2 details the number of participants displaying significant rPDC in all 485 

conditions, directions and frequency of interest. 486 

Paired t-tests revealed that rPDC was systematically higher in the speech → brain 487 

direction than in the brain → speech direction (ps < 0.05) except at 0.5 Hz in the left 488 

hemisphere in the read condition (t16 = 1.61, p = 0.13).  489 

The ANOVA assessment of rPDC values was performed with factors condition 490 

(listen, playback and read) and hemisphere (left and right) separately at 0.5 Hz and 4–8 Hz, 491 

and for the two coupling directions. There was a significant main effect of condition on 492 

speech → brain rPDC at 0.5 Hz (F2,32 = 4.66, p = 0.017) explained by that values in read 493 

(10.8 ± 7.2, mean ± SD of the mean rPDC across hemispheres) were lower than those in 494 

listen (16.9 ± 7.9; t16 = 2.70, p = 0.016) and playback (17.0 ± 11.9; t16 = 3.45, p = 0.0033), 495 

while the two latter did not differ significantly (t16 = 0.063, p = 0.95). There was also a 496 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 22, 2019. ; https://doi.org/10.1101/744151doi: bioRxiv preprint 

https://doi.org/10.1101/744151
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

significant effect of condition on brain → speech rPDC at 4–8 Hz (F2,32 = 8.43, p = 0.0011) 497 

explained by that values in read (2.75 ± 0.74) were higher than those in listen (2.06 ± 0.38; 498 

t16 = 2.90, p = 0.011) and playback (2.02 ± 0.38; t16 = 3.50, p = 0.0030), while two latter did 499 

not differ significantly (t16 = 0.30, p = 0.77). There were no other significant main effects or 500 

interactions (ps > 0.1). 501 

As it is unclear how artifacts contributed to these results, we repeated the rPDC 502 

analysis between speech temporal envelope and signals from a sensor that picked up strong 503 

artifacts (left hemisphere: MEG153*; right hemisphere: MEG263*). The ANOVA 504 

assessment of these rPDC values revealed in all 4 instances (2 coupling directions × 2 505 

frequency ranges) a significant effect of condition (ps < 0.05) explained by higher values in 506 

read than in listen and playback. 507 

 508 

3.4. Partial coherence 509 

Figure 4 illustrates speech brain tracking in sensor space controlled for artifacts in 510 

edge sensors using partial coherence. It is noteworthy that in read condition, artifacts were 511 

substantially suppressed by using partial coherence, while coherence at bilateral auditory 512 

cortices was essentially preserved. Moreover, partial coherence values were quite faithful to 513 

the source-space coherence values, as can be seen in group-level values displayed in Table 1 514 

(similarity in source coherence and sensor partial coherence values). 515 

Partial coherence levels were compared with repeated measures ANOVA with factors 516 

condition (listen, playback and read) and hemisphere (left and right) separately at 0.5 Hz and 517 

4–8 Hz. At 0.5 Hz, there were no significant effects nor interaction (ps > 0.5). At 4–8 Hz 518 

there was a main effect of condition (F2,32 = 18.3, p < 0.0001), no significant main effect of 519 

hemisphere (F1,16 = 1.27, p = 0.28), and no significant interaction (F2,32 = 0.57, p = 0.57). 520 

Partial coherence values in read (0.0292 ± 0.0106, mean ± SD of the mean coherence across 521 
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hemispheres) were higher than those in listen (0.0157 ± 0.0049; t16 = 4.38, p = 0.0005) and 522 

playback (0.0158 ± 0.0046; t16 = 4.41, p = 0.0004), while two latter did not differ 523 

significantly (t16 = 0.14, p = 0.89). 524 

 525 

4. Discussion 526 

This study demonstrates that during reading aloud, the speaker’s brain tracks the slow 527 

temporal fluctuations of speech output. The auditory cortex tracks sentence/phrase structure 528 

(<1 Hz) while parietal operculum tracks syllable structure (4–8 Hz). It also brings novel 529 

insights into the neural bases of speech production monitoring systems while reading aloud. 530 

