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INTRODUCTION 

Recent efforts have highlighted how interactions between 
distinct components of the immune tumor 
microenvironment (iTME) play crucial roles in dictating 
cancer development, progression, rejection, and 
therapeutic response (Junttila and de Sauvage, 2013; 
Schreiber et al., 2011; Williams et al., 2016). Spatial 
complexity of tumor architecture is a fundamental feature 
of the iTME, and considerable local and regional 
variability are observed within individual tumors and in 
the surrounding tissue (Gillies et al., 2012; Junttila and de 
Sauvage, 2013). Pathologists have long recognized that 
conserved patterns of spatial organization and cellular 
features of tissue components are prognostic in many 
cancers, and recent studies have suggested that cellular 
spatial context and tissue sub-structure within the iTME 
play important roles in therapeutic response and patient 
outcome (Binnewies et al., 2018). How, then, can 
delineating the role of specific cell-cell interactions as well 
as higher order relationships between cancer, stromal, and 
immune components facilitate a richer understanding of 
cancer progression and lead to new therapeutic avenues?  

Here we explore how the deep profiling of the iTME 
architecture in controlled clinical cohorts will facilitate the 
development of prognostic spatial signatures and lead to 
mechanistic understanding of biological programs 
underlying their formation. Multi-parameter tissue 

Antitumoral immunity requires organized, spatially 
nuanced interactions between components of the 
immune tumor microenvironment (iTME). 
Understanding this coordinated behavior in effective 
versus ineffective tumor control will advance 
immunotherapies. We optimized CO-Detection by 
indEXing (CODEX) for paraffin-embedded tissue 
microarrays, enabling profiling of 140 tissue regions 
from 35 advanced-stage colorectal cancer (CRC) 
patients with 56 protein markers simultaneously. We 
identified nine conserved, distinct cellular 
neighborhoods (CNs)–a collection of components 
characteristic of the CRC iTME. Enrichment of PD- 
1+CD4+ T cells only within a granulocyte CN positively 
correlated with survival in a high-risk patient subset. 
Coupling of tumor and immune CNs, fragmentation of 
T cell and macrophage CNs, and disruption of inter- 
CN communication was associated with inferior 
outcomes. This study provides a framework for 
interrogating complex biological processes, such as 
antitumoral immunity, demonstrating an example of 
how tumors can disrupt immune functionality through 
interference in the concerted action of cells and spatial 
domains.
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imaging technologies are primed to provide the raw data 
to achieve these objectives, as these technologies allow 
characterization of single cell phenotypes as well as 
mathematical access to every cell’s position and posture 
within intact tissues. Various optical multiplexing 
methods based on the detection of target-bound antibodies 
have recently been developed. The Vectra® system, for 
instance, uses secondary detection by chromogenic 
molecules (Huang et al., 2013), with a current high limit 
of 10 simultaneous markers measured. Several cyclic 
immunofluorescence protocols were introduced that are 
based on fluorophore inactivation or antibody stripping 
followed by re-staining. These methods can visualize 
dozens of markers in single cells and include MELC 
(Schubert et al., 2006), MxIF (Gerdes et al., 2013), t-
CyCIF (Lin et al., 2018) and 4i (Gut et al., 2018). A 
different approach uses DNA-barcoded antibodies that are 
visualized by cyclic addition and removal of fluorescently 
labeled DNA probes, as exemplified by exchange-PAINT 
(Agasti et al., 2017), DNA exchange imaging (DEI) 
(Wang et al., 2017b), and immuno-SABER (Saka et al., 
2018). Other methods use mass spectrometry-based 
detection of isotope-labeled antibodies in tissue by raster 
laser ablation (imaging mass cytometry [IMC]) (Giesen et 
al., 2014) or ion beams (multiplexed ion beam imaging 
[MIBI]) (Angelo et al., 2014; Keren et al., 2018), detect 
and/or amplify endogenous nucleic acids in situ (Moffitt 
et al., 2018; Wang et al., 2018), or use vibrational 
signatures of chemical bonds to visualize molecules 
directly (Wei et al., 2017).  

Our recently developed a method called CO-Detection by 
indEXing (CODEX) uses DNA-barcoded antibodies that 
are visualized by cyclic addition and removal of 
fluorescently labeled DNA probes (Goltsev et al., 2018) 
(Kennedy-Darling et al., in preparation). The commercial 
CODEX platform allows simultaneous visualization of 50 
or more antigens in a single tissue section, thereby 
enabling a systems-level approach to the analysis of tissue 
architecture. In Goltsev et al., we introduced the concept 
of an “i-niche”, defined as a ring of immediate neighbors 
directly contacting an “index cell”. We demonstrated that 
the i-niche composition was associated with the index 
cell’s marker expression and tissue localization, as well as 
disease progression in a murine lupus model. Further 
demonstrating the clinical utility of high-parameter 
imaging methods for quantifying contacts between cells 
and their neighbors, Keren et al. reported that the spatial 
compartmentalization of tumor/immune cell-cell contacts 
is linked to patient outcome in triple negative breast cancer 
(Keren et al., 2018). 

We reasoned that effective antitumoral immune responses 
require coordination of biological processes at multiple 
levels of abstraction, not just at the level of single cell 
behavior or pairwise cell-cell contacts (Schapiro et al., 
2017; Zhu et al., 2018). This led us to devise descriptions 
of tissue at a more dialectic level, based on a philosophy 
that tissues self-organize according to spatial domain-

based interactions that assemble via motivated 
communications initiated as individual cells, but 
collectively accomplishing functions only as an ensemble.  
In cancer, tumor cells could disrupt the emergent order 
created by these communication structures between spatial 
domains, thereby gaining another method by which to 
evade active immune assault. This premise was explored 
adopting the simplest possible approximation to such 
spatial domains, by defining cellular neighborhoods (CNs) 
as regions of the tissue within which each cell has a similar 
surrounding (its surrounding, in this case, defined by the 
relative proportions of various cell types within a fixed 
radius), and assessing how the CNs were structured by 
inter-cellular and inter-CN communication. As such, there 
is dynamic, coordinated behavior involving not only 
different combinations of cell types, but also involving 
different combinations of CNs, as well as an interplay 
between the biological processes operating at both levels 
of abstraction (cell types and CNs). In such a system, one 
would interrogate how the emergent behaviors of these 
cell types and CNs could model successful antitumoral 
immune responses. We focused on three complementary 
perspectives with which to understand these behaviors in 
the iTME: 1) how combinations of CNs and combinations 
of cell types are organized together to form the tissue; 2) 
variation in the functional states of CNs; and 3) how CNs 
communicate with each other with respect to key 
functional cellular subsets. We provide herein 
mathematical descriptions of such interactions and explore 
how they explain iTME structure correlations to patient 
outcomes in a cancer of extreme clinical importance. 

A tumor with tractable, repeated, structural differences 
that are correlated to outcome and  amenable to such an 
approach, is colorectal cancer (CRC) – one of the leading 
causes of cancer deaths in the Western world (Siegel et al., 
2018). In a subset of CRC patients, organized tertiary 
lymphoid structures (TLS) form at the tumor invasive 
margin. Patients who exhibit this de novo formation of B 
cell follicles and surrounding T cell areas – the so-called 
“Crohn’s-like reaction” (CLR) – have better overall 
survival than patients with only diffuse inflammatory 
infiltration (DII) (Cyster, 2003; Di Caro et al., 2014; 
Graham and Appelman, 1990). Although the survival 
advantage of TLS formation is well established for many 
solid cancers (Dieu-Nosjean et al., 2016; Sautes-Fridman 
et al., 2016), the associated tissue programs contributing 
to spatial organization and cancer control remain elusive. 
The question becomes, then, are there immune structures, 
perceived as assemblies of cells with coordinated goals, 
that are required for a positive outcome in CLR, while in 
DII the tumor’s interference in the creation and concert of 
such structures mitigates appropriate immune action? 

We performed multiplexed spatial imaging using an 
optimized CODEX methodology for formalin-fixed, 
paraffin-embedded (FFPE) tissue specimens to study the 
iTME in well-documented, archival CRC tissue samples. 
A pipeline for high-precision tissue microarrays (TMAs) 
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was implemented to increase the throughput and enable 
imaging of numerous tumor samples simultaneously. 
Within a retrospective cohort of 715 patients, we 
identified 35 advanced-stage patients with distinct patterns 
of immune response to cancer (17 patients with CLR and 
18 patients with DII) using stringent inclusion and 
exclusion criteria (Figure 1A). We leveraged FFPE-
CODEX for the spatial dissection of 140 iTME tissue 

regions from the tumor-invasive front in these 35 patients, 
imaging 56 proteins simultaneously, including tumor, 
immune, immunoregulatory, and stromal antigens. We 
developed an analytical framework to describe the iTME 
architecture and identify how key alterations in it are 
associated with clinical outcomes.  

 
Figure 1. Colorectal cancer (CRC) study cohort. (A) From a database of 715 CRC patients, patients with pre-operative therapy, pathological 
tumor, nodes, metastasis (pTNM) score 0-2 or unknown, absent immune infiltration (Klintrup-Mäkinen [KM] score 0), insufficient material for 
Graham-Appelman (G-A) scoring, a combination of low immune infiltration (K-M 1) and absent follicles (G-A 0), or few follicles (G-A 1) were 
excluded (see Methods). From the remaining 62 patients, a matched study cohort of n=17 CLR and n=18 DII patients was randomly selected. 
(B) Spectrum of iTME architectures in 134 advanced-stage CRC patients. Representative hematoxylin and eosin (H&E)-stained sections from 
iTME areas with many follicles (G-A 2, characteristic of CLR), few follicles (G-A 1) and no follicles (G-A 0, characteristic of DII) are shown. 
(C) Characteristics of patients in the CRC study cohort. (D) Kaplan-Meier survival curve of the CRC study cohort. CLR and DII patients are 
compared (p determined with a log-rank test). All 134 patients from (B) are shown for comparison. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 24, 2019. ; https://doi.org/10.1101/743989doi: bioRxiv preprint 

https://doi.org/10.1101/743989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4	

We found that the CRC iTME can be computationally 
decomposed into nine distinct CNs, each a characteristic 
microenvironment, that, with the exception of the CN 
corresponding to the TLS (i.e., the lymphoid follicle), 
were conserved in their abundance and local cell type 
composition across both patient groups. The functional 
state of a granulocyte-enriched CN, as assessed by the 
frequency of PD-1+CD4+ T cells within it, was positively 
correlated with survival in DII patients, whereas the 
overall frequency of these cells was not. The worse 
outcomes for DII patients were associated with crucial, 
subtle differences in the CNs’ organization, functional 
states, and communication network. We identified two 
“tissue modules” (coordinated tissue, CN and cell type 
components) in each patient group. In CLR patients, these 
corresponded to separate immune and tumor modules. In 
DII patients, these consisted of a coupled tumor/immune 
module and a distinct granulocyte module. An explanation 
for the coupled tumor/immune tissue module in DII 
patients is that immune CNs collectively 
compartmentalized in CLR were increasingly interspersed 
with tumor CNs in DII. This was associated with coupling 
between and fragmentation of T cell-enriched and 
macrophage-enriched CNs. Alongside these changes in 
organization, in DII patients, the T cell-enriched CN had 
decreased enrichment of proliferating CD8+ T cells, and 
the macrophage-enriched CN had increased enrichment of 
regulatory T cells. In addition, in DII patients, but not CLR 
patients, the frequency of regulatory T cells (Tregs) in this 
macrophage-enriched CN was negatively correlated with 
the frequency of proliferating CD8+ T cells in the T cell-
enriched CN (which we infer as immunosuppressive inter-
CN “communication”). Finally, while the T cell 
composition in the tumor boundary CN of CLR patients 
was correlated with the T cell-enriched CN, in DII patients 
it was correlated with the macrophage-enriched CN. 

These results collectively suggest that in DII patients, 
unlike CLR patients, the tumor modulates the 
organization, functional states and intercommunication of 
the T cell- and macrophage-enriched CNs as well as their 
ability to communicate with the tumor boundary CN. Our 
data support a model in which the organization and 
behavior of T cell and macrophage CNs facilitate effective 
immune responses in CLR patients and ineffective 
responses in DII patients—with an apparent goal of the 
tumor to expend energy ensuring that the immune system 
does not consolidate into an effective coordinated 
antitumoral activity module. The approach described here 
is generalizable towards other multiplexed imaging 
modalities and enables critical architectural features to be 
linked to patient outcome and a mechanistic understanding 
of the iTME, begging the question of whether other tumors 
disrupt immune action in similar manners. 

 

RESULTS 

Selection of patient samples by classically 
determined iTME structures in CRC  

Colorectal cancer (CRC) patients exhibit a range of native 
immune infiltrates and associated histologic features 
(Figure 1B). On one end of the spectrum of CRC iTME 
phenotypes are the patients who have a Crohn’s-like 
reaction (CLR), characterized by the presence of 
numerous TLS; these structures are correlated with better-
than-average survival. At the other end, patients with 
diffuse inflammatory infiltration (DII) and absence of TLS 
have poor survival outcomes. Between these two extremes 
are a spectrum of intermediate iTME phenotypes with a 
range of outcomes.  

From a database of 715 CRC patients, patients with early-
stage CRC, pre-operative chemotherapy, insufficient 
material, and absent immune infiltration were excluded 
(Figure 1A). Of the remaining 134 patients, 62 had either 
CLR or DII patterns, and from these a study cohort of 17 
patients with CLR and 18 with DII was randomly selected 
(Figure 1B). The two groups were matched with regards 
to gender, age, cancer type, location, and stage (Figure 1C 
and Table S1). In line with previous reports, overall 
survival of CLR patients was significantly better than that 
of DII patients (Figure 1D). 

We reasoned that, since the immune responses to CRC 
occupy a wide spectrum that is directly linked to patient 
outcome (Figures 1B-D), the components of the iTME 
architecture that are conserved between its extremes 
would enable the development of a model describing its 
function and dysfunction. We therefore determined what 
exactly these common components are, and how their 
organization restricts or facilitates tumor growth. The key 
question was: Was there simply “less structure” in the 
architecture of the DII patients, or were there crucial 
differences in the organization of these components that 
could explain their distinct antitumoral responses?  

