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Abstract

In this study we develop a computational framework for the recon-

struction of phase dynamics in spatio-temporally oscillating systems and

use it to study the dynamics of the somitogenesis clock oscillator. Our un-

derstanding of the somitogenesis clock, a developmental oscillator found

in the vertebrate embryo, has been revolutionised by the development of

real time reporters of clock gene expression. However, the signals obtained

from the real time reporters are typically noisy, nonstationary and spa-

tiotemporally dynamic and there are open questions with regard to how

post-processing can be used to both improve the insight gained from a

given experiment and to constrain theoretical models. In this study we

present a methodology, which is a variant of empirical mode decompo-

sition, that reconstructs the phase dynamics of the somitogenesis clock.

After validating the methodology using synthetic datasets, we define a

set of metrics that use the reconstructed phase profiles to infer biologi-

cally meaningful quantities. We perform experiments that measure signal

from a real time reporter of the somitogenesis clock and reconstruct the

phase dynamics. Application of the defined metrics yields results that

are consistent with previous experimental observations. Moreover, we ex-

tend previous work by developing a gradient descent method for defining

unbiased kymographs and showing that boundary conditions are non-

homogeneous. By studying phase dynamics along phase gradient descent

trajectories, we show that, consistent with a previous theoretical model,

the oscillation frequency is inversely correlated with the phase gradient

but that the coefficient is not constant in time. The proposed method-

ology provides a tool kit for that can be used in the analysis of future

experiments and the quantitative observations can be used to guide the

development of future mathematical models.

1 Introduction

During development of the vertebrate embryo, the head-tail axis sequentially
segments into pairs of segments at regular intervals in time. Underlying tem-
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poral periodicity is a molecular oscillator known as the segmentation clock that
is characterised by waves of gene expression (Palmeirim et al., 1997; Lauschke
et al., 2013; Soroldoni et al., 2014) that are observed in presomitic mesoderm
(PSM) and come to rest at the boundary of future segment.

The development of new PSM culture systems (Lauschke et al., 2013; Tsi-
airis and Aulehla, 2016, e.g.) has allowed much higher throughput analyses of
spatiotemporal dynamics than was previously possible. Of particular relevance
to this study is an ex vivo mPSM explant culture system in which a small,
dissected part of the PSM from a live reporter mouse is cultured as a mono-
layer. When cultured under appropriate conditions, the mPSM explants exhibit
spatiotemporal oscillations of gene expression. An open question in the field is
how the vast amounts of real-time data can be processed and quantified so as
to maximise the inference that can be made from real-time reporter studies.

The development of real-time reporters of clock gene expression in mul-
tiple vertebrate species has revolutionised the field of somitogenesis research
(Soroldoni and Oates, 2011; Aulehla et al., 2008; Masamizu et al., 2006). Nu-
merous methods have been used to process real time reporter signal so as to
yield biologically meaningful inference: the time that elapses between peaks
of gene expression (Lauschke et al., 2013; Webb et al., 2016; Hubaud et al.,
2017); the Fourier transform (Tsiairis and Aulehla, 2016); the Wavelet Trans-
form (Soroldoni et al., 2014; Webb et al., 2016; Hubaud et al., 2017); the Hilbert
Transform (Lauschke et al., 2013); moving averages (Sonnen et al., 2018); mov-
ing average and a Savitzky-Golay filter (Matsumiya et al., 2018); representation
as a harmonic oscillator (Delaune et al., 2012).

The computation of the phase of an oscillating signal allows for the rel-
ative progression through an oscillatory cycle to be quantified. In complex
spatiotemporal systems, the phase dynamics of the signal can allow the identi-
fication of new phenomena without the need to necessarily fully understand the
mechanisms (e.g. genetic components) underpinning the signal. Moreover, the
inference of phase dynamics from an oscillatory signal provides a means to link
experiment observations with theory.

There are numerous well-established techniques that allow the representation
of temporally oscillating signals. The Fourier transform decomposes a signal into
a linear sum of harmonic functions. However, for a non-stationary signal, such as
a chirp signal where the frequency varies linearly time, the Fourier spectrum does
not provide an intuitive representation of signal dynamics and is not particularly
useful in the recovery of phase dynamics. The Wavelet Transform (Mallat,
1999), which represents a signal as a sum of predefined wavelet functions, allows
for a localised description of a non-stationary signals. The results of a wavelet
analysis are typically presented via a frequency spectrogram. To infer phase
dynamics of the underlying signal, methods such as ridge detection are applied
(e.g. Harang et al., 2012).