 531 

4.1. Speech brain tracking at frequencies <1 Hz 532 

We found that <1-Hz speech brain tracking was attenuated during self-produced 533 

speech compared with listening to external speech. A control analysis, however, failed to 534 

corroborate this finding as it indicated similar rather than lower level of <1-Hz tracking 535 

during reading compared with listening. An attenuation would be well in line with the 536 

literature. Indeed, auditory cortical responses (i.e., N100/M100 evoked response) to self-537 

produced speech are typically attenuated or suppressed compared with those obtained during 538 

listening to a playback recording of the same sounds or during silent reading of a text (Curio 539 

et al., 2000; Houde et al., 2002; Numminen et al., 1999; Numminen and Curio, 1999). Such 540 

attenuation is absent when the auditory feedback is altered (e.g., pitch-shifted or alien speech 541 

feedback) (Heinks-Maldonado et al., 2006, 2005).  542 

Our results also indicate that <1-Hz speech brain tracking while reading aloud is 543 

dominated by the speech feedback monitoring system. Indeed, both reading and listening 544 

gave rise to similarly low level of <1-Hz brain → speech coupling, which we posit, is the 545 

hallmark of reliance on forward models. Note that the significant brain → speech coupling 546 
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observed in ~30% of the subjects was most likely spurious, i.e., related to the fact that, in 547 

directionality assessment, strong coupling in one direction generates spurious coupling in the 548 

other direction (Faes et al., 2010). 549 

Our results also shed light on the neural network involved in monitoring <1-Hz 550 

fluctuations in speech temporal envelope. During speech listening, this network seems to 551 

include the STAC and cortex around pSTS, while it only involves the STAC during reading 552 

aloud. This suggests that during self-generated speech, sensory feedback at phrasal/sentential 553 

level is mainly processed at early auditory cortices. 554 

 555 

4.2. Speech brain tracking at 4–8 Hz 556 

 At 4–8 Hz, speech brain tracking was stronger when reading aloud than during 557 

passive listening and it peaked in different cortical areas, i.e., STAC during listening and 558 

parietal operculum during reading aloud. Tracking was mainly driven by the speech → brain 559 

contribution during reading aloud similarly to the listening conditions. There was however a 560 

significant enhancement in brain → speech coupling during reading compared with listening 561 

conditions. 562 

 In humans, speech temporal envelope essentially fluctuates at 2–10 Hz, peaking at ~5 563 

Hz (Ding et al., 2017). This corresponds to the mean syllable rate of speech (5–8 Hz) across 564 

many languages (Pellegrino et al., 2011). These findings led some authors to consider that 565 

this frequency range likely indicates universal rhythmic properties of human speech 566 

constrained by the neural dynamics of speech production/perception and the biomechanical 567 

properties of human articulator (Ding et al., 2017). Interestingly, a previous MEG study 568 

demonstrated the existence of significant coupling between ventral primary sensorimotor 569 

(SM1) cortex (i.e., mouth area) and orbicular oris muscle activities during silent mouthing of 570 

a syllable (/pa/) periodically repeated at different frequencies (i.e., 0.8–5 Hz) (Ruspantini et 571 
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al., 2012). This coupling phenomenon was driven by the mouth movement repetition rate 572 

during syllable mouthing and peaked at the individual spontaneous movement rate (i.e., self-573 

paced rate of syllable articulation: ~2–3 Hz). It is therefore probably analogous (for a detailed 574 

discussion, see Bourguignon et al., n.d.) to the previously described cortico-kinematic 575 

coherence (CKC) phenomenon, which is the coupling between the kinematics of finger or toe 576 

movements and the activity in the SM1 cortex corresponding to the moved limb 577 

(Bourguignon et al., 2012, 2011; Marty et al., 2015; Marty et al., 2015; Piitulainen et al., 578 

2015). CKC indeed occurs at movement frequency (and harmonics), which is rather similarly 579 

visible in the rectified surface electromyogram and other kinematic-related signals such as 580 

acceleration, force and pressure (Piitulainen et al., 2013). Of note, CKC is mainly driven by 581 

proprioceptive afferents to SM1 cortex (Bourguignon et al., 2015; Piitulainen et al., 2013). 582 