 

FFPE-optimized CODEX enables highly 
multiplexed fluorescence microscopy of archival 
human cancer samples  

We previously reported the development of CODEX, a 
fluorescence microscopy platform that uses DNA-
barcoded antibodies and iterative visualization based on 
nucleotide addition by polymerase single-base extension, 
and chemical removal, of fluorescent nucleotides for 
highly multiplexed imaging of fresh-frozen tissues 
(Goltsev et al., 2018). The CODEX technology was 
subsequently simplified by implementing an iterative 
approach involving exchange of fluorescently labeled 
complementary DNA probes (Kennedy-Darling et al., in 
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preparation). The principle of the CODEX platform 

(legend on next page) 
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involves iterative annealing, imaging, and stripping of 
fluorescently labeled DNA probes complementary to the 
DNA barcodes on the tissue-bound antibodies using an 
automated microfluidics system and a conventional 
optical fluorescent microscope (Figure 2A). Hoechst 
nuclear stain is recorded in every iteration cycle to serve 
as a reference for computational image alignment. 

We optimized CODEX for use in FFPE tissue to study 
archival human tissue samples. FFPE-CODEX staining 
panels consisting of 50 or more markers were created by 
conjugating antibodies previously validated for 
immunohistochemistry (IHC) to unique short DNA 
oligonucleotides (Tables S2, S3 and S4). CODEX 
antibodies were screened and validated for correct staining 
patterns in parallel with standard manual IHC using 
identical staining protocols (Figure S1). Staining results 
were verified by comparison to online databases and 
published literature. As proof-of-principle for the FFPE-
CODEX approach, final validation and titration of the 
complete antibody panels were performed in multi-cycle 
CODEX imaging experiments using FFPE human tonsil 
sections (Figures S2 and S3, Table S4). At the end of 
each CODEX run, the tissue sections were stained with 
hematoxylin and eosin (H&E) for morphological 
correlation.  

We next performed an in-depth validation of our CODEX 
antibody panel by staining and analyzing a multi-tumor 
TMA (Figures 2B and S4, Table S5). Critically, since we 
could test multiple reagents across many tissue types in 
this experiment, use of co-staining and marker exclusion 
patterns (for instance, either CD4 or CD8 expression but 
not both on CD3+ T cells) greatly facilitated reagent 
validation. Expected antigen distribution patterns were 
observed in all tissues analyzed, exemplified by normal 
spleen, follicular lymphoma, hepatocellular carcinoma, 
gastric carcinoma, breast invasive lobular carcinoma, and 
pleural diffuse malignant mesothelioma (Figure 2C). For 
example, healthy spleen tissue showed a normal 
distribution of red and white pulp (CD3, CD20, CD68), 
presence of granulocytes (CD15), localization of 
indoleamine 2,3-dioxygenase 1 (IDO-1) in red pulp 

macrophages, and prominent PD-L1 expression in splenic 
sinusoids (CD31). Notably, we detected an unexpected 
strong and ubiquitous expression of the T cell checkpoint 
marker V domain Ig suppressor of T cell activation 
(VISTA) in mesothelioma, which is confirmed as a feature 
of mesothelioma in a recently described integrative 
genomic characterization study (Hmeljak et al., 2018).  

The CODEX method is an iterative imaging approach with 
numerous washing and stripping steps that potentially 
degrade the tissue over the time of the multicycle reaction. 
To exclude this possibility, we performed a re-cycling 
experiment on FFPE tonsil using a panel of nine 
antibodies over 33 cycles. This experiment confirmed that 
the marker intensity remained constant and the tissue 
morphology was intact throughout the process (Figures 
S5 and S6). 

Collectively, these data demonstrate that FFPE-optimized 
CODEX is suitable for highly multiplexed single-cell 
marker visualization, quantification and biomarker 
discovery in clinically relevant tissues.  

 

FFPE-CODEX enables in situ identification and 
quantification of major immune cell types in the 
iTME of the CRC invasive front  

At the tumor invasive front of CRC, the iTME is usually 
seen as leukocyte-dense regions alternating with regions 
of sparse immune infiltration. In DII patients, TLS 
(follicles) are absent in the immune infiltrate but are 
abundant in tumors from CLR patients. We created two 
high-precision TMAs by selecting four representative 
leukocyte-dense iTME regions from the tumor invasive 
front for each patient, resulting in a total of 140 regions 
(Figure S7). For CLR patients, two regions per patient 
contained organized TLS and two regions contained 
diffusely inflamed tissue, whereas in the DII patient group 
all four regions selected contained diffusely inflamed 
tissue. FFPE-CODEX with 56 markers and two nuclear  

 
 
 

Figure 2. CODEX workflow and antibody validation in multi-tumor TMA. (A) CODEX workflow. (1) Patient samples from FFPE blocks 
are assembled into high-precision TMAs. (2) Each antibody is conjugated to a unique DNA-oligonucleotide. (3) Antibodies are assembled 
into a master mix, and tissues are stained overnight. (4) Antibodies are iteratively rendered visible in a multi-cycle reaction by adding 
complementary, fluorescently labeled DNA probes; in the workflow used here, two to three antibodies were imaged in each cycle. After 
imaging, the fluorescent probes are stripped off, and the process is repeated until all antibodies have been imaged. (5) The resulting images 
are computationally processed. (B) A multi-tumor TMA consisting of 55 different malignant and non-malignant tumors and 11 healthy tissues 
(Figure S4 and Table S5) was imaged using a 56-marker CODEX panel (Table S4). A seven-color overview image with Ki-67 (red), 
synaptophysin (green), α-SMA (blue), CD3 (cyan), CD34 (white), pan-cytokeratin (yellow), and CD68 (magenta) is shown. (C) Higher 
magnification and seven-color overlay images of normal spleen (CD3, PD-L1, CD20, IDO-1, CD31, CD15, CD68), follicular lymphoma 
(CD2, PAX5, CD79a, CD31, CD57, CD11c, BCL2), hepatocellular carcinoma (CD34, CD138, Hoechst, Ki-67, CD3, Hep-Par-1, CD163), 
gastric carcinoma (EpCAM, MUC-1, CD34, CD7, CD163, pan-cytokeratin, PD-1), breast invasive lobular carcinoma (GATA-3, MUC-1, 
vimentin, CD15, Ki-67, hyaluronan, CD11c), and pleural diffuse malignant mesothelioma (VISTA, CD34, α-SMA, CD45, podoplanin, 
cytokeratin 7, CD163). Abbreviations: BM, bone marrow; AML, acute myeloid leukemia; B-ALL, B cell acute lymphoblastic leukemia; LN, 
lymph node; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; NKT, natural killer/T 
cell lymphoma; T-ALL, T cell acute lymphoblastic leukemia; HCC, hepatocellular carcinoma; CCC, cholangiocarcinoma; CA, carcinoma; 
NST, no special type; rhabdo, rhabdomyosarcoma; sarc, sarcoma; GCT, giant cell tumor; MPNST, malignant peripheral nerve sheath tumor; 
CCRCC, clear cell renal cell carcinoma; DFSP, dermatofibrosarcoma protuberans. See also Figures S1, S2, S3, S4, S5 and S6. 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 24, 2019. ; https://doi.org/10.1101/743989doi: bioRxiv preprint 

https://doi.org/10.1101/743989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7	

 

(legend on next page) 
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stains was performed on the TMAs, and staining results 
were validated for each marker (Figures 3A-B and S8). 

Fifty-five of the 56 markers in the panel (all except 
collagen IV) are cell-surface or intracellular proteins. 
They are used as phenotypic and functional markers either 
alone or in combination to identify specific cell 
subpopulations and functional states. We approached the 
problem of cell type identification by two complementary 
approaches: one using a supervised gating strategy, and 
one using unsupervised clustering. After single-cell 
segmentation, marker quantification and spatial 
fluorescence compensation (Goltsev et al., 2018), manual 
cleanup gating for each individual TMA core was 
performed in CellEngine (www.cellengine.com) to 
positively identify cells (events double-positive for 
Hoechst and DRAQ5 nuclear stains), and to remove out-
of-focus events in the Z plane. For unsupervised 
identification of cell types, presumed cell events were then 
exported and subjected to X-shift clustering using VorteX 
(Samusik et al., 2016). To assess the reliability of this 
unsupervised approach, cell events were additionally 
gated manually in CellEngine (Figure S9). VorteX 
clustering, followed by supervised merging of clusters 
based on marker expression profiles, tissue localization 
and morphology resulted in 28 unique clusters of definable 
cell subsets. These included 18 immune cell clusters, 6 
stromal and vasculature clusters, 2 mixed clusters, 1 tumor 
cell cluster, and 1 undefined cluster (Figures S10, S11 
and S12). Supervised manual gating and unsupervised X-
shift clustering led to comparable results for absolute 
numbers and frequencies of defined major immune cell 
types (Figures S13 and S14). For downstream analyses, 
we chose cell types identified using unsupervised 
clustering. 

Graphical representation of imaged samples as Voronoi 
diagrams colored by cell type can be used to visualize the 
spatial distribution of cell types in tissue and to verify the 
clustering results. Since the visual interpretation of 28 
different CRC clusters on Voronoi diagrams was 
potentially subjective (Figure S12), we reduced the 
complexity manually. Six initial “macrophage” clusters 
(CD11b+ monocytes, CD11b+CD68+ macrophages, 

CD68+ macrophages, CD68+ granzyme B+ macrophages, 
CD68+CD163+ macrophages and CD163+ macrophages) 
were merged into a single cluster, and all tumor and 
stromal cell clusters were merged into a single cluster 
called “non-immune cells” (Figures 3C and S15). We 
quantified each immune cell type as a fraction of total 
immune cells on an overall, per group and per patient 
basis. The frequency of immune subsets across all patients 
revealed cell types with high (i.e., macrophages, 34%), 
medium (i.e., CD4+ T cells, 15%; CD8+ T cells, 13%; B 
cells, 10%) and low frequencies (i.e., Tregs, 2%; natural 
killer [NK] cells, <1%; CD11c+ dendritic cells [DCs], 
<1%) (Figures 3D and S15).  

Differences in the composition of these immune cell 
clusters were observed between CLR and DII patients. 
Most notably, CLR patients had higher frequencies of B 
cells, whereas DII patients had higher frequencies of 
macrophages. Interestingly, the frequencies of CD8+ T cell 
and Treg clusters were not significantly different between 
CLR and DII patients (Figures 3D and S15). This is in 
contrast to prior studies in CRC and other cancers, 
including lung, breast, ovarian and melanoma, in which 
relative abundances of these two cell types were correlated 
with outcome (Fridman et al., 2012; Galon et al., 2014; 
Galon et al., 2012; Pages et al., 2018). Although there were 
notable differences in the composition of immune cell 
types across individual patients, the proportion of immune 
vs. non-immune cells was not correlated with the 
frequency of any specific immune cell type.  (Figure S15). 

We performed principal component analysis (PCA) to 
determine if combinations of cell types correlated with 
cancer state or clinical outcomes. The first two principal 
components were more prevalent in CLR patients than in 
DII patients (t test p<0.01 and p<0.025, respectively, 
Figure 3E). The first principal component contained cell 
subpopulations that are found in a classically defined 
follicle (B cells, plasma cells and CD4+ T cells) (Figure 
S16A). Interestingly, in the second principal component, 
non-immune and non-tumoral cell clusters (adipocytes, 
lymphatics, stroma, nerves, smooth muscle, and 
vasculature) had a positive weight (Figure 3F). These cell 
types make up structural components such as vessels and 

 
 
 

Figure 3. CODEX imaging reveals detailed spatial composition of immune infiltrates in CRC. (A) Schematic of CRC TMA assembly. 
For each of the 35 patients (CLR, n=17; DII, n=18), four cores were drilled at the tumor invasive front to create two 70-core TMAs were then 
subjected to CODEX with a 56-marker panel (Table S4). Blue dots represent follicles. (B) Representative TMA cores for CLR and DII patients 
are depicted as seven-color overlay images with FOXP3 (red), CD11c (white), CD20 (yellow), CD8 (green), CD56 (blue), CD4 (cyan) and 
CD68 (magenta). (C-F) Single-cell protein marker expression data from all spots of both TMAs (n=258,385 total cells) were subjected to X-
shift clustering. Clusters were visually verified and manually merged based on morphology and marker expression profiles into 28 distinct 
clusters (Figures S10 and S11). (C) The 28 clusters were merged into eight different immune clusters and one cluster containing all non-
immune cells (tumor cells, smooth muscle cells, stromal cells, vasculature, lymphatics, nerves and other cell types). These nine clusters are 
shown as Voronoi diagrams for both cores. The most important markers for cluster identification are listed. A: Tregs (CD3+CD4+FOXP3+). 
B: DCs (CD11c+). C: B cells (CD20+). D: CD8+ T cells (CD3+CD8+). E: Other immune cells (H&E, CD45+, and other markers). F: CD4+ T 
cells (CD3+CD4+). G: Non-immune cells (H&E, pan-cytokeratin+, CD31+, α-SMA+ and other markers). H: NK cells (CD56+GATA3+; cluster 
not appearing in images). I: Macrophages (CD68+, CD163+). (D) The eight immune clusters (n=132,437 cells) and their frequencies in (top) 
all CRC patients (bottom) and separated into CLR (n=57,894 cells) and DII patients (n=74,543 cells). (E) PCA correlating combinations of 
cell type abundances in CLR vs. DII patients. (F) Cell type loading in principal component 2. See also Figures S7, S8, S9, S10, S11, S12, 
S13, S14, S15 and S16A-B. 
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connective tissue. That this component accounted for a 

(legend on next page) 
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large percentage of the total variation (15.2%) and that the 
two patient groups differed in their projection on this 
component suggested that underlying factors 
preferentially promote the abundance of structural cell 
types in the iTME of CLR patients but not in DII patients. 
Therefore, these cell types may contribute to the improved 
survival of CLR patients. 

A CODEX image can be analyzed for the spatial 
coordinates of each cell within the tissue. We computed 
pairwise cell-cell contact frequencies and frequency-
normalized contact likelihood ratios (log-odds ratios) 
(Goltsev et al., 2018) for cell clusters in both groups of 
patients. The most dominant pairwise cell-cell interactions 
were homotypic (e.g., B cells with B cells; DCs with DCs), 
and we did not observe significant differences in these 
cell-cell contacts between CLR and DII patients (Figure 
S16B). Because no pairwise cell-cell contacts were 
sufficient to distinguish patient groups, we considered 
below whether features beyond pairwise contacts, such as 
higher-level features of tissue architecture and/or immune 
cell activation states, are attributes that define antitumoral 
immune responses and survival in this CRC cohort.  