The application of the Hilbert transform to a signal is an alternative to
templated-based methods such as the Fourier and Wavelet Transforms. Here, a
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periodic signal is represented by

s(t) = r(t) cos (θ(t)) , (1)

where r(t) is the instantaneous amplitude and θ(t) the instantaneous phase.
Such a signal is considered to be a monochromatic signal, as it only contains a
single frequency at any time point. Whilst the Hilbert transform provide pro-
vides a natural definition of oscillator phase, its application to real-world signals
is complicated by the presence of trends, noise and nonstationarity (Pikovsky
et al., 2001; Huang et al., 1998).

To ensure that a given signal can be studied systematically using the Hilbert
Transform, Huang et al. (1998) introduced a data-driven, adaptive signal analy-
sis technique known as Empirical Mode Decomposition (EMD). This technique,
which does not require basis functions to be predefined, decomposes a signal into
a set of intrinsic mode functions (IMF) that represent oscillations on distinct
timescales. Each of the IMFs, which are monochromatic and can have mean-
ingful physical/biological interpretations (Huang et al., 1998), can subsequently
be analysed using the Hilbert Transform. Important limitations of EMD are its
sensitivity to noise and mode mixing (Wu et al., 2009; Rehman et al., 2013).
These limitations hinder the application of EMD in many practical situations.

To address the limitations of EMD, the original formulation has been mod-
ified in numerous ways (Rilling et al., 2007; Rehman and Mandic, 2010, 2009;
Nunes et al., 2003; Bhuiyan et al., 2008; Wu et al., 2009; Riffi et al., 2015;
Wu and Huang, 2009; Rehman et al., 2013). Multivariate empirical mode de-
composition (MEMD) is a modification of EMD in which a multi-variate signal
can be represented as sum of intrinsic mode functions (Rehman and Mandic,
2009). Noise assisted multivariate empirical mode decomposition (NA-MEMD)
is a modification of EMD in which a univariate signal is processed by introduc-
ing Gaussian noise in neighbouring channels and then applying MEMD such
that the relative position of signal in the different modes is regularised. NA-
MEMD is well suited to the task of decomposing noisy time series originating
from nonlinear, non-stationary oscillators.

EMD has been presented as an alternative to methods such asWavelet Trans-
form (Huang et al., 1998). Nonetheless, the Wavelet Transform has been widely
used to study spatiotemporal dynamics (Kikuchi andWang, 2010). The Wavelet
Transform allows the study of the frequencies that compose the signal at a given
point. However, the application of this transform increases the dimensionality
of the analysis, which requires the development of sophisticated metrics. Ad-
ditionally, he dependence on the wavelet of choice, which can left out relevant
information of nonlinear signals, and the indirect measurement of the instan-
taneous phase are the main drawbacks for such methods (Huang et al., 1998;
Alegre-Cortés et al., 2016; Hirsh et al., 2018).

EMD has been extended to the study of spatio-temporal signals. Bi-dimensional
and tri-dimensional EMD have been developed to represent a spatiotemporal
wave as a sum of spatiotemporal intrinsic mode functions with the objective
being to decompose a signal into characteristic length-scales (Wu and Huang,
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2009; Schmitt et al., 2014; He et al., 2017). Multidimensional Empirical Mode
Decomposition (Wu et al., 2009) has been developed, in the context of image
analysis, as a generalisation of EMD to two and three spatial dimensions (Nunes
et al., 2003; Chen and Jeng, 2014). EMD has been combined with Principal
Component Analysis or Empirical Orthogonal Functions to account for spatial
structure (Park et al., 2013; Davies and James, 2014; Wu et al., 2016). Spa-
tiotemporal MEMD is a multivariate EMD that has been used to incorporate
spatial information in Brain Computer Interfaces (Park et al., 2013; Davies and
James, 2014).

In this study we develop a methodology for the reconstruction of phase
dynamics in an experimentally-motivated situation where a spatio-temporally
oscillating signal is modulated by a time-dependent envelope. The general prob-
lem is to reconstruct the phase, θ(x, t), from a signal of the form

s(x, t) = r(x, t) cos(θ(x, t)) + ξσ(x, t), (2)

where

θ(x, t) =

∫ t

0

ω(x, t)dt, ω(x, t) > 0, (3)

where r(x, t) represents the signal amplitude, θ(x, t) represents the phase, ω(x, t)
represents the frequency and ξσ(x, t) represents Gaussian noise of strength σ.
The layout of the paper is as follows: in Section 2 we outline methods; in
Section 3 develop and validate a methodology for phase reconstruction that is
based on EMD and apply it to experimental data from a real time reporter of
the somitogenesis clock; and, finally, in Section 4 we conclude with a discussion.

2 Methods

2.1 A synthetic dataset

2.1.1 Model equations

We generate a synthetic dataset that exhibits the major features of real time
reports of the somitogenesis clock in mPSM explants: an amplitude gradient, a
frequency gradient, initially spatially homogeneous oscillations followed by the
progressive loss of signal at the boundary.

