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Abstract

Natural  communities  and  ecosystems  are  currently  experiencing  unprecedented  rates  of

environmental and biotic change. While gradual shifts in average conditions, such as rising mean air

temperatures,  can significantly alter  ecosystem function,  ecologists  recently acknowledged that  the

most damaging consequences of global change will probably emanate from both a higher prevalence

and increased intensity of extreme climatic stress events. Given the potential ecological and societal

ramifications of more frequent disturbances, it  is imperative that we identify which ecosystems are

most vulnerable to global change by accurately quantifying ecosystem responses to extreme stress.

Unfortunately, the lack of a standardized method for estimating ecosystem sensitivity to drought makes

drawing  general  conclusions  difficult.  There  is  a  need for  estimates  of  resistance/resilience/legacy

effects  that  are  free of observation error,  not  biased by stochasticity  in production or rainfall,  and

standardizes  stress  magnitude  among  many  disparate  ecosystems  relative  to  normal  interannual

variability. Here, I propose a statistical framework that estimates all three components of ecosystem

response to stress  using standardized language (resistance,  resilience,  recovery,  and legacy effects)

while resolving all of the issues described above. Coupling autoregressive time series with exogenous

predictors (ARX) models with impulse response functions (IRFs) allows researchers to statistically

subject all ecosystems to similar levels of stress, estimate legacy effects, and obtain a standardized

estimate of ecosystem resistance and resilience to drought free from observation error and stochastic

processes inherent in raw data. This method will enable researchers to rigorously compare resistance

and  resilience  among  locations  using  long-term time  series,  thereby  improving  our  knowledge  of

ecosystem responses to extreme stress.
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Introduction

Natural  communities  and  ecosystems  are  currently  experiencing  unprecedented  rates  of

environmental and biotic change. While gradual shifts in average conditions, such as rising mean air

temperatures,  can significantly alter  ecosystem function,  ecologists  recently acknowledged that  the

most damaging consequences of global change will probably emanate from both a higher prevalence

and increased intensity of extreme climatic stress events, defined as climate events that occur outside

the statistical bounds of historical conditions (Smith 2011). For example, more frequent and severe

droughts in North America and Europe have already caused shifts in plant community composition,

widespread tree mortality, and catastrophic declines in primary production (Ciais et al. 2005, Anderegg

et  al.  2013, Hoover et  al.  2014, Knapp et  al.  2015a).  Concurrent with drought,  the frequency and

duration of heat waves have also increased over the past century (Perkins et al. 2012). In terrestrial

systems, heat waves exacerbate drought water stress by increasing evapotranspiration, while marine

heat waves cause extensive mortality of foundation species and habitat  loss (Ciais  et  al.  2005, Le

Nohaïc et al. 2017, Smale et al. 2019). Given the potential ecological and societal ramifications of more

frequent disturbances, it is imperative that we identify which ecosystems are most vulnerable to global

change by accurately quantifying ecosystem responses to extreme stress.

Ecosystem stress  response consists  of  two components:  the decline in  ecosystem function

during or immediately following the stress event, and the degree of improvement in ecosystem function

after alleviation of stress (Lloret et  al.  2011, Smith 2011).  The magnitude of decline in ecosystem

function during stress, often called ‘resistance’ or ‘sensitivity’ to stress, has been studied extensively

and varies both among and within ecosystems (Huxman et al. 2004, Knapp et al. 2015, Sully et al.

2019). Grasslands, for instance, are typically more drought-sensitive than forests because grasslands

occupy drier climate conditions (Stuart-Haëntjens et al. 2018). Indeed, arid and semi-arid grasslands

are among the most drought-sensitive ecosystems on the planet, losing up to twice as much primary
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production,  proportionally,  than  mesic  grasslands  during  drought  (Knapp  et  al.  2015a).  In  marine

ecosystems,  coral  reef  resistance  to  bleaching  also  depends  on  local  climate  conditions.  Reefs  in

thermally variable water bodies bleach less extensively than reefs in thermally constant environments

(Sully  et  al.  2019).  Thus,  a  relatively  large  body  of  literature  exists  to  describe  how  ecosystem

sensitivity to extreme climatic stress varies with either abiotic or biotic variables. In comparison, the

abiotic and biotic processes that accelerate or inhibit restoration of ecosystem function after climate

stress  remain  poorly  understood.  The  consequences  of  extreme  stress  can  persist  for  some  time

following perturbation (i.e. legacy effects; Smith 2011, Sala et al. 2012, Anderegg et al. 2015), but few

multi-site  studies  have  assessed  the  climatic  and  biological  determinants  of  ecosystem  recovery.

Furthermore, it is difficult to infer general patterns and mechanisms regarding differential ecosystem

sensitivity to and recovery from climate stress because there is no standardized vocabulary describing

ecosystem responses to stress, and current quantitative method for estimating ecosystem trajectories

during and after stress suffer from significant statistical problems.