 

Characteristic cellular neighborhoods of the CRC 
iTME are conserved across patient groups 

In addition to the mere presence of tumor cells, immune 
cells and other microenvironmental components of the 
iTME, their spatial organization should provide insights 
into how they influence tumor development, progression, 
therapeutic response, or patient outcome. We reasoned 
that the dynamic spatial contexts of the tissue could be first 
approximated as cellular neighborhoods (CNs) consisting 
of tissue regions with a defined local composition of cell 
types. This approach was the simplest possible extension 
to treating the entire tissue as a homogeneous collection of 
cells. In addition, it made minimal assumptions (as far as 
could be said) regarding the permanence, shape or 
orientation of spatial contexts or their associated cellular 
dynamics, which we deemed important, not least because 
our data was a static, 2D approximation of a dynamic 3D 
tissue volume such as the iTME.  

To identify CNs, cells were clustered based on the cell 
type composition of their 10 nearest spatial neighbors. The 
10 nearest spatial neighbors for each individual cell, its so 
called “window” (Figure 4A.1), was identified using XY 
positions. The cell type composition, with respect to the 
28 cell types that we had identified, was determined per 
window (Figure 4A.2), and windows with similar 
composition were grouped by k-means clustering (k=10) 
(Figure 4A.3). Granted, biologically, cells might exist in 
multiple neighborhoods simultaneously, or cell 
neighborhoods might “blend” one into another with no 
clear demarcation boundary. To simplify visualization, 
computation and interpretation of the spatial behavior of 
the tissue, any given cell was assigned here to a single CN. 
Each cell’s Voronoi representation was then colored 
according to the CN in which it resided (Figure 4A.4).   

CNs were identified by clustering data from both patient 
groups together to maximize the recognition of common 
CNs. We found 10 distinct CNs in the CRC iTME that 
recapitulated the core tissue components, as validated on 
the original H&E-stained sections and fluorescent images 
in both patient groups (Figures 4B-D and S17). One of the 
10 CNs was comprised mainly of imaging artifacts and 
therefore was removed from further analyses (data not 
shown). Surprisingly, except for a CN corresponding to 
the follicle, the remaining eight CNs were broadly present 
in both CLR and DII patients. When we applied this 
algorithm to each patient group separately, the identified 
CNs were still comparable across patient groups (Figure 
S18) and were therefore not an artifact of the data merging 
process. This led to the preliminary conclusion that the 
two extremes of the CRC iTME spectrum, while visually 
distinct as a result of the presence of TLS, shared 
underlying architectural components that could be defined 
by their characteristic local cell type frequencies. 

The nine CNs recapitulated structures that directly related 
to components of the CRC iTME architecture as observed 
in H&E-stained tissue sections (Figure 4B). For example, 
CN-5 was enriched for B cells, CD4+ T cells, 
CD4+CD45RO+ T cells, CD11c+ DCs, and CD163+ 
macrophages and depleted of all other cell types. B cells 
and CD4+ T cells were the dominant cell types. When 
compared with H&E-stained images, CN-5 nearly 
perfectly aligns with the TLS (follicle) (Figure 4B, CN-5 
in heatmap; 4C, upper panel brown region). 
Additionally, the analysis revealed previously 

 
 
 

Figure 4. Identification of characteristic tissue CNs in the CRC iTME. (A) Schematic of automated computational CN identification. (1) 
The 10 nearest neighbors around every cell (its “window”) are identified. (2) Cell type composition per window is determined. (3) CNs are 
identified by clustering windows, and (4) each cell is assigned to a CN according to its window, and the Voronoi diagram of the cells in the 
tissue is colored by CN. (B) Identification of 9 distinct CNs based on the 28 original cell types and their respective frequencies (enrichment 
score) within each CN (pooled data from both patient groups). CN-1, T cells (blue); CN-2, bulk tumor cells (green); CN-3, immune-infiltrated 
stroma (red); CN-4, macrophages (purple); CN-5, follicle (brown); CN-6, tumor boundary (pink); CN-7, vascularized smooth muscle (gray); 
CN-8, smooth muscle (yellow); CN-9, granulocytes (cyan). (C) Representative Voronoi diagrams of CNs for CLR and DII patients. Insets, 
H&E images. (D-E) Representative Voronoi CN diagrams were selected to show the nine different CNs in two patients (left panels), with the 
corresponding seven-color overlay CODEX images (right panels). Vimentin (red); pan-cytokeratin (green); CD3 (blue), CD15 (cyan), CD34 
(white), α-SMA (yellow), CD163 (magenta). Insets, H&E images. (F) Frequencies of CNs in CLR vs. DII patients. Each point represents the 
mean CN frequency from four TMA cores per patient (***p<0.001, Student’s t-test). See also Figures S16C-D, S17 and S18. 
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unappreciated substructure in the remaining non-follicular 
leukocyte-dense tissue regions. Examples included T cell 
enriched CN-1 (Figure 4B-C, blue regions), macrophage 
enriched CN-4 (Figure 4B-C, purple regions), and 
granulocyte enriched CN-9 (Figure 4B-4C, cyan 
regions). The functional utility (to the immune system or 
tumor) of these repeatedly observed structures remains 
unknown, but the finding of such CNs underscores the 
unappreciated complexity, and coordination, of dynamic 
immune action against tumor presence as observed across 
multiple patients. In other words, a repeatable program is 
at play whether driven by the host, the tumor, or some 
interplay of the two. 

The tumor itself was divided into two distinct CNs: CN-2 
was mainly comprised of tumor cells (“bulk tumor”) 
(Figure 4B and 4D, leftmost panel, green regions), and 
CN-6 that contained tumor cells as well as CD11c+ DCs, 
CD68+ macrophages, T cell subsets and other immune and 
non-immune cell types (“tumor boundary”) (Figure 4B 
and 4D, left panel, pink regions). In the stroma, we 
discriminated three CNs: CN-3 was enriched in immune 
cells (Figure 4B-4C, lower panel red regions), CN-7 was 
vascularized smooth muscle (Figure 4B and 4E, left 
panel gray regions), and CN-8 mainly consisted of 
smooth muscle cells (Figure 4B and 4E, left panel yellow 
regions). Voronoi maps of CNs aligned well with 
fluorescent CODEX images (Figures 4D-E) and H&E 
images (Figure S17).  

Since we observed a similar set of CNs in both CLR and 
DII, we determined whether the frequencies of any CNs 
differed in the CRC subtypes. We therefore computed the 
frequencies of each CN in each patient (Figures 4F and 
S16C). Except for CN-5 (follicle), which was highly 
enriched in CLR patients, none of the other CN 
frequencies differed significantly between patient groups. 
This indicates that the CNs we identified were common 
across patient groups and likely represent dynamic, 
conserved tissue compartments of CRC iTME. The 
question then becomes, are there other structures and 
relationships between these CNs that define the 
differences between CLR and DII, and, further, could 
these explain the respective patient outcome differences? 

 

Coupling of tumor and immune components in 
DII patients associated with coupling and 
fragmentation of T cell and macrophage CNs 

The fact that the iTME could be decomposed into cell 
types and CNs found in both patient groups implied that 
despite the presence of follicles in CLR and their absence 
in DII, the core components of the CRC iTME are 
maintained across the spectrum of this cancer. What, then, 
are the differences in the organization of these components 
in each patient group towards such different outcomes? 

Principal component analysis (Figure 3E-F) suggested 
that the biology driving the organization of the iTME 
coordinates distinct combinations of cell types to co-occur 
in each patient group. Presumably, this biology operates at 
multiple levels of abstraction, dynamically giving rise to 
combinations of cell types forming combinations of CNs, 
whose presence, behavior, and functions are mutually 
dependent, creating emergent function(s) from simpler 
components. Whereas PCA can identify explanatory axes 
of variation at one level of abstraction (for example, the 
cell type or the CN individually), it could not explicitly 
model coordinated coupling of cell types and CNs at 
multiple levels of abstraction. The question then becomes: 
How to describe a dynamically complex structure like the 
iTME, operating at these multiple levels, wherein the 
immune system, with its presumably regular order (i.e. the 
set rules by which it behaves), is in conflict with a tumor 
“strategizing” against it with genetic variation? 

“Non-negative Tucker tensor decomposition” (Kim and 
Choi, 2007) was an attractive extension to PCA, because 
it enabled explicit modelling of the factors operating at the 
cell type level, CN level and the higher order organization 
of these factors. Variants of tensor decomposition have 
been previously applied to gene expression data collected 
across multiple tissues (Hore et al., 2016). Here, we 
applied this method to determine an optimal manner by 
which to decompose the tensors, higher-dimensional 
arrays representing the data across patients, into a 
collection of “CN modules” (combinations of CNs that 
partially contain similar combinations of cell types) and 
“cell type (CT) modules” (combinations of cell types that 
are found across similar neighborhoods). CN modules and 
CT modules “interact” in this specific approach to create 
“tissue modules” (interacting combinations of CT 
modules and CN modules that are found across similar 
patients) (Figure 5A, described below). The value of this 
approach is that it allows coordination at each level of 
abstraction (cell type, CN and tissue) to be viewed as 
interacting components that are combined, thereby giving 
a means to identify programs possibly driving the 
organization of the iTME in each patient group. The term 
“interacting” used here should be interpreted statistically 
and not as proof of physical cellular interaction or 
communication. 

DII patients do not have follicular structures; therefore, to 
remove any bias that such follicles alone might contribute 
to comparison, the CN-5 (follicle) data were excluded for 
the purposes of these analyses (Figure 5A.1). CLR and 
DII patient data were individually represented as a matrix 
of cell type distributions (x axis) and CNs (y axis) (Figure 
5A.2). Two tensors (higher dimensional arrays – one for 
each patient group) were obtained by concatenating 
patients’ matrices along the z axis (Figure 5A.3), and the 
aforementioned tensor decomposition was performed 
(Figure 5A.4). The numbers of CN modules and CT 
modules (6 for each) were selected by visual identification 
of elbow points in the decomposition accuracy (Figure S19). 
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The relationships between CNs and cell types, as well as 
between CN modules and CT modules, determined by this 
decomposition, are then interpreted as an optimal 
description of the spatial iTME organization. Tensor 
decomposition was applied to patient groups individually, 
instead of combining patients and assessing ‘enrichment’ 
of a particular module. This is because we interpret the 
entire decomposition, including the relationships between 
modules, and not individual modules in isolation. This is 
then used to describe the differences between patient 
groups in the organization of the iTME. 

One possible biological explanation for the tensor 
decomposition output is depicted as a schematic in Figure 
5B: (1) The tissue is formed by the interaction of CN 
‘recruitment factors’ (for example, cytokines) shared by 
multiple CNs to recruit cell types by interacting with 
cognate ‘cellular localization factors’ (for example, 
cytokine receptors) shared by multiple cell types (Figure 
5B.1, top aspect of the panel). The term factor should be 
viewed in a statistical sense and could represent more 
complicated programs than a single ligand or receptor. 
Different factors can interact to different extents (Figure 
5B.1, lower aspect of the panel). (2) Different interacting 
pairs of recruitment and localization factors are found 
together in the tissue, giving rise to the observed 
distribution of CNs and cell types (Figure 5B.2). In the 
left region, the blue and red CNs share a recruitment factor 
(heart-shaped indentation), so share a common cell type 
(green) with a cognate localization factor (heart). In the 
right region, the orange and the gray cells share a 
localization factor (circle), so are found in multiple CNs. 
The green CN uses multiple recruitment factors, one 
shared with the yellow CN. Distinct interacting pairs of 
recruitment and localization factors co-occur across 
patients (red and blue found together, and yellow and 
green found together), each co-occurring collection of 
interacting pairs corresponding to a tissue module. These 
recruitment and localization factors are inferred from the 
tensor decomposition output, visualized as tissue modules 
comprised of CN modules and cell type (CT) modules, 
with interactions between them represented as edges 
(Figure 5B.3). Note that there is a common collection of 

CT modules and CN modules that are present to different 
extents in each tissue module. The contribution of each 
CN module and CT module to each tissue module is 
represented by its shading (Figure 5B.3). In tissue module 
1 (top box), the CN module in the first row is interpreted 
as the recruitment factor with a circular indentation. This 
is because it contains yellow and green CNs, and there is 
a strong edge with the CT module containing the orange 
and grey cell types, and a weak edge with the CT module 
containing the blue cell type. The CN module with just the 
green CN (row 2) is interpreted as the recruitment factor 
with the square indentation. This is because that CN 
module does not contain any other CNs and has only one 
edge with one CT module containing the blue cell type. 
Since the red and green CNs are not found in the same 
patients, the CN module with the red and blue CNs and its 
cognate CT module with just the green cell type are faint 
in tissue module 1 and form tissue module 2. Note that the 
CN modules and the cell type modules are identified by 
their mutual dependence. 