Let the instantaneous phase, θ(x, t), be given by

θ(x, tseg) = ωt, ∀ 0 < t < tseg , x ∈ D. (4)

where tseg represent the time at which segmentation begins. Suppose that θ(x, t)
satisfies the partial differential equation

∂θ

∂t
= ω +A∇2θ +B∇θ · ∇θ, t > tseg , x ∈ D, (5)
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where ω is the natural oscillation frequency, and A and B are coupling parame-
ters (Murray et al., 2011). The domain D is defined to be the disk of radius R,
i.e.

D = {x ∈ R
2 : |x| < R}. (6)

The boundary conditions are given by

θ(|x| = R, t) = ωtseg, ∀t > tseg, (7)

and the initial conditions are

θ(x, tseg) = ωtseg, ∀x ∈ D. (8)

To imitate the signal decay after arrest, the amplitude is defined to be

r(x, t) =

{

1 + k1
ω−Ω(x,t)

ω
2
+(ω−Ω(x,t)) , Ω(x, t) > ωth

0, otherwise.
(9)

where

Ω(x, t) =
∂θ

∂t
,

and ωth represents a frequency threshold below which the amplitude is set to
zero. The synthetic signal is then given by

s(x, t) =
1

2
r(x, t) (1 + cos(θ(x, t))) + ξσ(t). (10)

2.1.2 Numerical implementation

Equations (4)–(8) were solved numerically in a Cartesian coordinate system.
The spatial domain was discretised using a regular square lattice with spatial
step ∆x = ∆y. Spatial operators were approximated using a central difference
scheme given by

∂u

∂x
≈

1

2∆x
(u(xi+1, yj)− u(xi−1, yj)),

∂u

∂y
≈

1

2∆x
(u(xi, yj+1)− u(xi, yj−1)),

∇2u ≈
1

∆x2
(u(xi+1, yj) + u(xi−1, yj)

+u(xi, yj+1) + u(xi, yj−1)

−4u(xi, yj)).

(11)

The time derivative we approximated using a Forward Euler scheme.

2.2 Phase reconstruction

Let s(x, t) represent a spatio-temporal oscillatory signal. The steps used to
generate the reconstructed phase profile are outlined below.
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Parameter Value Definition Unit
A 4 Coupling constant c.d2h−1

B 1 Coupling constant c.d2h−1

ω 2.5 Oscillation frequency h−1

ωth 0.25 Oscillation threshold h−1

tseg 16 Segmentation time h
k1 3 Amplitude modulation h
R 20 Domain radius c.d.
∆x 1 Spatial step c.d.
∆t 0.025 Time step h

Table 1: A table with parameters values used in synthetic data. c.d. cell
diameter (10µm).

2.2.1 Multivariate Empirical Mode Decomposition (MEMD)

A multivariate signal s(tk) = [x1(tk), x2(tk), ...] is decomposed by the Multivari-
ate Empirical Mode Decomposition as follows:

1. The signal ŝ(tk) is defined to be the original signal s(tk).

2. A suitable pointset (nd directions) is chosen on on a (n− 1)-sphere.

3. The multivariate signal s(tk) is projected along the direction vector x(tk)
to obtain the projection pϕγ (t).

4. The time instants t
ϕγ

i for each maxima of the set of projected signals are
detected.

5. The multivariate envelope eϕγ (tk) is computed by interpolating [tϕγ , s(tϕγ )].

6. For a set of W direction vectors, the mean is computed as

m(tk) =
1

W

W
∑

γ

eϕγ (tk).

7. The mean is subtracted to obtain the detail

d(tk) = s(tk)−m(tk).

8. The variance of the detail is computed

S =
∑

tk

∑

N

(m(tk))
2.

9. If S is smaller than the stopping criterion, the n-th IMF is defined to be
d(tk) iand the process is repeated with ŝ(tk) to be ŝ(tk)−d(tk). Otherwise,
ŝ(tk) is define to be d(tk) and Steps 3-8 are repeated.
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10. The process is iterated until the remaining signal ŝ(tk) does not have de-
tectable extrema, which is defined to be D(tk).

2.2.2 Spatially localised Multivariate Empirical Mode Decomposi-
tion (SLMEMD)

Let sij(t) represent the signal at the ijth point on a regular lattice. A multi-
variate signal s̄(χ, t) is defined with components that comprise the signal at the

ijth lattice point and nearest neighbours, i.e.

s̄ij(t) = [sij(t)si+1j(t)si−1j(t)sij+1(t)sij−1(t)]. (12)

Multivariate Empirical Mode Decomposition (MEMD) is applied to the mul-
tivariate signal s̄ij(t), as described above, yielding the decomposition

s̄ij(t) =

N
∑

k=1

IMFij,k(t)

High frequency noise is eliminated by eliminating high frequency modes, i.e.