Consider  the  issue  of  estimating  resistance/sensitivity  of  terrestrial  primary  production  to

drought. The first problem is the lack of a consistent method for describing the decline in primary

production;  resistance  and  sensitivity  are  antonyms  for  the  same  phenomenon  with  at  least  five

common  mathematical  formulations  (Table  1).  The  second  problem  is  that  comparing

sensitivity/resistance estimates among sites or years is difficult even when using a single metric. For

example, estimating sensitivity/resistance as the ratio of production during a drought year to production

during the previous year (Table 1) biases estimates of sensitivity/resistance if the year prior to drought

was below or above average rainfall. That is, the context of the drought varies from site to site and year

to  year,  impairing  inter-site  or  even  intra-site  comparisons  of  drought  sensitivity.  This  ratio  also

includes observation error within its  estimate;  low or high estimates  of primary production during

either the previous year or the drought year partly arise from imperfect sampling methods, such that we
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cannot know the extent to which the ratio represents the true process of resistance or incorporates

sampling artifacts. Finally, it is difficult to place estimates of sensitivity into a climate context because

the degree of stress induced by a given rainfall reduction varies among grasslands. That is, a 200mm

reduction in annual rainfall  imposes a much stronger meteorological drought in the arid shortgrass

steppe than it does in mesic tallgrass prairies (Knapp et al. 2015b). Thus, there is a need for an estimate

of sensitivity/resistance that is free of observation error, not biased by stochasticity in production or

rainfall,  and  standardizes  stress  magnitude  among  many  disparate  ecosystems  relative  to  normal

interannual variability.

Quantifying ecosystem resilience/recovery/legacy effects to climate stress has proven no less

idiosyncratic (Table 1), and many of the same statistical artifacts described above afflict widely used

estimates  of  resilience/recovery.  As  before,  estimating  ecosystem  resilience  using  the  proportion

reduction  in  primary  production  after  drought  compared  to  primary  production  before  drought

incorporates  both  temporal  stochasticity  and  observation  error.  Resilience  to  drought  might,  for

example,  be overestimated if  the post-drought year is abnormally wet or the pre-drought year was

abnormally dry, or if observation error resulted in higher measurements of primary production post-

drought  simply  due  to  sampling  protocols.  Perhaps  the  most  popular  method  for  quantifying

resilience/legacy effects  of primary production is  to calculate  the predicted primary production for

every year using a temporal primary production-precipitation regression based on inter-annual time

series data (Sala et al. 2012, Anderegg et al. 2015). The error of the post-drought year, observed –

predicted, constitutes the legacy effect. To demonstrate, the shortgrass steppe of Colorado experienced

an  extreme  drought  in  2012  (Fig.  1A –  red  dot).  Based  on  the  primary  production-precipitation

relationship, we can estimate the predicted value of primary production in 2013 (Fig. 1B). The legacy

effect of drought is then the observed primary production (Figs. 1A,B – green dot) minus the predicted

primary production in 2013  (Fig. 1B). 
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However,  this  estimation  method  suffers  from several  logical  and  statistical  issues.  First,

observations will almost never fall exactly along the regression line; by definition half of the points will

be above and half will be below the line. Second, the distance from the regression line that we consider

to be a significant ‘legacy’ effect depends generally on sample size and less on any biological property.

Third, this method assumes that scatter surrounding the primary production-precipitation relationship is

entirely caused by legacy effects. Is this true for all points, or only for the one point in which the

ecologist is interested? If legacy effects are the only cause of scatter, then incorporating legacy effects

into regression models should perfectly model data. Though autoregressive parameters sometimes do

improve fit, they do not model data perfectly nor do they substantially improve prediction accuracy for

a single observation (Oesterheld et al.  2001). If legacy effects apply only to the year following an

extreme event, do sources of variability present in other years not occur in post-stress years, such that

legacy effects explain the entirety of deviation from the mean in the post-stress year? In reality, many

factors  likely  contribute  to  an  imperfect  primary  production-precipitation  relationship  in  all  years,

including the within-year distribution of rainfall  event size and timing (Heisler-White et  al.  2008),

observation error, stochasticity in community composition, and potential legacy effects. Sites with a

weaker primary production-precipitation relationship (i.e.  lower  R2) will have more scatter about the

line and therefore possess stronger “legacy effects”. There is currently no way to parse out whether

legacy effects calculated in this manner arise from true legacy effects, observation error, or how the

legacy effect depends on the actual weather patterns during the recovery year.