The identified CN modules and CT modules were 
common to each tissue module but contributed in the 
decomposition to different extents. We begin by 
describing the CN modules and CT modules, which are 
depicted twice in Figure 5C-D within the two tissue 
modules for each patient group. In CLR patients, the six 
CN modules that were identified corresponded to: 1) a 
module mainly containing CN-9 (granulocyte enriched) 
and CN-6 (tumor boundary); 2) a module mainly 
containing CN-3 (immune infiltrated stroma); 3) a module 
mainly containing CN-7 (vascularized smooth muscle) 
and CN-8 (smooth muscle); 4) a module mainly 
containing CN-1 (T cell enriched); 5) a module mainly 
containing CN-4 (macrophage enriched) (Figure 5C, 
upper panel, left column, first five rows), and 6) a 
module mainly containing CN-2 (bulk tumor) (Figure 5C, 
lower panel, left column, last row). The CT modules that 
were identified in CLR patients corresponded to: 1) a 
module mainly containing granulocytes; 2) a module 
mainly containing stroma and vasculature; 3) a module 
mainly containing smooth muscle and vasculature; 4) a 
module mainly containing CD8+ and CD4+ T cells, B cells, 

 
 
 

Figure 5. Tensor decomposition suggests differences in underlying programs spatially organizing the iTME. (A) Schematic of non-
negative Tucker tensor decomposition analysis. (1) The non-follicular CNs of the iTME were compared after removing CN-5. (2) For each 
patient, cell type (x axis) and CN (y axis) distribution are represented as a matrix. (3) Concatenating cell type and CN distributions from each 
patient along a third dimension (z axis) yields a tensor for each patient group. (4) Non-negative Tucker decomposition, applied to the tensors 
for each patient group individually, yielded 2 tissue modules, each comprised of six CN modules and six cell type (CT) modules. (B) Schematic 
illustrating the interpretation of the tensor decomposition output. (1) Legend of components: A CN module corresponds to a cell recruitment 
program utilized by the CNs comprising that module, and a CT module corresponds to a cell type localization program utilized by the cell 
types comprising that module. Different pairs of recruitment programs and localization programs interact to different strengths. (2) Different 
pairs of interacting recruitment programs and localization programs co-occur to form the tissue through balanced interactions between 
recruitment and localization factors. These combinations yield similar combinations of CNs and cell types within them across patients. (3) 
Graphical representation of tissue modules corresponding to combinations of interacting pairs, indicated by edges, of CN modules (left column) 
and CT modules (right column). CN modules and CT modules are common across both tissue modules. In each tissue module, the transparency 
of each CN module and CT module corresponds to the weight of the maximum edge of which it is part, i.e. indicating its contribution to that 
tissue module. (C) Decomposition results for CLR patients. Interacting pairs of CN modules and CT modules correspond to an “immune 
compartment” in tissue module 1 (top) and to a “tumor compartment” in tissue module 2 (bottom). (D) Decomposition for DII patients. 
Interacting pairs of CN modules and cell type modules correspond to an “immune & tumor compartment” in tissue module 1 (top) and to a 
“granulocyte compartment” in tissue module 2 (bottom). See also Figure S19. 
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plasma cells and vasculature; 5) a module mainly 
containing CD68+CD163+ macrophages and plasma cells 
(Figure 5C, upper panel, right column, first five rows), 
and 6) a module containing tumor cells (Figure 5C, lower 
right panel, last row).  

These CN modules and CT modules are combined to form 
two distinct tissue modules in each patient group. In CLR 
patients, the “immune compartment” tissue module 
consists of immune CN modules having their strongest 
edges with their cognate immune CT modules. For 
instance, CN module 5, consisting predominantly of CN-
4 (macrophage enriched) had a strong edge with 
(obviously) CT module 5, consisting predominantly of 
macrophages (Figure 5C, upper panel, fifth row, both 
columns). Notably, in the immune compartment, the 
tumor neighborhood module and the tumor cell type 
module only had weak edges with the other neighborhood 
and cell type modules, and were therefore represented 
faintly (Figure 5C, upper panel, sixth row, weak edges). 
The second tissue module in the CLR patients was the 
“tumor compartment”. This primarily consisted of CN 
module 6, consisting predominantly of CN-2 (bulk tumor) 
and CN-6 (tumor boundary) that had a strong edge with 
CT module 6, consisting primarily of tumor cells (Figure 
5C, lower panel, sixth row). Moreover, in this tissue 
module there was an additional edge between CN module 
3, consisting of smooth muscle CNs and CT module 3, 
consisting of smooth muscle cell types (Figure 5C, lower 
panel, third row). 

In DII patients, the six CN modules that were identified 
corresponded to: 1) a module mainly containing CN-3 
(immune infiltrated stroma) and CN-6 (tumor boundary), 
2) a module mainly containing CN-7 (vascularized smooth 
muscle) and CN-8 (smooth muscle), 3) a module mainly 
containing CN-1 (T cell enriched) and CN-4 (macrophage 
enriched), 4) a module mainly containing CN-9 
(granulocyte enriched); 5) a module mainly containing 
CN-2 (tumor), CN-4 (macrophage enriched) and CN-6 
(tumor boundary), and 6) a module mainly containing CN-
1 (T cell enriched), CN-2 (tumor) and CN-6  (tumor 
boundary) (Figure 5D, top panel, left column, rows 1-3 
and 5-6; and lower panel, rows 1 and 4).  

The CT modules that were identified in DII patients 
corresponded to: 1) a module mainly containing stroma 
and vasculature; 2) a module mainly containing smooth 
muscle and vasculature; 3) a module mainly containing 
CD8+ and CD4+ T cells and CD68+CD163+ macrophages; 
4) a module mainly containing granulocytes; 5) a module 
mainly containing tumor cells and CD68+CD163+ 
macrophages, and 6) a module mainly containing tumor 
cells (Figure 5D, right columns). We therefore labeled 
the tissue modules in DII patients 1) “tumor & immune 
compartment” and 2) “granulocyte compartment”.  

Unlike in CLR patients, where the tumor compartment 
was distinct from the immune compartment, in DII 

patients there was a single compartment containing both 
tumor and immune components, and a distinct granulocyte 
compartment. This finding indicates that in DII patients 
there is a greater coupling between the formation of the 
tumor and the immune tissue compartments than in CLR 
patients. We speculate that in DII patients, as compared to 
CLR patients, the tumor might interfere with, or regulate, 
immune processes – although interestingly not those 
involving the granulocyte compartment. Furthermore, in 
CLR patients, the primary edges were between CN 
modules and their cognate CT modules. Only the tumor 
CT module had (weak) interactions with all the other CN 
modules (Figure 5C, upper panel, right column, sixth 
row). However, in DII patients, in addition to these weak 
edges connecting the tumor CT module to the immune CN 
modules, the tumor is itself part of the immune tissue 
module and other immune CNs are part of the two CN 
modules containing the tumor CNs. This could be 
interpreted as the tumor, in DII patients, extending the 
interactions present in CLR patients, to more deeply 
consolidate itself within the immune processes. 

We noted interesting differences between the two patient 
groups in the CN modules and CT modules that interacted 
to form the tissue modules. In DII patients, one CN 
module had a high weight for both CN-1 (T cell enriched) 
and CN-4 (macrophage enriched) (Figure 5D, upper left 
panel, row 3), with its corresponding cell type module 
having a high weight for both T cells and macrophages 
(Figure 5D, upper right panel, row 3). In contrast, in 
CLR patients, no CN module had a high weight for both 
CN-1 and CN-4 and there existed no cell type module with 
a high weight for both T cells and macrophages (Figure 
5C). This suggested that in DII patients, a common 
program drives the spatial organization of macrophages 
and adaptive immune cells into CN-1 (T cell enriched) and 
CN-4 (macrophage enriched), whereas in CLR patients, 
there were distinct programs driving the formation of these 
CNs. That these two CNs were part of the same CN 
module in DII patients also suggested that these two 
modules might be more interdigitated in DII patients than 
in CLR patients. We therefore computed the number of 
cells in CN-1 that had a cell in CN-4 as a nearest neighbor 
and vice versa. We divided this number by the total 
number of cells in the appropriate CN, thereby estimating 
their contact. We found that DII patients had a 
significantly higher contact between CN-1 (T cell 
enriched) and CN-4 (macrophage enriched) than did CLR 
patients (p = 0.046, Student’s t-test, Figure S16D). 
Despite this increased surface area, CN-1 and CN-4 are 
distinct CNs and are represented within each patient group 
individually (Figure S18).  

In DII patients, two CN modules had a high weight of CN-
2 (bulk tumor): one alongside CN-6 (tumor boundary) and 
CN-1 (T cell enriched), and one alongside CN-6 and CN-
4 (macrophage enriched) (Figure 5D). In contrast, in CLR 
patients, no CN modules contained a high weight for both 
tumor CNs and other CNs (Figure 5C). This suggests that  
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the molecular programs driving the recruitment of cells to 
the DII tumor neighborhoods (CN-2 and CN-6) could also 
drive the recruitment of cells to CN-1 (T cell enriched) and 
CN-4 (macrophage enriched). Therefore, the interference 
of the tumor in the immune processes of the DII iTME 
may restrict the spatial compartmentalization of T cells 
and macrophages. 

Taken together, the tensor decomposition indicates that 
there are differences in the underlying programs that result 
in a distinct spatial organization of the iTME in CLR and 
DII patients. Moreover, it suggested that in DII patients, 
there was an increased coupling between the tumor and 
immune processes associated with increased coupling and 
spatial contact between T cell and macrophage CNs.  

 

Neighborhood-specific expression of functional 
markers on T cell subsets shows altered T cell 
processes in the bulk tumor 

Understanding the iTME requires appreciating cells not 
only in terms of simple phenotypic descriptors, but also in 
terms of their functional states, and we would expect the 
same to be true for CNs. T cells exhibit diverse functional 
states in the iTME, often indicated by their expression of 
functional markers. Since the balance of these functional 
states is essential for a successful antitumoral immune 
response (Wherry, 2011), we would expect that the 
relative proportions of T cells expressing different 
functional markers is an indicator of the functional state of 
a given CN that could be relevant for patient outcomes. 

The CD4+/CD8+ T cell ratio is often used as a simple 
measure to determine the overall balance of T cell function 
in cancer, providing prognostic information when 
measured in the tumor and tumor-immune interface (Shah 
et al., 2011; Wang et al., 2017a). The “tumor” and the 
“tumor-immune interface” are both likely composed of 
finer sub-structures that were not addressed in previous 

studies. We therefore computed and visualized the 
frequencies of CD4+ and CD8+ T cells in each CN for each 
patient (Figures 6A). Although the tensor decomposition 
identified structure by assessing variation present over 
multiple patients, overlaying T cell frequencies onto the 
CN Voronoi diagrams provides an intuitive visual 
interpretation of the tensor decomposition results. For 
instance, CD4+ and CD8+ T cells appear in similar 
combinations of CNs, which is expected since they were 
part of the same CT module. Similarly, while we see both 
CN-1 and CN-4 in the bottom panels, amongst immune 
neighborhoods we see predominantly CN-1 in the top 
Voronoi diagrams. This reflects that in the decomposition 
there is a neighborhood module with only CN-1, and 
another one with predominantly CN-4 and a weak 
presence of CN-1 (as defined in Figure 5C, top left panel, 
rows 4-5). Additionally, in Figure 6A there is a higher 
frequency of CD4+ and CD8+ T cells in CN-1 (blue) 
compared to CN-6 (pink) or CN-2 (green) in the top 
panels, which reflects that in Figure 5C, top panel, there 
is no edge between the cell type modules containing the T 
cells, and the neighborhood module containing CN-2 
(bulk tumor). Furthermore, in the lower panels of Figure 
6A, many of the immune neighborhoods appear in the 
same tissue section, as expected, since these are part of the 
same tissue module, the “immune compartment” (as 
defined in Figure 5C, top left panel).  

Are the frequencies of CD4+ and CD8+ T cells or the 
CD4+/CD8+ T cell ratio in CN-2 and CN-6 (bulk tumor 
and tumor boundary, respectively), or the tissue-wide 
frequencies of these cell types, associated with overall 
survival? We performed these tests only for DII patients, 
because there was insufficient mortality (only four deaths) 
in the CLR patient group to perform the analysis. Of these 
conditions, the CD4+ T cell frequency and the CD4+/CD8+ 
T cell ratio in CN-6 were significant prognostic factors 
(Figure 6B, significant p-values in rows 2 and 8), whilst 
the tissue-wide showed a prognostic trend. This 
highlighted the importance of T cell activity in CN-6 
(tumor boundary) in the antitumoral immune response.  

 
 
 

Figure 6. CN functional states are indicators of antitumoral immunity. (A) Example Voronoi diagrams of TMA spots, colored by CN, 
with CD4+ (left) and CD8+ T cells (right) overlaid in each CN as points of the corresponding CN color. (B) Table of Cox proportional hazards 
regression results for T cell frequencies in indicated CNs. Each CN-specific frequency was tested individually in a distinct model (DII patients; 
n=18, 13 deaths). (C) Example staining for ICOS, Ki-67 and PD-1 on different T cell subsets. (D) Relative proportions of CD4+ (FOXP3-) T 
cells, CD8+ T cells, and Tregs positive for at least one of the functional markers ICOS, Ki-67, and PD-1 in each CN. Pooled data from all 
patients are shown (cell numbers for CN-1, 17,822; CN-2, 735; CN-3, 4031; CN-4, 11753; CN-5, 4695; CN-6, 2681; CN-7, 4504; CN-8, 1368; 
CN-9, 2884). (E) Violin plots of CN-specific cell type frequencies of marker-positive CD4+ T cells, CD8+ T cells, and Tregs in CN-1, CN-2, 
CN-4, and CN-6. Asterisks indicate significant differences in the CN-specific cell type frequency underneath compared to the frequency in 
CN-2 (bulk tumor), tested across patients (*p<0.05, **p<0.01, ***p<0.001, Student’s t-test). (F) Receiver operating characteristic curves 
comparing the performance of L1-regularized logistic regression classifiers (CN-specific cell type frequency vs. overall frequency of marker-
positive cells) over repeated hold-out samples to classify patients by group. (G) Heatmap of estimated differential enrichment coefficients 
(*p<0.05, not adjusted for multiple tests). A positive coefficient (red) indicates that the corresponding cell type is more enriched in DII patients 
in the given CN. (H) Estimated enrichment of Ki-67+ CD8+ T cells in CN-1 and Ki-67+ Tregs in CN-4 for each patient. (I) Estimated CN 
activity alteration score for each cell type. Variation corresponds to the distribution of the score across 10 resampling iterations. (J) Partial 
residual plot of the log frequency of PD-1+ CD4+ T cells in CN-9 vs. the estimated log hazard ratio with respect to overall survival in DII 
patients (p = 0.006; n=18, 13 deaths; Cox proportional hazards regression). A pseudocount of 0.001 was added to the frequency for all patients 
when logarithms were computed. (K) Kaplan-Meier curves for overall survival in DII patients corresponding to the best splitting of DII patients 
into two groups along the CN-9-specific frequency of PD-1+ CD4+ T cells. See also Figures S20 and S21. 
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In addition to quantifying frequencies and ratios of T cell 
subsets, CODEX visualization allowed the simultaneous 
investigation of cellular functional states based on 
measured levels of key activation, co-stimulatory, and 
checkpoint molecules. We manually gated the functional 
markers PD-1, Ki-67 (proliferation marker), and inducible 
costimulator (ICOS) on the T cell subsets (Figures 6C, 
S9, and S20). We then quantified the relative proportions 
of marker-positive (PD-1+, Ki-67+, ICOS+) T cell subsets 
across the nine CNs, pooling cells from all patients 
(Figures 6D). These functional markers were not included 
during prior identification of cell types or CNs. 