ŝij(t) =
N
∑

k=k1

IMFij,k(t) (13)

Due to (slow oscillating) trends that hinder the application of the Hilbert
Transform (Pikovsky et al., 2001), the Empirical Mode Decomposition (Huang
et al., 1998) is applied to the residual, i.e.

ŝij(t) =
N
∑

k=k1

IMF ij,k(t)

and the reconstructed signal is defined to be the first IMF, i.e.

s̃ij(t) = IMF ij,1(t) (14)

Application of the Hilbert Transform, H, yields the analytic signal

s̃ij(t) + iH{s̃ij(t)} = r(t)eiθ(t), (15)

where r(t) and θ are the instantaneous reconstructed amplitude and phase re-
spectively. The reconstructed instantaneous frequency is computed as

ω =
dθ

dt
. (16)

The above process is applied to all voxels in the sample.
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2.2.3 Identifying the oscillatory domain

To track the oscillatory region of the mPSM explant, a time-dependent mask
is constructed. At a given time point, a mask is defined by thresholding the
signal, i.e.

m(x, t; γ) = s(x, t) > γ, (17)

where γ is a threshold parameter that is optimised on a sample-by-sample basis.
To compute the boundary of the oscillatory domain, erosion is applied on

the mask, i.e.
m(x, t; γ)′ = m(x, t; γ)⊖Kd, (18)

where Kd is a kernel of radius Rd and ⊖ is the erosion operator, and the bound-
ary, which is the eroded region, is given by

w(x, t; γ) = m(x, t, γ)−m(x, t, γ)′. (19)

To identify the optimal value of the threshold, Wγ is defined to be the sum of
the intensity of all voxels on the boundary, i.e.

Wγ =
∑

i

∑

j

w(x, t; γ) ⊗ s(x, t) (20)

As in the experimental data oscillations are arrested after they achieve maximum
amplitude, the optimal value of γ, γopt, is defined to be

γopt = max
γ

[Wγ ]. (21)

To eliminate potential holes, both dilation and erosion are applied, i.e.

M(x, t; γopt) = (m(x, t; γopt)⊕Ked)⊖Ked, (22)

where Ked is a kernel of radius Red and ⊕ is the binary dilation operator.
Finally the mask is time-averaged over three time points. Applying the mask
M(x, t; γopt) to the phase yields the oscillatory region of the PSM explant, i.e.

θ(x, t) = θ(x, t) ⊗M(x, t; γopt).

2.2.4 Phase on the boundary

During the segmenting phase of mPSM explants, the oscillating domain reduces
in size. Additionally, the signal intensity is largest on the boundary of the tissue
and there is no signal outside of the actively oscillating domain. However,
the pattern has information (most peripheral region have experienced fewer
oscillations than those in the interior).

To retain the phase information we identify regions of the mPSM explant
where the signal is being lost, i.e. we identify points in space and time, (x∗, t∗),
that satisfy

M(x, t+∆t; γopt)−M(x, t; γopt) = 1 (23)

and impose
θ(x∗, t) = θ(x∗, t∗), for t ≥ t∗. (24)
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2.2.5 Initialisation and unwrapping of phase

The unwrapped phase is defined to be

θU (x, t) = θ(x, t) + 2n(x, t)π,

where n(x, t) represents the number of complete cycles that a voxel has gone
through in a particular point in space and time.

In general it is not possible to infer n(x, 0) using the raw signal (one does
not know how many cycles have elapsed at the beginning of the recording).

To define an unwrapped phase in the case of mPSM explants, we use the
fact that there is a maximum phase drop of 2π across the PSM tissue. Hence a
time t∗ is identified where a region of mPSM tissue is just entering a new cycle.
Hence it is approximated that

n(x, t∗) = 0.

To compute the unwrapped phase profile n(x, t) for t > 0, ±2π jumps are
identified using the function unwrap implemented in MATLAB).

2.2.6 Smoothing of the phase profile

We compute a median filter of radius Rfilt voxels.

2.2.7 Computing sample trajectories

Let x0 be an initially selected point in the oscillatory domain. The phase gra-
dient, ∇θ, is computed and a gradient descent algorithm is used to iteratively
compute the trajectory

xi = xi−1 − kgd
∇θ

|∇θ|
, i = 1, .., Ngd.

where the arc length is given by

σi =

i
∑

j=1

|xj − xj−1|,

kgd is the step size and Ngd is the maximum number of steps.
The phase on the trajectory is given by

θ(σi, t) i = 1, .., N.

We apply a smoothing cubic spline that identifies the smoothed phase,
θS(σi, t), to be the function that minimises

α
n
∑

i=1

| θS(σi, t)− θ(σit) |
2 +(1− α)

∫

∣

∣∇2θS(σ, t)
∣

∣

2
dσ, (25)
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where α ∈ [0, 1] a regularisation parameter. The phase gradient is approximated
as

θU (σi)− θU (σi−1)

σi − σi−1
.