Accordingly, our data suggests that during connected speech production, self-generated 583 

proprioceptive and auditory information resulting from syllable production are monitored in 584 

ventral SM1 cortex. In particular, the multimodal (i.e., somatosensory and auditory) nature of 585 

such speech-related sensory monitoring at SM1 cortex is supported by the rather low 586 

correlation between rhythmical lip movement and auditory speech temporal envelope during 587 

speech production (see, e.g., Bourguignon et al., 2018; Chandrasekaran et al., 2009; Park et 588 

al., 2016). The observed frequency-specific auditory feedback monitoring at SM1 cortex is in 589 

agreement with the external feedback monitoring system and the sensorimotor transformation 590 

theories of speech (Cogan et al., 2014; Hickok, 2012; Houde and Chang, 2015). Critically, 591 

the present study suggests that the neocortical areas involved in 4–8 Hz speech brain tracking 592 

are different during speech perception and production, which brings novel major insights into 593 

the neural bases of speech external feedback monitoring systems. Finally, the fact that the 4–594 

8-Hz brain → speech coupling was significantly enhanced during reading (compared to 595 

listening) also suggests that the brain does generate internal representations of self-produced 596 
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syllabic sounds, as put forward by the predictive coding theory (Friston, 2010). Importantly, 597 

the motor origin of this effect supports the notion that, in this frequency band, the brain 598 

computes the time-course of the to-be-produced articulation. 599 

 600 

4.3. Methodological considerations 601 

First, there was no difference between listen and playback conditions in any of the 602 

tested aspects of speech brain tracking. This implies that the effects we uncovered (i) were 603 

not influenced by priming about upcoming speech content (intrinsic to playback) and (ii) not 604 

linked to a difference in speech rhythm between listen and read.  605 

Second, neurophysiological mechanisms involved in overt language production are 606 

typically difficult to explore using MEG due to multiple sources of high-amplitude artifacts 607 

(e.g., head and jaw movements, muscular activity, etc.) that contaminate brain signals (see, 608 

e.g., Simmonds et al., 2014). Here, we used tSSS, ICA and threshold-based artifact rejection 609 

to remove these artifacts from brain signals. We then reconstructed brain activity with a 610 

minimum variance beamformer, an approach that specifically passes activity coming from 611 

locations of interest while cancelling external interferences (Hillebrand et al., 2005). Still, 612 

sensor and source speech brain tracking in the production condition indicated the presence of 613 

remaining movement artifacts characterized by coherence values comparable to genuine 614 

speech brain tracking/coherence values. It is therefore probable that these artifacts were mild 615 

and hence not suppressed by tSSS, ICA or beamforming.  616 

Beyond attempting to suppress artifacts, we conducted two control analyses designed 617 

to evaluate the impact of remaining artifacts on our results. First, by computing the rPDC 618 

between speech signals and MEG signals at sensors with high amplitude artifacts, we could 619 

demonstrate that reading-induced artifacts spuriously inflate rPDC values in both directions. 620 

This supports our two main findings since reading (compared with listening) was associated 621 
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with decreased <1 Hz tracking (rather than increased), and specifically increased 4–8 Hz 622 

tracking in the brain → speech direction (rather than in both directions). Finally, we used 623 

partial coherence analysis in sensor space wherein we subtracted the contribution of MEG 624 

signals at sensors on the edge of the sensor array to support our source-level results. This 625 

second control analysis corroborated the finding that 4–8 Hz tracking is enhanced during 626 

reading compared with listening. However, it suggested similar rather than lower level of <1-627 

Hz tracking during reading compared with listening. Further studies based on artifact free 628 

electrophysiological signals (e.g., intracranial recording; Cogan et al., 2014) will be required 629 

to confirm source-space results. Also, we cannot exclude that the sources of 4–8 Hz tracking 630 

in the reading condition may have been shifted by the artifacts remaining in sensor data. 631 

Invasive electrophysiological recordings are warranted to identify the exact cortical network 632 

involved in tracking of self-produced speech, and specifically, to determine the relative 633 

contribution of STAC and parietal operculum. 634 

Despite these limitations that warrant to take the results of this study with some 635 

caution, we demonstrate that the speech brain tracking observed at <1 Hz during listen and 636 

read is rather similar in terms of brain areas and tracking level. Furthermore, the results 637 

obtained at 4-8 Hz during read are in line with those previously reported by Ruspantini et al. 638 