In CN-2 (bulk tumor), the proportion of T cells expressing 
at least one of these three markers was approximately 
twice as high as in any other CN (Figure 6D, CN-2, 
second column). The extent of this enrichment 
intratumorally, even in comparison to the tumor boundary 
(Figure 6D, CN-6, sixth column), was striking. We also 
observed that amongst T cells expressing any of the three 
functional markers, the CD4+/CD8+ T cell ratio was lower 
in tumor neighborhoods CN-2 and CN-6. In addition to 
there being changes in the frequency of “functional” CD4+ 
and CD8+ T cells and Tregs (as indicated by marker 
positivity) between CN-2 and other CNs, we would also 
expect there to be differences in the specific markers 
expressed by these marker-positive cells. For each of these 
subsets, and within each patient, we computed the relative 
proportion of ICOS+, Ki-67+ and PD-1+ cells out of 
marker-positive cells in CN-1, -2, -4 and -6, and visualized 
these as violin plots (Figure 6E). We observed that the 
proportion of marker-positive cells that were ICOS+ was 
significantly higher in CN-1, -4 and -6 compared to CN-2 
(Figure 6E, top row, asterisks). This indicates that T cell 
subsets expressing the activation marker ICOS are less 
frequent in the bulk tumor as a proportion of marker-
positive cells. In contrast, we found that the frequency of 
Ki-67+CD4+ T cells was highest in the bulk tumor (Figure 
6E, center panel). No significant differences were 
observed for the PD-1+ subsets (Figure 6E, bottom row). 
These data point towards a prominent and sudden change 
in the inflammatory milieu within the bulk tumor 
compared to the tumor boundary and other iTME CNs and 
raises the question as to what tumor signals maintain this 
discrepant relationship.   

 

CN functional states with respect to T cells are 
distinct between CLR and DII patients and are 
correlated with survival 

If the biological processes related to antitumoral immunity 
co-occurring in each CN are altered between patient 
groups, we would expect to observe concurrent changes in 
the frequencies of the relevant functional cell types 
therein. We first built two statistical models to test whether 
we can classify patients as CLR vs. DII using frequencies 

of T cells and macrophages expressing the functional 
markers PD-1, Ki-67 and ICOS. In the first model, we 
used only the overall frequency of each cell type across 
the non-follicular CNs. In the second model, we used the 
frequencies of these cells in each of the non-follicular 
CNs. Evaluating these models across repeated hold-outs 
(repeatedly “holding out” a randomly selected subset of 
the data, training the model on its complement, and 
evaluating it on the held-out subset), we observed that 
including spatial information (CN-specific cell type 
frequencies) improved the classification accuracy (Figure 
6F, red line). Thus, the frequencies of cell types within 
certain compartments (we refer to these in the following 
as “CN-specific cell type frequencies”) could contain 
additional information distinguishing patient groups 
beyond what is contained in their overall frequencies.  

This opened the question of whether CN-specific cell type 
frequencies are more different between patient groups 
than would be expected by the differences in the overall 
frequencies of the corresponding cell types (i.e. when was 
a cell type “differentially enriched” in a given CN between 
the patient groups?). This would be expected if there were 
differences in the functional state of a given CN, and not 
just changes in overall cellular composition of the iTME. 
Therefore, for each CN-specific cell type frequency, we 
estimated a linear model including as covariates both 
patient group and overall frequency of the corresponding 
cell type and visualized the estimated effects of the patient 
group as a heatmap, described below (Figure 6G and see 
Methods). According to this model, a significant 
coefficient (as indicated by asterisks in the heatmap) 
indicates that the given cell type is more enriched in a 
given CN in one group; i.e. that the CN-specific cell type 
frequency is higher in one group than what can be 
explained by changes in the overall frequency of that cell 
type (Figure 6G) (see next). 

All CNs, except CN-8 (smooth muscle), exhibited 
significant differential enrichment of at least one 
functional cell subset between patient groups (Figure 6G). 
In CLR patients, there was an increased enrichment of Ki-
67+ CD8+ T cells in CN-1, Ki-67+ macrophages in CN-2, 
and Ki-67+ Tregs and Ki-67+ CD4+ T cells in CN-3 
(Figure 6G, first 3 columns). In DII patients, there was 
an increased enrichment of Ki-67+ Tregs in CN-4, ICOS+ 
Tregs, ICOS+ and Ki-67+ CD8+ T cells, and Ki-67+ 
macrophages in CN-6; ICOS+ Tregs in CN-7; and PD-1+ 
and ICOS+ CD4+ T cells in CN-9 (Figure 6G, columns 4-
8).  

That there was differential enrichment of four cell types in 
CN-6 compared to only one in CN-2 suggested that 
changes in immune activity in the tumor boundary CN 
could be implicated in the impaired survival of DII 
patients (Figure 6G, compare CN-2 and CN-6). In the 
tensor decomposition, we observed increased coupling 
between CN-1 (T cell enriched) and CN-4 (macrophage 
enriched) in DII patients. In addition, Ki-67+ CD8+ T cells 
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were less enriched in CN-1, and Ki-67+ Tregs were more 
enriched in CN-4 in DII compared to CLR patients 
(Figure 6H), and activated ICOS+ Tregs were enriched in 
CN-6 in DII patients (Figure 6G). These data suggest that 
in DII patients, immunosuppressive activity is increased in 
CN-4 and CN-6, and that in CN-6 this could oppose the 
cytotoxic activity from Ki-67+ and ICOS+ CD8+ T cells. In 
contrast, in CLR patients, there is increased, unopposed 
cytotoxic activity in CN-1. 

We noted that all the marker-positive cell subsets that were 
more enriched in any CN in CLR patients were Ki-67+ 
(Figure 6G, first 3 columns, blue squares with 
asterisks). This indicated that CN functional states are 
more altered between patient groups with respect to 
certain cell types than others, suggesting that these cell 
types could have different roles in iTME function in each 
patient group. We therefore computed a “CN functional 
state alteration score” for each marker-positive cell type. 
We compared the improvement in classification accuracy 
for a linear model trained to classify patients by group 
when the CN-specific frequencies for that cell type in the 
non-follicular CNs were included in addition to its overall 
frequency across repeated hold-outs (see Methods). We 
found that Ki-67+ Tregs were the most CN-activity 
altering cell type, followed by Ki-67+ macrophages 
(Figure 6I). Within CD4+ T cells, the PD-1+ subset was 
most activity altering, suggesting a role for this T cell 
subset in explaining the differences in the antitumoral 
immune response between patient groups. 

The granulocyte enriched CN-9 stood out in the tensor 
decomposition analysis as being uniquely present in a 
tissue module distinct from the tumor in both patient 
groups. We also observed that PD-1+ and ICOS+ CD4+ T 
cells were more enriched in CN-9 in DII than in CLR 
patients (Figure 6G, rightmost column). In addition, 
CD11c+ DCs were present in CN-9 and were differentially 
enriched between patient groups (Figures 4B and S21). 
These results suggested that certain processes occurring in 
CN-9, such as antigen presentation, could play key roles 
in the antitumoral immune response. Could this 
antitumoral response be driven by changes in the activity 
of CN-9 with respect to the cell types already identified 
above? 

We assessed whether the frequencies of PD-1+ and ICOS+ 
CD4+ T cells in CN-9 were prognosticators of survival in 
DII patients. Neither the overall frequency of PD-1+ CD4+ 

T cells, nor the overall amount of CN-9 was a significant 
prognosticator. Notably, however, the PD-1+ CD4+ T cell 
frequency in CN-9 was a significant prognostic factor for 
overall survival (p = 0.006, Cox proportional hazards 
likelihood ratio test; 18 patients, 13 deaths) (Figure 6J-
K). The positive association of the frequency of PD-1+ 
CD4+ T cells in CN-9 with overall survival (log(hazard 
ratio)) is visible in Figure 6J, and this count can be used 
to stratify patients as shown in Figure 6K. These findings 
could imply that specific events occurring in CN-9, related 

either to the production, maintenance, or function of PD-
1+ CD4+ T cells are critical for the antitumoral immune 
response in CRC. Furthermore, although we could only 
compute the association with survival in DII patients, CN-
9 is present in both groups, demonstrating its relevance to 
all CRC patients. The only other features tested for 
association with survival (excluding those in Figure 6B) 
were the frequencies of Ki-67+ Tregs in CN-4, ICOS+ 

Tregs in CN-6 and CN-7, as well as Ki-67+CD68+CD163+ 
macrophages in CN-6, because these, in addition to PD-1+ 
CD4+ T  cells in CN-9, were the five most predictive 
features in the classification model of Figure 6F (Figure 
S22). 

Taken together, these data indicate that the functional 
states of CNs are different between CLR and DII patients, 
and that CN functional states are potentially functionally 
relevant for the antitumoral immune response. 
Specifically, the functional state of a granulocyte-enriched 
CN, indicated by its frequency of PD-1+CD4+ T cells, was 
associated with overall survival in DII patients.  

 

Correlated CN functional states suggest 
immunosuppressive inter-CN communication and 
altered communication network in DII patients 

The tensor decomposition showed that different CNs can 
recruit similar combinations of cell types, which could be 
interpreted as a form of communication between these 
CNs. We expected therefore that there would be other 
forms of communication between CNs that would give 
rise to correlations in CN-specific cell type frequencies 
between multiple CNs. We had observed that the 
functional states of CNs, as approximated by the 
frequencies of functional T cell subsets, were associated 
with survival outcomes. Therefore, communication 
between CNs that gave rise to correlated functional states 
(as approximated by the frequencies of functional T cell 
subsets), and changes in it, could be particularly important 
in the antitumoral immune response. This communication 
could be mediated by biological processes, such as 
immune cell infiltration, antigen presentation, cytokine 
production, metastasis, or as yet to be determined 
processes. 

In CN-1 and CN-4 (T cell enriched and macrophage 
enriched, respectively), we observed opposing changes in 
the enrichment of Ki-67+ Tregs and CD8+ T cells between 
patient groups (Figure 6G-H), that is, Ki-67+ Tregs were 
more enriched in CN-4 in DII patients, and Ki-67+ CD8+ 
T cells were more enriched in CN-1 in CLR patients. 
Given that Tregs are capable of suppressing CD8+ T cell 
activity (Chen et al., 2005), we looked into whether the 
frequency of Tregs in CN-4 was correlated with the 
frequency of proliferating (Ki-67+) CD8+ T cells in CN-1 
in each patient group separately.  
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Figure 7. Altered inter-CN communication favors immunosuppression in DII patients. (A) Correlation of the frequency of Ki-67+ CD8+ T 
cells in CN-1 (T cell enriched) and the frequency of Tregs in CN-4 (macrophage enriched) in each patient group. Spearman rank and Pearson 
correlation coefficients and p-values are shown. (B) Schematic illustrating canonical correlation analysis (CCA). (1) CN-specific cell-type 
frequencies in each CN are determined. (2) Linear combinations of pairs of CN-specific cell-type frequencies are identified that have maximized 
correlations. (3) If the canonical correlation between these linear combinations is higher than random, this is interpreted as communication 
between CNs in terms of the cell types assessed. 
 
 

(legend continued on next page) 
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We observed a significant negative correlation only in DII 
patients (Figure 7A), suggesting that a suppressive 
program involving Tregs and CD8+ T cells across CN-1 
and CN-4 was only active in this patient group (see 
discussion for implications). Moreover, this finding 
demonstrated that between CLR and DII patients, there 
were changes in the communication across multiple CNs, 
with respect to their functional states. 

Should there not also be differences in the coordination of 
activity with respect to multiple cell subsets and across 
other pairs of CNs? We explicitly mapped the 
communication between different CNs involving T cell 
processes by performing canonical correlation analysis 
(CCA, see Methods) (Hardoon et al., 2004).  CCA has 
been used to identify common signals across multiple data 
types, for example in multi-omic analyses (Witten and 
Tibshirani, 2009) and so we used it to find common signals 
across multiple CNs, with respect to their CN-specific 
frequencies. Briefly, for any given pair of CNs, the 
frequencies of the cell types of interest are computed 
within those CNs (Figure 7B.1). CCA then identifies the 
two combinations of CN-specific cell type frequency 
variations, one from each CN, such that their correlation 
is maximized (Figure 7B.2). This maximal correlation is 
the canonical correlation between two CNs, which we 
used as a proxy for functionally relevant communication 
(Figure 7B.3). We applied CCA to the frequencies of PD-
1+, Ki-67+ and ICOS+ CD8+ T cells as well as Ki-67+ Tregs 
in each pair of CNs. In both patient groups, we identified 
pairs of CNs that likely communicate by comparing the 
observed canonical correlations to a permuted null 
distribution. These CN communication relationships were 
visualized as a graph of nodes corresponding to CNs, and 
edges indicative of communication for each patient group 
(Figure 7C). 

There were interesting differences between patient groups 
in the communication networks of CNs with respect to 
functional T cell subsets. In both CLR and DII patients, 
CN-6 (tumor boundary) seems to play a central role. In 
CLR patients, CN-6 was strongly connected to CN-1 (T 
cell enriched), CN-2 (bulk tumor), and weakly connected 
to CN-4 (macrophage enriched) (Figure 7C, left graph). 
CN-4 and CN-1 were not directly connected to CN-2, 
indicating that functional T cell subsets in CN-1 and CN-
4 could be communicating with the bulk tumor via the 
tumor boundary. In contrast, in DII patients, CN-6 was not 
connected to CN-1 but was strongly connected to CN-4 
and weakly connected to CN-2 (Figure 7C, right graph). 
This is consistent with the communication between CN-1 
and CN-6 having been rerouted via CN-4 in DII patients, 

which we showed was having immunosuppressive 
communication with CN-1, and had increased enrichment 
of Ki67+ Tregs (Figure 6G). The fact that the edge 
between CN-6 (tumor boundary) and CN-2 (bulk tumor) 
was weaker in DII patients suggests that communication 
with respect to T cells between the tumor and tumor 
boundary could be disrupted. In addition, only in DII 
patients were there connections between CN-9 
(granulocyte enriched) and the tumor CNs. As the 
frequency of PD-1+ CD4+ T cells in CN-9 was associated 
with survival in DII patients (Figure 6J-K), our data are 
consistent with a role for CN-9 in T cell-mediated 
antitumoral responses. Finally, in CLR patients, CN-5 
(follicle) was connected to CN-1, CN-4 and CN-7 
(vascularized smooth muscle), indicating that the 
processes occurring in the follicle influence T cell activity 
in multiple CNs. 