2.3 Metrics

2.3.1 Wave tracking

To measure tissue scale periodicity, the fraction of cells that have undergone k
cycles at a given time t is computed. We define the number of cycles in the
actively oscillating domain to be

η(x, t) = n(x, t)⊗M(x, t).

Defining the number of actively oscillating voxels at time t to be

V (t) =
∑

i

M(xi, t),

the fraction of voxels with k elapsed cycles is given by

wk(t) =
1

V (t)

∑

i

h(η(xi, t)− k), (26)

and h(.) is an indicator function given by

h(x) =

{

1, x = 0,

0, x 6= 0.
(27)

The time of the emergence of the kth wave, t∗k, is defined to be

wk(t
∗

k) = χ0, (28)

where χ0 is a constant. The tissue scale period is defined to be the time between
the emergence of two consecutive waves, i.e.

Tk = t∗k − t∗k−1. (29)

2.3.2 Instantaneous frequency

Suppose that SGn(xi, yj , tk, ω) is a time frequency spectrogram measured at
voxel xi,yj is the nth data sample. The spectrogram of a sample is given by

SGτ,n(t, ω) =
∑

i

∑

j

SGn(xi, yj , tk, ω). (30)
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Parameter Value Definition
χ0 0.01 Mask threshold
α 0.05 Spline smoothing

Rfilt 3 Median filter radius
kgd 1.2 Gradient descent step size
Ngd 20 Max steps in gradient descent
ωms 0.53 Mode selection frequency threshold
Red 3 Mask erosion kernel radius
Rd 5-10 Mask erosion kernel radius
nD 300 Number of direction vectors in MEMD

Table 2: A table with parameters values used in phase reconstruction and metric
evaluation.

2.3.3 Differentiation rate

Defining V (t) to be the number of actively oscillating voxels at time t, the
averaged normalised differentiation rate is defined to be

v =
1

V (t)

dV

dt
. (31)

2.4 Experimental

2.4.1 Mouse line

The LuVeLu mouse (Mus musculus) (a gift from O. Pourquie) expresses Venus-
YFP under the control of a 2.1kb fragment of the Lunatic Fringe (Lfng) pro-
moter. The mRNA contains the 3’UTR of Lfng and the protein is fused to a
PEST domain, to destabilise both the RNA and the protein and ensure clear
oscillations (see Aulehla et al. (2008) for further details

2.4.2 Mating procedure

Mouse E10.5 embryos were generated and the line was maintained by cross-
ing LuVeLu males to stock CD1 females, as the LuVeLu construct is lethal in
homozygotes.

2.4.3 Mouse genotyping

To renew the mouse line, timed matings were performed and the litters geno-
typed to ensure the LuVeLu construct is still present. A diagnostic PCR
was performed on total DNA from an ear biopsy tissue of individual animals.
DNA was extracted by incubation in microLYSIS-Plus buffer (Thistle Scientific)
through the following PCR protocol: 65◦C for 15 minutes, 96◦C for 2 minutes,
65◦C for 4 minutes, 96◦C for 1 minute, 65◦C for 1 minute, 96◦C for 30 seconds
and 8◦C until stopped.
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The PCR mix was generated by adding 2µl of the lysed solution to a solu-
tion containing 1.25µl GoTaq™Flexy polymerase (Promega), 0.31 mM dNTPs
(Promega), 1.25 mM MgCl2, 1 GoTaq™Flexi PCR buffer (Promega) and 20 pmol
of each of the following four primers: (i) Ala1 (Forward), 5’-tgctgctgcccgacaaccact-
3’; (ii) Ala3 (Reverse), 5-tgaagaacacgactgcccagc-3; (iii) IMR0015, 5’-caaatgttgcttgtctggtg-
3; (iv) IMR0016, 5-gtcagtcgagtgcacagttt-3. Distilled water was added to the so-
lution to reach a final volume of 20µl. The following PCR protocol was used:
94◦C for 2 minutes; 35 cycles of [92◦C for 45 seconds, 59◦C for 40 seconds, 72◦C
for 40 seconds]; 75◦C for 5 minutes; and 4◦C until stopped.
PCR samples were analysed through electrophoresis, by loading 5µl of each PCR
product onto a 1% agarose gel with 1:10,000 Gel Red™(Biotium/VWR®) and
run for 20 minutes at 100 volts. The result was visualised using an UV light
box. Wild type CD1 presented a single fragment of 200 bp whilst LuVeLu+/−
presented this fragment together with a 461 bp fragment.