(2012) during syllable production. These data therefore suggest the existence of common 639 

speech brain tracking phenomena during self-generated speech production accompanying 640 

reading aloud and perception while listening to somebody reading a text aloud. The 641 

generalization of these findings to production and perception of natural speech (e.g., during 642 

natural conversation) warrants further investigations. Still, this study represents a first step 643 

towards the understanding of the neural bases and functional aspects of speech brain tracking 644 

during speech production.  645 

 646 
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4.4. Conclusions 647 

This study demonstrates that, during reading aloud, the reader’s brain tracks the slow 648 

temporal structure of the self-generated speech. The auditory cortex tracks phrases/sentences 649 

and the parietal operculum tracks syllables. Data also suggests that both tracking mainly 650 

engage feedback monitoring system, but with increased involvement of internal speech 651 

monitoring system for syllable tracking at different neocortical areas than those recruited 652 

during speech perception. In sum, this study brings unprecedented insights into how the 653 

human brain tracks the slow-temporal features of the auditory feedback during self-654 

generation of speech. 655 

 656 

   657 
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7. Tables and Figures: 867 

Table 1. 868 

MNI coordinates [mm] an coherence values of maximum speech brain tracking, as well as 869 
corresponding sensor-level coherence values controlled for artifacts in sensors at the edge of 870 
the sensor array. 871 
 872 

 Left hemisphere Right hemisphere 
 MNI coordinate 

[mm] 
Source 

coherence 
Sensor 
partial 

coherence 

MNI coordinate 
[mm] 

Source 
coherence 

Sensor 
partial 

coherence 
Speech brain tracking at 0.5 Hz 

listen [–66  –25  1] 0.068 0.056 [66  –25  7] 0.070 0.060 

playback [–67  –28  –3] 0.063 0.046 [66  –24  3] 0.068 0.046 

read [–62  –10  12] 0.040 0.045 [66  –22  6] 0.043 0.041 

Speech brain tracking at 4–8 Hz 
listen [–61  –12  7] 0.0159 0.0138 [65  –13  7] 0.0162 0.0133 

playback [–63  –12  9] 0.0153 0.0122 [65  –11  7] 0.0172 0.0135 

read [–62  –13  28] 0.0209 0.0174 [65  –10  18] 0.0286 0.0249 

 873 
 874 
Table 2. 875 

Number of subjects displaying significant renormalized partial directed coherence (rPDC). 876 
 877 

  listen playback read 
  left right left right left right 
 

0.5 Hz 
speech → brain  16 15 14 13 10 12 
brain → speech  4 5 5 3 5 4 

 

4–8 Hz 
speech → brain  10 8 9 9 12 9 
brain → speech  0 0 1 1 4 6 

 878 

 879 
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 880 

Figure 1. Coherence at the sensor level. Left—Sensor distribution of the coherence at 0.5 Hz 881 

and 4–8 Hz averaged across subjects. White discs highlight the sensors of maximum 882 

coherence, or, in the read condition at 4–8 Hz, the sensors suggestive of the presence of 883 

genuine speech brain tracking. Right—Individual coherence spectra at the highlighted 884 

sensors. Values from 0 to 1.5 Hz are taken from sensors identified in the 0.5 Hz map, and 885 

values from 1.5 Hz to 10 Hz from the sensors identified in the 4–8 Hz map.  886 
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 887 

Figure 2. Coherence in the source space. Top—Group-level coherence maps at 0.5 Hz and 4–888 

8 Hz in the 3 conditions (listen, playbach  and read) thresholded at statistical significance 889 

level. The color scale is tailored to each coherence map: it ranges from 0 to its maximum 890 

(indicated in between brain images). Bottom—Individual (gray) and group-averaged (black) 891 

coherence spectra at the local maxima of coherence. 892 

 893 

  894 
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 895 

Figure 3. Directionality assessment with renormalized partial directed coherence (rPDC). 896 

Bars display the mean and SD of rPDC values. There is one bar per conditions (listen, 897 

playback  and read), frequency range of interest (0.5 Hz and 4–8 Hz), hemisphere (left and 898 

right), and direction (speech → brain and brain → speech). Significance of the comparison 899 

between directions are indicated above each pair of bars (* p < 0.05, ** p < 0.01). 900 
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 902 

Figure 4. Speech brain tracking at the sensor level assessed with partial coherence to control 903 

for artifacts in edge sensors (highlighted in magenta). Note that topographies at 4–8 Hz are 904 

displayed with a different scale for read and listening (listen and playback) conditions. White 905 

discs highlight the same sensors as those in figure 1.  sensors of maximum coherence, or, in 906 

the read condition at 4–8 Hz, the sensors suggestive of the presence of genuine speech brain 907 

tracking. 908 
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