In summary, in DII patients, an immunosuppressive 
program was at play between CN-1 (T cell enriched) and 
CN-4 (macrophage enriched). Moreover, the network of 
communication between CNs with respect to functional T 
cell subsets was altered between patient groups, in a way 
that suggested that this immunosuppressive program could 
be affecting the phenotypes of functional T cell subsets in 
the tumor boundary and bulk tumor. Thus, the increased 
spatial contact between CN-1 and CN-4 as well as the 
changes in organization of CNs and cell types observed in 
the tensor decomposition could be playing a role in the 
impaired outcomes of these patients. 

 

DISCUSSION 

The iTME is a dynamic system in which the combination 
of immune cell type, location and functional orientation 
leads to a tumor-rejecting or tumor-promoting 
environment (Chen and Mellman, 2017; Fridman et al., 
2017). Naturally, the question arises as to how a tumor 
avoids immune action, such as by T cell exclusion (Joyce 
and Fearon, 2015) or the increased prevalence of certain 
cell types, including Tregs, macrophages and myeloid-
derived suppressor cells (Gajewski et al., 2013; Hanahan 
and Weinberg, 2011; Kumar et al., 2016; Munn and 
Bronte, 2016). Several recent studies have characterized 
tumor-immune phenotypes in detail, but how spatial 
organization and the associated crosstalk between iTME 
components determine the effectiveness of the antitumoral 
immune responses has not yet been determined (Kather et 
al., 2017; Kather et al., 2018; Newell and Becht, 2018).  

 
 
 

(C) CCA was performed to identify communication between pairs of CNs involving T cell subsets. Specifically, canonical correlation with 
respect to the frequencies of ICOS+, Ki-67+, and PD-1+ CD8+ T cells as well as Ki-67+ Tregs in each pair of CNs was compared to a permuted 
null distribution within each patient group. Those pairs of CNs whose observed canonical correlation with respect to these cell types was 
higher than 90% of permutations (permutation p-value <0.1) were connected by edges and visualized as a graph. (D) Conceptual framework 
for interpreting the CRC ITME architectural dynamics. (E) Model of differences in the iTME between CLR and DII patients with respect to 
CN organization (based on Figure 5), cellular function (based on Figure 6), and inter-CN communication (based on Figures 7A-C). 
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This current study probed the organization, functional 
states and communication within and between the CNs of 
the CRC iTME (Figure 7D). How do differences in these 
coordinated behaviors associate with survival outcomes? 
We developed FFPE-CODEX and computational 
approaches to describe the spatial organization and 
corresponding coordinated tissue behavior in a cohort of 
advanced-stage CRC patients with survival-associated 
iTME architectures: CLR (improved survival) vs. DII 
(poor survival). 

In the iTME, T cells and macrophages are among the most 
abundant immune cells and are closely related to clinical 
outcome (Fridman et al., 2012; Fridman et al., 2017; 
Kather et al., 2017; Kather et al., 2018). This was 
supported by analysis of our CRC cohort, which identified 
T cell- and macrophage-enriched CNs. In DII patients, 
these two CNs were more interdigitated, with T cells and 
macrophages having closer physical contact, more mixing 
and increased information sharing between T cells. 
Consistent with a less spatially compartmentalized 
underlying organization of the iTME, immune and tumor 
compartments co-occurred in the tissue modules observed 
in the DII patients. These findings suggest an underlying 
molecular program whereby the tumor in DII patients 
directly interferes in the spatial organization of iTME 
compartments, highlighting different strategies for 
immune escape employed by tumors from DII and CLR 
patients. Critically, the differences in immune postures 
across the spectrum strongly imply that a “once size fits 
all” approach to immunotherapy in CRC would be short-
sighted. After all, if different immune postures define 
different stages of how the tumor mitigates immune 
action, then distinct therapeutic modalities should be 
applied depending on the “stage” of the tumor’s 
interference.  In other words, results such as those 
presented here provide a method of diagnostic 
subclassification based on mechanistic inferences from 
architecture, and could lead towards more nuanced 
therapeutic interventions. 

A case in point is how the altered organization of the T cell 
and macrophage CNs in DII patients was accompanied by 
changes in their functional states as approximated by CN-
specific frequencies of functional marker-positive T cell 
subsets. Unlike CLR patients, whose T cell-enriched CN 
was more cytotoxic (enrichment of Ki-67+CD8+ T cells), 
in DII patients the macrophage-enriched CN was more 
immunosuppressive (enrichment of Ki-67+ Tregs). Taken 
together, these alterations suggest an explanation for poor 
survival in DII patients: Tumor cells release factors that 
couple T cell- and macrophage-enriched CNs. This shifts 
the macrophage-enriched CN towards an 
immunosuppressive phenotype, which inhibits the 
cytotoxic activity of the T cell-enriched CN, limiting the 
antitumoral immune response (Figure 7E).  Given this, as 
noted above, distinct modalities of intervention might be 
contemplated when this immune “module” is observed, or 
action taken prior to prevent its formation.  Future studies 

that address the proteomic and metabolomic content of 
different iTME substructures, such as micro-dissected 
bulk tumor or tumor boundary regions, will be needed to 
identify the tumor-specific factors leading to the pro-
tumor environment observed in DII patients. Once such 
factors and their spatiotemporal distribution are identified, 
it will be necessary to determine whether manipulating 
these factors alters the immune response and leads to 
improved survival.  

Recent studies of immunophenotypes in CRC have shown 
that the immune cell density is higher at the tumor invasive 
margin than in the tumor center (Bindea et al., 2013; 
Mlecnik et al., 2016). For this reason, and because TLS 
only occur at the invasive margin, we focused on the iTME 
at the invasive margin when creating our CRC TMAs. We 
found that the tumor boundary CN was an important site 
of antitumoral activity, with the frequency of CD4+ T cells 
and the CD4+/CD8+ T cell ratio having significant 
prognostic values in DII patients. Furthermore, DII 
patients showed increased enrichment of several 
unexpected cell types in the tumor boundary CN, 
including activated ICOS+ Tregs, which were recently 
shown to be increased in the hepatocellular carcinoma 
iTME and predictive of reduced survival (Tu et al., 2016). 
Interestingly, in DII patients there was direct 
communication between T cells in CN-6 (tumor 
boundary) and Tregs in CN-4 (macrophage enriched). 
This contrasts with CLR patients, where T cell frequencies 
were correlated in CN-6 and CN-1 (T cell enriched). These 
results suggest that ICOS+ Tregs and altered T cell 
exchange within the tumor boundary mediate the 
suppressed antitumoral immune response in DII patients 
(Figure 7E). However, the identities of the recruitment 
and retention signals that originate in the tumor boundary, 
how they act on ICOS+ Tregs, and whether blocking these 
signals improves survival, are unknown. 

Intratumoral neutrophil granulocytes are generally 
associated with reduced survival of patients within solid 
tumors (Coffelt et al., 2016). However, the correlation of 
these cells with survival in CRC patients is controversial, 
with recent studies demonstrating both pro- and 
antitumoral immune activity for neutrophils (Berry et al., 
2017; Rao et al., 2012). We identified CN-9 as a 
granulocyte enriched CN; it formed a distinct tissue 
module in DII patients, but was part of the immune tissue 
module in CLR patients. Within this granulocyte enriched 
CN, a higher frequency of PD-1+CD4+ T cells was 
observed in DII patients than in CLR patients, and a high 
frequency was associated with improved survival in this 
high-risk CRC patient group, whereas the overall 
frequencies of these cell types were not. Furthermore, in 
DII patients, T cell communication occurred between CN-
9 and both the bulk tumor and tumor boundary CNs.  

Taken together, our results imply that the granulocyte 
enriched CN in DII patients follows a distinct tissue 
molecule program that decouples it from the 
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tumor/immune compartment and from information 
exchange with the tumor. A possible explanation for the 
improved survival in DII patients with higher frequencies 
of PD-1+CD4+ T cells in CN-9 is neutrophil-mediated 
destruction of tumor cells and antigen presentation to these 
PD-1+CD4+ T cells (Figure 7E). Future studies should 
therefore address the clinical implications of a granulocyte 
compartment for antigen presentation in CRC and other 
tumors and whether this spatial structure is targetable by 
therapeutics.    

Our findings provided a model for how the iTME is 
organized to facilitate an effective antitumoral immune 
response in CLR patients, and how it is altered in DII 
patients. First, the tensor decomposition indicated that 
there are differences in the underlying biology organizing 
the iTME in DII patients compared to CLR patients. 
Specifically, in DII patients, there was increased coupling 
and interdigitation of T cell and macrophage CNs that 
could be attributed to recruitment factors provided by the 
tumor utilized by cell types occupying both of these CNs. 
In contrast, in CLR patients, the tumor appeared to 
interfere with the main immune processes to a lesser extent 
than observed in DII patients (Figure 7E).  

Second, the CN-specific cell type frequencies indicated 
differences in the activities of functional T cell subsets in 
each CN. Specifically, in DII patients, CN-4 (macrophage 
enriched) had increased enrichment of Ki-67+ Tregs, 
whereas CN-1 (T cell enriched) had decreased enrichment 
of Ki-67+ CD8+ T cells. In addition, the activity of CN-9 
(granulocyte enriched) was associated with improved 
survival outcomes.  

Finally, CCA identified changes in the communication 
involving T cells across CNs. Specifically, in DII patients, 
CN-4 appeared to suppress immune activation in CN-1. 
Furthermore, in CLR patients there was direct 
communication between CN-1 and CN-6 (tumor 
boundary), suggesting T cell exchange between these 
CNs. In contrast, in DII patients, the more suppressive 
CN-4 was connected to the tumor boundary, suggesting a 
functional impact of this suppression on the antitumoral 
immune response. 

These results are consistent with a model in which the 
tumor in DII patients provides a factor utilized by both 
macrophages and CD4+ T cells to promote the formation 
of their respective CNs, coupling these CNs. This coupling 
gives rise to more macrophages in the T cell CN, more T 
cells in the macrophage CN, more mixing of the two CNs, 
and a shift in the activity of the macrophage CN toward a 
more immunosuppressive phenotype. It also alters the 
exchange of T cells with the tumor from an otherwise 
activating adaptive immune CN. The activity of the 
granulocyte enriched compartment plays a functionally 
relevant role in antitumoral response, likely to be antigen 
presentation, that is altered between patient groups.  
Overall, an interpretation of the conclusion from Figures 

5C-D and S15 is that tumor-promoted fragmentation 
(dislocation) of immune contiguity is positively related to 
a worsening outcome for patients. In other words, a goal 
of the tumor’s immune evasion strategy is to prevent 
effective inter-CN communication which would culminate 
in the formation of functional immune modules, such as 
the frank appearance of follicular structures that are 
emblematic of CLR patients.  Yet unknown are whether 
sub-clinical (and resolved) human CRC cases would 
provide insights into a completely effective immune 
architecture or posture. Considerations into the creation of 
animal models that mimic this situation would be 
informative, if possible. 

Several caveats of course should be considered in the 
collection, interpretation, and bioinformatics analysis of 
imaging data. First, imaging and downstream analysis is 
affected by tissue quality; and, some tissue types may not 
be amenable for multiplexed fluorescence imaging due to 
autofluorescence. Poorly fixed tissues and non-specific 
antibodies can lead to low signal-to-noise ratios and 
potentially misleading staining patterns. These limitations 
can be improved by collaborating with pathologists to 
carefully select tissue regions and thoroughly validate 
antibodies across several positive and negative control 
tissues, but this process is costly. Here, we took extensive 
care to ensure reagent validity and patient selection. In 
addition, a large cohort of patients was initially screened 
for patient materials that fit strict inclusion and exclusion 
criteria.  With regards to computational analyses, cell type 
identification and segmentation was performed with 
extensive validation and manual merging of identified 
clusters. This may be aided by computational correction 
for batch-dependent variation in staining intensity, as well 
as general-purpose neural network-based approaches for 
cell segmentation and cell type identification. 
Additionally, the performed neighborhood analysis was 
contingent upon a collection of CNs that could be readily 
identified and verified in the original imaging data. In 
other tissue types, CNs may be less well defined. For those 
situations, other statistical frameworks may improve 
identification of CNs and quantify their changes across 
different biological contexts. While we did not physically 
model CNs and the cell types within them, such models 
could eventually provide understanding(s) of tissue 
dynamics at the cell type and CN level, and the specific 
couplings between them. Other abstractions (for example, 
network models, field-based models or geospatial 
analyses) for articulating the spatial organization of tissue 
may provide complementary insights that better capture 
tissue behavior in other biological settings.  Finally, while 
we treated the stroma and the bulk tumor as monolithic 
components this was due only to limitations in the markers 
applied.  Accessing stromal or tumoral subtypes with 
additional markers, whether proteomic, genomic, or 
metabolic, will likely lead to a more fine-grained 
appreciation of substructures in these CNs as well. 
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In summary, our findings provide a model for how the 
CRC iTME is organized to facilitate an effective 
antitumoral immune response in CLR patients and 
interpretations of how it is impaired in DII patients. We 
provide a valuable dataset and conceptual framework for 
studying CRC spatial biology in a large, well-annotated 
cohort.  Such a resource can be used to develop additional 
algorithms to identify clinically relevant factors and the 
molecular circuitry that underlies antitumoral immunity in 
CRC.  Patient outcome was related to specific, repeated 
CN architectures, apparent dislocations of such CNs 
driven by tumor actions, appearance of tissue modules 
suggestive of immune suppressive states in some patients, 
and a coordinated change in the tumor interface comparing 
CLR to DII. The changing nature of the iTME across the 
CRC spectrum suggests manners by which antitumoral 
immunity might be enhanced through mechanistic 
understandings of how the emergent order links to 
function and dysfunction. The eventual linking of such 
favorable and unfavorable immunological attributes to 
patient outcomes will lead to the identification of 
prognostic spatial biomarkers and therapeutic strategies 
that shift high-risk CRC patients toward an antitumoral 
immune phenotype and amelioration of disease.  The 
extension of such concepts to other cancers is warranted. 
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METHODS 

CONTACT FOR REAGENT AND RESOURCE 
SHARING 

Further information and requests for reagents and 
resources should be directed to and will be fulfilled by 
the lead contact, Garry P. Nolan 
(gnolan@stanford.edu). 