2.4.4 ex vivo culture system

A 35 mm FluoroDish (World Precission Instruments™) with coverglass bottom
was coated with a 50 µg/ml fibronectin (Sigma) in a 100 mM sodium chloride
(NaCl) solution made with double distilled water (ddH2O) before the dissection.
The dish was incubated in the solution either for 4 hours at room temperature
or overnight at 4 ◦C with agitation. The solution was later removed and the
dish left until it was completely dried, around 30 minutes.
The dish was washed in tail bud culture medium of DMEM/F12 with no phenol
red (Gibco/Life Technologies™) with 0.5 mM glucose (Sigma), 2mM L-glutamine
(Gibco/Life Technologies™), 1% bovine serum albumin (BSA) (Sigma), peni-
cillin/ streptomycin(Gibco/Life Technologies™) for 30 minutes at room temper-
ature.
Embryos were harvested at E10.5 from timed matings. Individual embryos
were taken from the uterine horn in sterile PBS using forceps and transferred
to dissection media. To identify luVeLu positive embroys, tails were cut and
transferred to a pre-warmed tail bud dissection media (tail bud culture media
+ 10 mM HEPES (Sigma) in a multi-well dish.
After LuVeLu tail identification, the tail bud was isolated from each tail pos-
terior to the neuropore and transferred to an imaging disk, with the cut facing
downwards, towards the fibronectin-coated surface.
Explants were incubated at 38.5◦C, 5% CO2 for 1 hour to allow the explant
to adhere to the fibronectin-coated surface, before live imaging. Embryos were
transferred to a confocal microscope, as described in Section 2.4.5, and imaged
for 24 hours at 37◦C, 5% CO2 and ambient O2 levels .

2.4.5 Imaging

Tail bud explants were prepared as described above. The imaging dish was
transferred to a 37◦C heated stage with a heated chamber at 37◦C with 5%
CO2 and ambient O2 of a Zeiss 710 inverted confocal microscope. Explants
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were imaged using a EC Plan-Neoufluar 10x/0.30 dry objective (Zeiss, M27).
The LuVeLu fluorophore was excited by using a 514nm Argon laser.
Samples were scanned bi-directionally, to increase acquisition speed, and av-
eraged 8 times per line, with a spatial resolution of 1024x1024 pixels and a
temporal resolution of 15 minutes. Three optical planes were acquired at 14µm
intervals and starting at the plane of the cut, and moving upwards.

3 Results

To obtain a synthetic dataset with phase dynamics that are qualitatively similar
to mPSM explants, the numerical solution of equations (4)–(8) was computed
and defined on a dynamic spatial domain given by equation (9) (see Figure 1
(a)). Figure 1 (b) depicts the dynamic domain (equation (9)), Figure 1 (c)
depicts the phase (see Section 2.2.4) and in Figure 1 (d) depicts the unwrapped
phase (solution of equations (4) – (8)). The goal in this section is to develop a
methodology for inference of the unwrapped phase profile presented in Figure 1
(d) from the experimental-like signal presented in Figure 1 (a).

To reconstruct the phase profile for an oscillating signal defined on a dynamic
domain, a phase reconstruction algorithm (see Section 2.2) was developed. The
first step in the algorithm uses a novel extension to EMD that we call spatially
localised empirical mode decomposition (SL-MEMD). SL-MEMD is a multivari-
ate EMD in which a multivariate signal is defined that considers the signal in
each voxel and its locally synchronised neighbours (see Section 2.2.2). After
recovering the signal using SLMEMD (see Figure 2 (a)), a mask is defined that
identifies the actively oscillating region of the signal (see Figure 2 (b)). To
record the phase history in regions of the sample that have stopped oscillat-
ing, the phase is fixed in time as the boundary propagates inwards (see Figure
2 (c)). Finally, the reconstructed phase is unwrapped and smoothed using a
median filter (see Figure 2 (d)).

To infer the tissue scale period, a wave tracking algorithm was developed
that identifies the emergence of successive oscillatory waves (see Figure 3 (a)
and Section 2.3.1). By computing the time that elapses between the emergence
of successive waves (see Figure 3 (b)), the tissue scale oscillation frequency is ac-
curately computed (see Figure 3 (c)). To describe the differentiation rate of the
tissue we computed the normalised rate of change of area of the actively oscil-
lating region (see Figure 3 (d)). To describe the frequency dynamics throughout
the population, we computed an instantaneous frequency spectrogram (see Fig-
ure 3 (d) and Section 2.3.2).

The generation of kymograph requires the use to specify a spatial axis upon
which dynamics are quantified. We have developed a gradient descent method
which define trajectories that are locally tangential to the phase gradient (see
Figure 3 (f)). In Figure 3 (e) we plot the phase dynamics as a function of arc
length along five such trajectories. In Figure Figure 3 (f) we plot the oscillation
frequency against phase gradient. Note that the underlying structure of the
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Figure 1: The synthetic dataset s(x, y, t). (a) Snapshots of the synthetic signal
(equation (10)). (b) Snapshots of the actively signalling domain (equation (9)).