 

EXPERIMENTAL MODEL AND SUBJECT 
DETAILS 

A cohort of 715 patients who underwent surgery for 
primary colorectal cancer between 2003 and 2014 at the 
University Hospital Bern, Switzerland, was screened. 
Clinicopathological data for all patients were extracted 
from clinical and pathological reports. The peritumoral 
inflammatory reaction was retrospectively assessed in 
all patients by L.N., under the supervision of I.Z. and 
C.M.S., in a blinded fashion using digitally scanned 
H&E-stained tumor sections. The tumor invasive 
margin was assessed for the presence of CLR according 
to the Graham-Appelman (G-A) criteria (Graham and 
Appelman, 1990). Cases were categorized as either G-
A 0 (lymphoid aggregates absent), G-A 1 (occasional 
lymphoid aggregates with rare or absent germinal 
centers) or G-A 2 (intense reaction with numerous 
lymphoid aggregates and germinal centers). The overall 
density of the peritumoral immune infiltrate was 
determined according to the Klintrup-Mäkinen (K-M) 
score (Klintrup et al., 2005), with low-grade (absent or 
mild and patchy inflammatory infiltrate; score 0-1) or 
high-grade (dense, linear inflammatory infiltrate with 
destruction of cancer cell islets; score 2-3) scorings. 
Cases with pre-operative therapy, pathological tumor, 
nodes, metastasis (pTNM) stage 0-2, absent peritumoral 
inflammatory infiltrate (K-M score 0), and those with 
insufficient material or information (total of 566 cases) 
were excluded. From the remaining 149 cases, 62 
patients were identified based on their unique pattern of 
peritumoral inflammation and split into two groups: 

CLR group (G-A 2, any K-M grade) vs. DII group (G-
A 0, K-M high-grade). Subsequently, 35 stage-matched 
cases (17 CLR vs. 18 DII) were selected matched for 
gender, age, and cancer type, location, and stage. The 
use of patient tissue samples and data was approved by 
the local Ethics Committee of the Canton of Bern (KEK 
200/2014) and by Stanford’s Institutional Review 
Board (HSR 48803). 

 

EXPERIMENTAL METHOD DETAILS 

Construction of tissue microarrays 

FFPE tissue blocks were retrieved from the tissue 
archive at the Institute of Pathology, University of Bern, 
Switzerland. For the multi-tumor TMA, 70 unique 
different tissues were selected (54 different cancers and 
non-malignant tumors as well as 16 normal tissues; for 
details see Figure S5 and Table S4). Tumor and normal 
tissue regions were annotated on corresponding H&E-
stained sections by a board-certified surgical 
pathologist (C.M.S.). A next-generation TMA 
(ngTMA®) with 0.6 mm diameter cores was assembled 
using a TMA Grand Master automated tissue 
microarrayer (3DHistech).  

For the CRC study, two independent 70-core ngTMAs 
were created, containing four 0.6-mm cores per patient. 
TMA cores were digitally annotated by L.N., under the 
supervision of C.M.S and I.Z., as follows: CLR group, 
two regions containing a tertiary lymphoid structure and 
two diffuse immune infiltrate regions per patient; DII 
group, four diffuse immune infiltrate regions per 
patient. TMAs were sectioned at 3 µm thickness, 
stained with H&E, and digitized using a Pannoramic 
P250 digital slide scanner (3DHistech). 

Square glass coverslips (Electron Microscopy Sciences) 
were pre-treated with VectabondTM (Vector Labs) 
according to the manufacturer’s instructions. Briefly, 
coverslips were immersed in 100% acetone for 5 min 
and then incubated in a mixture of 2.5 ml VectabondTM 

and 125 ml 100% acetone in a glass beaker for 30 min. 
Coverslips were washed in 100 % acetone for 30 sec 
and air dried, baked at 70°C for 1 h, and stored at room 
temperature. The 4-μm thick sections of the TMAs were 
mounted on VectabondTM-treated coverslips and stored 
in a coverslip storage box (Qintay) at 4°C in a vacuum 
desiccator (Thermo Fisher) containing drierite desiccant 
(Thermo Fisher) until analysis. 

Buffers and solutions 

Buffers and solutions were prepared, filtered sterile 
using 500-ml 0.2-μm pore size filters and stored at room 
temperature unless otherwise specified. Staining 
solution 1 (S1): 5 mM EDTA (Sigma), 0.5% w/v bovine 
serum albumin (BSA, Sigma) and 0.02% w/v NaN3 
(Sigma) in PBS (Thermo Fisher Scientific); storage at 
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4°C. Staining solution 2 (S2): 61 mM NaH2PO4 ∙ 7 H2O 
(Sigma), 39 mM NaH2PO4 (Sigma) and 250 mM NaCl 
(Sigma) in a 1:0.7 v/v solution of S1 and doubly-
distilled H2O (ddH2O); final pH 6.8-7.0. Staining 
solution 4 (S4): 0.5 M NaCl in S1. TE buffer: 10 mM 
Tris pH 8.0 (Teknova), 1 mM EDTA and 0.02% w/v 
NaN3 in ddH2O. Tris stock solution (for conjugation 
buffer), 50 mM, pH 7.2 (at room temperature) was 
prepared in ddH2O using Trizma HCl and Trizma Base 
according to Sigma’s Trizma mixing table. Buffer C 
(for conjugation): 150mM NaCl, 2 mM Tris stock 
solution, pH 7.2, 1 mM EDTA and 0.02% w/v NaN3 in 
ddH2O. CODEX 2.0 buffer (H2): 150mM NaCl, 10 mM 
Tris pH 7.5 (Teknova), 10 mM MgCl2 ∙ 6 H2O (Sigma), 
0.1% w/v  TritonTM X-100 (Sigma) and 0.02% w/v 
NaN3 in ddH2O. Blocking reagent 1 (B1): 1 mg/ml 
mouse IgG (Sigma) in S2. Blocking reagent 2 (B2): 1 
mg/ml rat IgG (Sigma) in S2. Blocking reagent 3 (B3): 
Sheared salmon sperm DNA, 10 mg/ml in H2O (Thermo 
Fisher). Blocking component 4 (BC4): Mixture of 57 
non-modified CODEX oligonucleotides (see Table S2) 
at a final concentration of 0.5 mM each in TE buffer. 
BS3 fixative solution (BS3): 200 mg/ml BS3 (Thermo 
Fisher) in DMSO from a freshly opened ampoule 
(Sigma); stored at -20°C in 15-μl aliquots. TCEP 
solution: 0.5 M TCEP (Sigma) in ddH2O, pH 7.0. 
Rendering buffer: 20% DMSO (v/v) in H2 buffer. 
Stripping buffer: 80% DMSO (v/v) in H2 buffer. 

Generation of CODEX DNA-conjugated antibodies 

All pipetting was performed using LTS filter tips 
(Rainin). Maleimide-modified short DNA 
oligonucleotides (for sequences, see Table S2) were 
purchased from TriLink. Maleimide groups were 
deprotected by heating in toluene at 90°C for 4h (with 
exchange of toluene after 2h). Deprotected 
oligonucleotides were repeatedly washed in 100% 
ethanol, resuspended in buffer C, and aliquoted at 50 μg 
in 0.2-ml 8-strip tubes (E&K Scientific). 
Oligonucleotides were flash-frozen in liquid N2, 
lyophilized overnight in 900 ml Labconco™ Fast-
Freeze™ Flasks (Thermo Fisher) using a FreeZone® 4.5 
Plus lyophilizer (Labconco) and stored until 
conjugation at -20°C in an airtight box containing 
desiccant. Conjugations were performed at a 2:1 
weight/weight ratio of oligonucleotide to antibody, with 
at least 100 μg of antibody per reaction. All 
centrifugation steps were at 12,000g for 8 min, unless 
otherwise specified. Purified, carrier-free antibodies 
(for details on clones and manufacturers, see Table S1) 
were concentrated on 50 kDa filters and sulfhydryl 
groups were activated using a mixture of 2.5 mM TCEP 
and 2.5 mM EDTA in PBS, pH 7.0, for 30 min at room 
temperature. After washing the antibody with buffer C, 
activated oligonucleotide was resuspended in buffer C 
containing NaCl at a final concentration of 400 mM. 
Oligonucleotide was then added to the antibody and 
incubated for 2 h at room temperature. The conjugated 
antibody was washed by resuspending and spinning 

down three times in PBS containing 900 mM NaCl. It 
was then eluted by centrifugation at 3,000g for 2 min in 
PBS-based antibody stabilizer (Thermo Fisher) 
containing 5 mM EDTA and 0.1% NaN3 (Sigma), and 
stored at 4 °C. 

CODEX antibody staining of FFPE tissue and post-
staining fixation 

Coverslips were handled using Dumont coverslip 
forceps (Fine Science Tools). For deparaffinization, 
coverslips were baked at 70 °C for at least 1 h, followed 
by immersion in fresh xylene for 30 min. Sections were 
rehydrated in descending concentrations of ethanol 
(100% twice, 95% twice, 80%, 70%, ddH2O twice; each 
step for 3 min). Heat-induced epitope retrieval (HIER) 
was performed in a Lab VisionTM PT module (Thermo 
Fisher) using Dako target retrieval solution, pH 9 
(Agilent) at 97 °C for 10 min. After cooling to room 
temperature for 30 min, coverslips were washed for 10 
min in 1x TBS IHC wash buffer with Tween® 20 (Cell 
Marque). Tissues were encircled using polyacrylamide 
gel (Bondic), and nonspecific binding was blocked for 
1 h at room temperature using 100 μl of blocking buffer 
[S2 buffer containing B1 (1:20), B2 (1:20), B3 (1:20), 
and BC4 (1:15)]. For each coverslip, DNA-conjugated 
antibodies were added to 50 μl of blocking buffer on a 
50-kDa filter unit, concentrated by spinning at 12,000 g 
for 8 min, and resuspended in blocking buffer to a final 
volume of 100 μl. This antibody cocktail was then 
added to the coverslip and staining was performed in a 
sealed humidity chamber overnight at 4 °C on a shaker. 
After staining, coverslips were washed for 4 min in S2 
and fixed in S4 containing 1.6% paraformaldehyde for 
10 min, followed by three washes in PBS. Then, 
coverslips were incubated in 100% methanol on ice for 
5 min, followed by three washes in PBS. Fresh BS3 
fixative was prepared immediately before final fixation 
by thawing and diluting one 15-μl aliquot of BS3 in 1 
ml PBS. Final fixation was performed at room 
temperature for 20 min, followed by three washes in 
PBS. Thereafter, coverslips were stored in S4 in a 6-
well plate at 4 °C for up to two weeks, or further 
processed for imaging. 

Immunohistochemistry 

Sections were cut to 4 µm thickness and placed on 
frosted histology glass slides (Thermo Fisher). H&E 
stained sections were obtained from each FFPE block. 
Deparaffinization, rehydration, and HIER were 
performed on an ST4020 small linear stainer (Leica) as 
described above. Nonspecific binding was blocked for 
1 h at room temperature using 100 μl of serum-free 
protein block (Agilent). Antibodies were diluted in 100 
μl antibody diluent (Agilent), and sections were stained 
overnight in a sealed humidity chamber at 4 °C on a 
shaker. After staining, slides were washed for 10 min in 
1x TBS IHC wash buffer with Tween® 20 (Cell 
Marque), and specimens were covered with dual 
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endogenous enzyme-blocking reagent (Agilent) for 5-
10 min at room temperature, followed by washing for 
10 min. Bound antibodies were then visualized using 
the HRP/liquid DAB+ substrate chromogen system 
(Agilent) according to the manufacturer’s instructions. 
Sections were counterstained with hematoxylin, 
followed by dehydration, mounting, and imaging in 
brightfield mode on a BZ-X710 inverted fluorescence 
microscope (Keyence). 

CODEX antibody screening, validation and titration 

Antibodies were first screened and validated in CODEX 
single-stainings on tonsil tissue or a multi-tumor TMA, 
with cross-validation by manual IHC (Figures S1 and 
Table S4). Briefly, after antibody staining and fixation, 
100 nM of fluorescent DNA probe was added to the 
tissue in rendering buffer, containing 0.7 mg/ml sheared 
salmon sperm DNA, and was incubated at room 
temperature for 5-10 min, followed by washing with 
rendering buffer and S4 buffer. Coverslips were 
mounted onto glass slides with nail polish (Sally 
Hansen) or Cytoseal XYL (Thermo Fisher), dried in the 
dark and imaged on a BZ-X710 inverted fluorescence 
microscope. All validation was performed by or under 
the supervision of a board-certified surgical pathologist 
(C.M.S.) and confirmed with online databases (The 
Human Protein Atlas, Pathology Outlines) and the 
published literature. 

CODEX multi-cycle reaction and image acquisition 

Coverslips were removed from S4, and the tissue was 
covered with a small piece of cling film. The non-tissue 
containing parts of the coverslips were rinsed in ddH2O 
to remove salt residues and thoroughly dried using 
vacuum. Then, coverslips were mounted onto custom-
made CODEX acrylic plates (Bayview Plastic 
Solutions; blueprints available upon request) using 
coverslip mounting gaskets (Qintay), creating a well in 
the acrylic plate above the tissue section for liquid 
storage and exchange. The cling film was removed, and 
the tissue was stained with Hoechst nuclear stain at a 
dilution of 1:1000 in H2 buffer for 1 min, followed by 
three washes with H2 buffer. The CODEX acrylic plate 
was mounted onto a custom-designed plate holder 
(blueprints available upon request) and secured onto the 
stage of a BZ-X710 inverted fluorescence microscope. 
Fluorescent oligonucleotides (concentration: 400 nM) 
were aliquoted in CorningTM black 96-well plates in 250 
μl H2 buffer containing Hoechst nuclear stain (1:600) 
and 0.5 mg/ml sheared salmon sperm DNA, according 
to the multi-cycle reaction panels. For details on the 
order of fluorescent oligonucleotides and microscope 
light exposure times, see Table S4. Black plates were 
sealed with aluminum sealing film (VWR Scientific) 
and kept at room temperature during the multi-cycle 
reaction. The final concentration of fluorescent 
oligonucleotides in the tissue-containing imaging well 

corresponded to 80 nM (1:5 dilution in rendering 
buffer). 

Automated image acquisition and fluidics exchange 
were performed using an Akoya CODEX instrument 
and CODEX driver software (Akoya Biosciences). 
During imaging, the tissue was kept in H2 buffer. 
Hybridization of the fluorescent oligonucleotides was 
performed in rendering buffer. After imaging, 
fluorescent oligonucleotides were removed using 
stripping buffer. Overviews of the TMA were acquired 
manually using a CFI Plan Apo λ 2x/0.10 objective 
(Nikon), and automated imaging was performed using a 
CFI Plan Apo λ 20x/0.75 objective (Nikon). For multi-
cycle imaging of the TMA spots, the multipoint 
function of the BZ-X viewer software (Keyence) was 
manually programmed to the center of each TMA spot 
and set to 17 Z-stacks. Hoechst nuclear stain (1:3000 
final concentration) was imaged in each cycle at an 
exposure time of 1/175s. Biotinylated VG1 hyaluronan-
detection reagent was produced as previously described 
(Clark et al., 2011), used at a dilution of 1:500, and 
visualized in the last imaging cycle using streptavidin-
PE (1:2500 final concentration). DRAQ5 nuclear stain 
(1:500 final concentration) was added and visualized in 
the last imaging cycle. After each multi-cycle reaction, 
H&E-stainings were performed according to standard 
pathology procedures, and tissues were reimaged in 
brightfield mode. 

A multi-cycle experiment performed the using multi-
tissue TMA with 55 different antibodies, two nuclear 
markers and H&E took about 36 h to run and resulted in 
3,630 tissue protein expression readouts (approximately 
2,000 cells per 0.6-mm diameter core; total of 7.26 x 106 
single-cell protein readouts). 

Figure creation  

Parts of Figures 1B, 2A and 3A were created using 
templates from Biorender (https://biorender.com). Parts 
of Figures 1, 4, 6, S12, S13, S14, S15, S16, S20 were 
created and corresponding statistical analyses were 
performed using GraphPad Prism® 5.0 (GraphPad 
Software). 

 

QUANTIFICATION AND STATISTICAL 
ANALYSIS 

Computational image processing 

Raw TIFF image files were processed using the 
CODEX Toolkit uploader (Goltsev et al., 2018). 
Briefly, this software computationally concatenates and 
drift-compensates the images using Hoechst nuclear 
stain as a reference, removes out-of-focus light using 
the Microvolution deconvolution algorithm 
(Microvolution), subtracts the background (using blank 
imaging cycles without fluorescent oligonucleotides), 
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and creates hyperstacks of all fluorescence channels and 
imaging cycles of the imaged TMA spots. The 
following settings in the CODEX uploader were used 
for the TMA experiments: Microscope: Keyence BZ-
X710. Deconvolution: Microvolution. Objective type: 
Air. Magnification (x): 20. Numerical aperture: 0.75. 
Lateral resolution (nm/pixel): 377.442. Z pitch (nm): 
1500. Number of Z-slices: 17. Color mode: grayscale. 
Drift compensation channel index: 1. Drift 
compensation reference cycle: 1. Best focus channel: 1. 
Best focus cycle: 1. Number of cycles / Range: 1-23 
(multi-tumor TMA), 1-24 (CRC TMA). Tiling mode: 
snake. Region size X and Y: both 1. Tile overlap X and 
Y: both 0. H&E staining: yes (no in the case of 
background subtraction). Focusing fragment: no. 
Background subtraction: yes (no if H&E staining was 
co-processed). Use blind deconvolution: yes. Use 
bleach-minimizing cropping: no. Processing only, 
export as TIFF. 

After uploading, all spots of each TMA were stitched 
together into a single 10x7 spots file using the 
grid/collection stitching plugin (Preibisch et al., 2009) 
in ImageJ software (Fiji, version 2.0.0). Antibody 
stainings were visually assessed for each channel and 
cycle in each spot, and seven-color overlay figures for 
selected markers were generated.  

Hyperstacks from the CRC TMA spots were segmented 
based on DRAQ5 nuclear stain, pixel intensities were 
quantified, and spatial fluorescence compensation was 
performed using the CODEX toolkit segmenter, with 
the following settings: Radius: 7. Max. cutoff: 1.0. Min. 
cutoff: 0.07. Relative cutoff: 0.2. Cell size cutoff factor: 
0.4. Nuclear stain channel: 4. Nuclear stain cycle: 23. 
Membrane stain channel: 1. Membrane stain cycle: -1 
(i.e., not used). Use membrane: false. Inner ring size: 
1.0. Delaunay graph: false. Anisotropic region growth: 
false. Comma-separated value (CSV) and flow 
cytometry standard (FCS) files were generated from 
each TMA spot and used for further downstream 
analysis. 

Cleanup gating, unsupervised hierarchical 
clustering and cluster validation 

All 140 background-subtracted FCS files from both 
CRC TMAs were imported into CellEngine 
(www.cellengine.com). Gates were tailored for each file 
individually in a blinded manner by two experts in flow 
and mass cytometry (C.M.S and D.R.M.). Nucleated 
cells were positively identified, and artifacts were 
removed by gating on Hoechst1/DRAQ5 double-
positive cells, followed by gating on focused cells in the 
Z plane (Figure S5). After cleanup gating, FCS files 
were re-exported and subsequently imported into 
VorteX clustering software, where they were subjected 
to unsupervised hierarchical X-shift clustering using an 
angular distance algorithm (Samusik et al., 2016). The 
following data import settings were applied: Numerical 
transformation: none. Noise threshold: no. Feature 

rescaling: none. Normalization: none. Merge all files 
into one dataset: yes. Clustering was based on all 
antibody markers except CD57, CD71, CD194 (CCR4), 
CDX2, Collagen IV, MMP9 and MMP12. The 
following settings were used for clustering: Distance 
measure: Angular distance. Clustering algorithm: X-
shift (gradient assignment). Density estimate: N nearest 
neighbors (fast). Number of neighbors for density 
estimate (K): From 150 to 5, steps 30. Number of 
neighbors: determine automatically.  

The optimal cluster number was determined using the 
elbow point validation tool and was at K=40, resulting 
in 143 clusters. Clusters and corresponding data were 
exported as a CSV file and were manually verified and 
assigned to cell types by overlaying the single cells from 
each cluster onto the stitched TMA images in ImageJ, 
based on the unique cluster identifiers and cellular X/Y 
position, using custom-made ImageJ scripts (available 
upon request). Clusters with similar morphological 
appearance in the tissue and similar marker expression 
profiles were merged, and artifacts were removed, 
resulting in 28 final clusters. Minimal spanning trees of 
the clusters were generated in VorteX, based on angular 
distance, and were exported for each marker (Figure 
S11). 

Manual gating of cell types and checkpoint-positive 
cell subsets 

After cleanup gating, the frequencies of major immune 
cell types (Figure S9) and their expression of Ki-67 and 
checkpoint molecules (Figure S20) were manually 
gated in a blinded manner for each TMA spot in 
CellEngine, and statistics were exported for further 
analysis. For checkpoint-positive cell subsets, 
quantified checkpoint expression was compared to the 
raw image for each spot and gates were adjusted to best 
represent the raw image. 

Generation of Voronoi diagrams and contact 
matrices 

FCS files were exported from VorteX and subjected to 
a custom-made Java algorithm to create Voronoi 
diagrams and cell-to-cell contact matrices (code 
available upon request). 

Computation of pairwise cell-cell contacts 

Direct neighbors of each cell were determined by 
Delaunay triangulation as implemented in the deldir R 
package, using the default settings. From the original 28 
cell clusters, two clusters were removed (undefined and 
tumor/immune cells), and the remaining clusters were 
merged into 14 clusters (Figure S16B). To represent 
associations of cells from various clusters, likelihood 
ratios or relative frequencies were calculated between 
the various clusters for each group of patients, 
according to the following formulas: 
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Likelihood ratios: 

𝑁𝑖𝑗 ∗ 𝑁𝑡
𝑁𝑖 ∗ 𝑁𝑗

 

Relative frequencies: 

𝑁𝑖𝑗
𝑁𝑖

 

where  

Nij is the number of edges between cells in cluster 1 and 
cluster 2 

Nt is the total number of edges, ∑ 𝑁𝑖𝑗',)  

Ni is = ∑ 𝑁𝑖𝑗)  

Nj is = ∑ 𝑁𝑖𝑗'  

Log2 ratios of these metrics for CLR and DII patients 
were generated from the resulting matrices. A heatmap 
of the resulting values was plotted using the Heatmap 
function from the ComplexHeatmap R package after 
removing contacts between clusters where the number 
of unique adjacent cells was <100 in both patient 
groups. 

Neighborhood identification 

For each of the 258,385 cells across these tissues across 
all spots and patient groups, a ‘window’ was captured 
consisting of the 10 nearest neighboring cells (including 
the center cell) as measured by Euclidean distance 
between X/Y coordinates. These windows were then 
clustered by the composition of their microenvironment 
with respect to the 29 cell types that had previously been 
identified by X-shift clustering and supervised 
annotation and merging (Figure S12). Of these, 28 cell 
clusters were assigned to biological cell types and one 
corresponded to imaging artifacts. This latter was 
included to identify poor quality regions of the image. 
Specifically, each window was converted to a vector of 
length 29 containing the frequency of each of the 29 cell 
types amongst the 10 neighbors. We then clustered 
these windows using Python’s scikit-learn 
implementation of MiniBatchKMeans with k = 10. Each 
cell was then allocated to the same CN as the window 
in which it was centered. To validate the CN 
assignment, these allocations were overlaid on the 
original tissue H&E-stained and fluorescent images. 
During this process, the CN cluster that contained the 
imaging artifacts (cellular cluster 29) was removed. The 
original code is available upon request. 

 

Non-negative Tucker tensor decomposition 

The tensor of CN-cell type distributions for each 
patient, with dimensions patients x cell types x CNs, 
was produced by computing the frequency of each cell 
type in each CN in the non-follicular compartments 
(i.e., all CNs except CN-5). This tensor was split along 
the patient direction by patient group (CLR and DII). 
Non-negative Tucker decomposition as implemented in 
the Tensorly Python package was applied to each tensor 
(Kossaifi et al., 2019). The ranks in each dimension 
(2,6,6) were selected by a visual elbow point method 
assessing the decomposition loss (Figure S19). Several 
random-starts were utilized to ensure stability. 

The cell type modules correspond to the factors in cell-
type space, and these are the values indicated in Figure 
5. The CN modules correspond to the factors in CN 
space. The interactions comprising a tissue module 
correspond to each 6x6 slice of the 2x6x6 core tensor.  

Differential enrichment analyses 

Linear models Yn,c = β0 + β1X + β3Yc + ϵ were estimated, 
where Yc is the log overall frequency of cell type c, X is 
an indicator variable for patient group, Yn,c is the log 
frequency of cell type c in CN n, βi are coefficients, and 
ϵ is mean zero Gaussian noise. A pseudocount of 1e-3 
was added prior to taking logs. These were estimated 
using the statsmodels Python package (Seabold and 
Perktold, 2010). The coefficient estimates and p values 
were extracted and visualized.  

Classification of groups 

Classification models were L1 regularized logistic 
regression models, fit using the glmnet R package 
(Friedman et al., 2010). Features were computed under 
the transformation x -> log(1e-3+ x) and z-normalized 
across the dataset prior to inclusion in any models. 

Repeated hold out (RHO) was utilized to estimate 
prediction error, which utilized 10 training samples 
from each patient group. The L1 regularization 
parameter was chosen for each sampled train-test split 
by cross-validation on the sampled training set, and a 
model using this regularization parameter was fit on the 
sampled training set. The model was evaluated on the 
sampled test set, and ROC curves were estimated on the 
test set (of size 15). This was repeated 1000 times. The 
feature importance was computed as the z-score of the 
absolute value of the coefficient across resampling, as 
reported in (Laurin et al., 2016). 

CN activity alteration score  

The CN activity alteration score was computed for each 
cell type individually. Specifically, for each cell type, 
the classification performance (AUC) was estimated 
using 200 RHO samples for two models. The first model 
included as features the overall frequency of that cell 
type. The second model included as features the overall 
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frequency as well as the CN-specific cell type 
frequencies of that cell type in all CNs except CN-5. 
Each cell type had a different accuracy of classification 
with respect to the first model. To account for this, the 
CN activity alteration score was defined as the 
improvement in classification between the two models. 
Specifically, the negative log (base 10) of the p value of 
a one-sided t-test for a greater mean in the AUC 
between the second and first model was used. Since this 
entire procedure contained randomness, it was repeated 
10 times to estimate the variability across the dataset of 
the CN activity alteration score. 

Survival analysis 

We tested the log (1e-3 + frequency in CN-9) for each 
of PD-1+CD4+ and ICOS+CD4+ T cells individually, in 
Cox proportional hazards regression models, estimated 
using the survival R package (Therneau, 2015). The p 
value displayed was from the Cox regression model, 
and the Kaplan-Meier curve displayed was computed 
using the optimal split of the samples along the PD-
1+CD4+ T cell frequency in CN-9 variable. The partial 
residual plot in Figure 6J was created using the visreg 
R package (Brehen and Burchett, 2013). 

Canonical correlation analysis 

For each CN, the log CN-specific cell type frequency of 
each of ICOS+, Ki-67+, and PD-1+ and CD8+ T cells as 
well as Ki-67+ Tregs was computed. For each pair of 
CNs, estimated canonical directions for the frequencies 
of these cells in each CN was estimated using the scikit-
learn Python package (Pedregosa et al., 2011). For each 
pair of CNs, patients with no cells assigned to either CN 
were not included in the analysis. The correlation of the 
projections along these canonical directions was 
compared to a permutation distribution, corresponding 
to 5000 random permutations of the data. The 
permutation p value, i.e. the percentage of permutations 
whose estimated canonical correlation exceeded the 
observed one, was interpreted as the strength of 
communication. 

 

SUPPLEMENTAL INFORMATION 

Supplemental information includes 22 figures, 6 tables 
and 12 scripts and can be found with this article online. 

Table S1: Detailed patient characteristics 

Table S2: Antibodies, clones, manufacturers 

Table S3: CODEX oligonucleotides 

Table S4: CODEX multi-cycle panels 

Table S5: Multi-tumor TMA tissues 

Table S6: Key resources 
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