(c) Snapshots of the sine of the reconstructed oscillator phase, θ̂. (d) Snapshots

of the oscillator phase, θ̂. See Table 2 for parameter values.
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Figure 2: Phase reconstruction of the synthetic dataset s(x, y, t). (a) Snapshots
of the synthetic signal. (b) Snapshots of the mask that defined the extent of
the actively signalling domain. (c) Snapshots of the sine of the reconstructed

oscillator phase, θ̂. (d) Snapshots of the oscillator phase, θ̂. See Table 2 for
parameter values.
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model used to generate the synthetic data is recovered (i.e. the oscillation
frequency is a linear function of the other variables). These results show that
the proposed methodology is capable of describing a range of features of phase
dynamics in simulated mPSM explants.

To test the proposed phase reconstruction technique on experimental data,
mPSM explants from a real time reporter of the mouse somitogenesis clock were
cultured on fibronectin coated glass coverslips. We found that explants were vi-
able and exhibited spatiotemporal oscillations of gene expression (see Figure 4
(a) and (b)). Moreover we observed a front of high reporter activity that prop-
agates from the periphery towards the centre of the tissue and oscillatory waves
of gene expression that propagate from the centre to the periphery. However, in
our hands there was significant inter-sample variability and the geometry of the
sample appeared to to play a dominant role in the pattern of gene expression.

To reconstruct the phase profile we applied the algorithm outline in Section
2.2. The actively oscillating region was determined (see Figure 4 (c)) and appli-
cation of SLMEMD yielded the phase dynamics in the actively oscillating region
of the signal. The full phase history of the sample was defined by recording the
phase at the segmentation boundary (see Figure 4 (d) and (e)).

The wave tracking algorithm (see Section 2.3.1) was applied to the recon-
structed phase profile and the tissue scale frequency of the sample was computed
(see Figure 4 (a) - (c)). The average oscillation frequency was in close agreement
with that measured in a previous study (Lauschke et al., 2013). To identify the
time at which the sample changed from growing to segmenting phases, we com-
puted the tissue differentiation rate (see Figure Figure 4 (d)) and showed that it
was initially positive (the sample is expanding) but becomes negative at around
15 h (Lauschke et al., 2013).

To explore spatial structure of the reconstructed phase profile we used the
phase gradient descent method to identify trajectories along which phase waves
propagate (see Figure 5 (f)). By examining phase dynamics along these tra-
jectories we compute automated kymographs that allow spatio-temporal phase
dynamics to be systematically explored (see Figure 5 (g)). We find that in
general the boundaries of the mPSM sample are not homogeneous (at a given
point in time some regions of the boundary stop oscillating whilst others do
not). We also identified that the the oscillation frequency varies inversely with
the magnitude of the phase gradient (see Figure 5 (h)). Finally, along a given
trajectory a scaling phenomenon whereby the phase gradient steepens as the
size of the oscillatory domain decreases (see Figure 5 (h)).
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Figure 3: Application of metrics to reconstructed phase dynamics. (a) Snap-
shots of the emergence of successive waves. (b) The area spanned by each wave
is plotted against time. (c) The inter-wave frequency is plotted against time
(see equation (29)). (d) The tissue differentiation rate is plotted against time
(equation (31)). (e) The distribution of instantaneous frequencies is plotted
against time. (f) Identification of trajectories using gradient descent. (g) Phase
is plotted against arc length, σ, along different gradient descent trajectories. (h)
The oscillation frequency is plotted against the phase gradient along different
gradient descent trajectories.
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Figure 4: Recovered spatiotemporal dynamics from an mPSM explant. (a)
Snapshots of the fluorescent signal from the LuVeLu reporter. (b) Snapshots of
the fluorescent signal after application of a moving average filter. (c) Snapshots
of the mask that defined the extent of the actively signalling domain. (d) Snap-

shots of the sine of the reconstructed oscillator phase, θ̂. (e) Snapshots of the

oscillator phase, θ̂. See Table 2 for parameter values.
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Figure 5: Quantitative analysis of mPSM explants. (a) Snapshots of the emer-
gence of successive waves. (b) The area spanned by each wave is plotted against
time. (c) The inter-wave frequency is plotted against time (see equation (29)).
(d) The tissue differentiation rate is plotted against time (equation (31)). (e)
The distribution of instantaneous frequencies is plotted against time. (f) Iden-
tification of trajectories using gradient descent. (g) Phase is plotted against
arc length, σ, along different gradient descent trajectories. (h) The oscillation
frequency is plotted against the phase gradient along different gradient descent
trajectories.
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4 Discussion

Spatio-temporal oscillations play a crucial role in many biological systems (e.g.
neural signalling, cardiac waves, calcium waves, somitogenesis). The quantifica-
tion of the features of oscillations provides an information-rich means of charac-
terising system behaviour as well as a bridge between experimental observation
and theory.

The phase of an oscillator, a variable that describes relative progression
through a cycle, allows the phenomenological features of its oscillatory be-
haviour to be described. There are numerous methods available to define phase
(e.g. Fourier, Wavelet, Hilbert, EMD), each of which can yield robust phase
reconstructions in certain contexts. Data-driven methods, such as EMD, are
well-suited to the study of nonstationary, nonlinear signals.

During development of the vertebrate embryo, the presomitic mesoderm
sequentially segments into pairs of somites at regular intervals in time. Under-
lying temporal periodicity of somite formation is a molecular oscillator, known
as the segmentation clock, that exhibits striking spatio-temporal patterns of
gene expression. Recent advances in the development of real-time reporters of
gene expression (e.g. Soroldoni and Oates, 2011; Aulehla et al., 2008; Masamizu
et al., 2006) have resulted in the identification of novel phenomena, such as
aDoppler effect and phase gradient scaling, as well the generation of large
datasets that contain complex spatio-temporal patterns. There is not yet a
consensus on which methods are optimal for quantifying phenomenology of the
spatio-temporal dynamics.

In this study we have developed a phase reconstruction methodology based
on empirical model decomposition that allows inference of phase dynamics on
a dynamic spatial domain. The methodology uses a variant of EMD, which we
call SLMEMD, to infer phase dynamics. Moreover, we develop a set of metrics
that when applied to the reconstructed phase profile yield the quantification of
biologically meaningful variables.

In order to validate the phase reconstruction methodology, we defined a
synthetic dataset that mimicked many known features of segmentation clock
dynamics. We showed that the ground truth phase could be accurately re-
constructed using the proposed methodology and that a range of biologically
relevant quantities (e.g. tissue scale period, instantaneous frequency distribu-
tion, geometrical features) can be accurately inferred from the reconstructed
phase profile.

To determine if the phase construction methodology could be applied to ex-
perimental measurements form a real time reporter of the segmentation clock,
we performed a series of experiments in which mPSM explants from the Lu-
VeLu reporter mouse were cultured as monolayers on fibronectin-coated glass
slides. We inferred the phase dynamics in the mPSM sample using the phase
reconstruction methodology and, consistent with previous observations, found:
(i) two distinct phases of behaviour (expanding and segmenting); (ii) outwardly
propagating oscillatory waves of gene expression; and (iii) an inwardly propa-
gating wavefront that defines a peripheral limit of the oscillatory domain. Ap-
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plication of the metrics yielded quantitative results in good agreement with the
previous observations. However, by recovering phase dynamics in the full spatial
domain, geometrical features of the phase profiles are described.

We have proposed SLMEMD, a novel variant on EMD that is applicable to
locally synchronised spatio-temporally oscillating systems. The defining prop-
erty of SL-MEMD, which is that the signal in neighbouring voxels is used in the
inference of phase at a given voxel, increases the robustness of phase inference
compared with EMD but does not require the tuning of noise strength as is
the case with NAMEMD. We note that we have reproduced our result using
NAMEMD and have not found significant deviation between the methods for
the signals that we have considered.

EMD and its derivative methods are empirical. To deal with this property,
we have developed synthetic datasets that approximate the experimental data
from which we would like to infer phase dynamics. Whilst we have explored
perturbations round these datasets, we note that aspects of the methodology
may need to be optimised for sufficiently different problems.

One of the advantages of the phase reconstruction approach adopted in this
study is that the phase dynamics are reconstructed in the full spatial domain.
Compared with kymograph analyses, which are frequently used in the literature
and require the arbitrary specification of a spatial axis upon which to analyse
the signal, the proposed approach allows one to quantify the evolving geometry
of phase profile.

A limitation of the current study is that individual cells are not tracked. In
principle, artefacts in the phase dynamics could be induced by cell motion. In
the mPSM explant analysed in this study, we considered only the segmenting
phase (t > 16h) during which cell motion is greatly reduced.

An important caveat with this work is that the experimentally measured
signal is periodic. Hence at given instant in time one sees a readout of gene
expression but not the absolute number of cycles that have elapsed. This issue
is problematic in the definition of the unwrapped phase as it is impossible to
infer the absolute phase the reporter signal. However, mPSM explants exhibit
approximately spatially homogeneous patterns of gene expression at early times,
a property that is used to define the initial condition for the unwrapped phase.

In this study we have developed a methodology for reconstructing phase dy-
namics in mPSM explants. In future work we will use the phase reconstruction
techniques to investigate the response of mPSM explants to chemical pertur-
bation and we will explore the extent to which low dimensional mathematical
models can be used to reproduce observed phenomenology.
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