To impose statistical rigor in testing for legacy effects, some studies compared the observed

point to the 95% CI of the predicted value and report only legacy effects that are significantly different

from the mean (Griffin-Nolan et al. 2018) (Table 1; Fig. 1B - orange shaded area). However, this too

has statistical issues. First, as above, the presence of a point inside or outside the mean CI might be

observation error. Second, the significance of a legacy effect depends on the width of the mean 95% CI,
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which is at least partially determined by sample size. For long time series, over 80% of observations

would be considered significant legacy effects when compared to the mean CI, even when data were

generated without legacies (Fig. 1C). In other words, sites with longer time series (i.e. more data) are

more likely to show significant “legacy effects” even when no legacy effects are present because the

width of the 95% CI shrinks proportionally to the inverse square-root of sample size. Comparing the

presence of legacy effects among sites might simply be comparing differences in time series length. In

the shortgrass steppe, the point for 2013 would be a ‘significant’ legacy effect even though it falls well

within the 95% envelope for individual data points (Fig. 1B). To test whether legacy effects fall outside

the normal range of variability, it is more appropriate to compare the observed ‘legacy effect’ point to

the  observation/prediction interval.  Using the observation  confidence interval,  instead  of  the mean

confidence interval, alleviates this particular issue by minimizing false legacy effects because the width

of  the  observation  interval  depends  only  on  residual  error,  not  sample  size  (i.e.  Type  I  error  for

simulations, Fig. 1C). This issue raises the possibility that many reported legacy effects might be noise,

and ecosystem ecologists currently have no statistical method that can reliably separate legacy effects

from observation error.

Here,  I  propose  a  statistical  framework that  estimates  all  three  components  of  ecosystem

response to stress  using standardized language (resistance,  resilience,  recovery,  and legacy effects)

while resolving all of the issues described above. Coupling autoregressive time series with exogenous

predictors (ARX) models with impulse response functions (IRFs) allows researchers to statistically

subject all ecosystems to similar levels of stress, estimate legacy effects, and obtain a standardized

estimate of ecosystem resistance and resilience to drought free from observation error and stochastic

processes inherent in raw data. This method will enable researchers to rigorously compare resistance

and  resilience  among  locations  using  long-term time  series,  thereby  improving  our  knowledge  of

ecosystem responses to extreme stress.
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Impulse Response Functions

Impulse  response  functions  derive  from  time  series  analyses  (e.g.  autoregressive  and/or

moving average models) and describe the trajectory of dynamic systems following stress. They are

particularly  useful  in  systems  that  are  logistically  difficult,  costly,  or  impossible  to  manipulate

experimentally, such as financial markets. Indeed, econometricians have widely implemented IRFs to

understand  the  resistance,  resilience,  and  recovery  of  financial  markets  to  instantaneous  “shocks”

(Creal and Wu 2017, Gambetti and Musso 2017). For example, Senbet (2016) used IRFs to visualize

the consequences of higher federal interest rates on unemployment, consumption, and other indicators

of economic health. In medical studies, IRFs describe how the human body responds to pulsed stress

events, such as elevated or depressed hormone activity (Schultz et al. 2015, Chang et al. 2017). Earth

system modelers use IRFs to understand how global temperature or CO2 concentrations respond to

various shocks, such as changes in oceanographic processes or vehicular emissions (Thompson and

Randerson 1999, Joos et al. 2013, Millar et al. 2017, Zeng et al. 2017). However, no ecological study

has  yet  used  IRFs  to  quantify  ecosystem resistance  to  and  recovery  from extreme  stress  events.

Fortunately, calculating IRFs is as simple as fitting autoregressive models using standard time series

methods readily available in many programming languages (e.g. the arimax function in the TSA library

of R), comparing models to determine the appropriate autoregressive order, and then calculating the

components  of  ecosystem stress  response  using  simple  combinations  of  parameters  from the  best

model.  The  ease  of  IRF  calculation  could  facilitate  widespread  adoption  in  assessing  ecosystem

responses to extreme stress across a variety of study systems.

Constructing IRFs first requires fitting various ARX(p) models to long-term time series data to

identify whether legacy effects are present. ARX(p) models modify autoregressive models of order p

(i.e. AR(p) models) by including one or more exogenous variables:
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yt = βxxt + φ1yt-1 + φ2yt-2 + … + φpyt-p + εt

This model states that ecosystem state at time t (yt) depends on current exogenous values (xt, e.g. annual

precipitation, sea-surface temperature anomaly, etc.), previous ecosystem states up to  p time steps in

the past (yt-p,  i.e.  legacy effects), and error from both unmeasured processes and sampling issues (εt).

The appropriate order  p can be chosen via information theoretic methods (e.g.  AIC, BIC) or via chi-

square likelihood ratio tests comparing successively lower orders (e.g.  AR(2) vs. AR(1), AR(1) vs.

AR(0), etc). The lowest order model, ARX(0), is simply a linear regression of ecosystem state against

the exogenous variable with no intercept if the response data have been standardized prior to regression

(the intercept is the mean, and standardization of the response makes the mean equal to 0). Both y and

x should be standardized to a mean of 0 and standard deviation of 1, especially if the objective is to

compare stress resistance and resilience among different study sites or ecosystems.

Once the appropriate ARX(p) model has been identified, the next step is to derive the IRF.

IRFs use the fitted ARX(p) model to predict ecosystem state under new values of x through time. The

special case of imposing an initial stress to the exogenous variable (e.g.  drought or heat wave) then

allowing the exogenous variable to return to nominal levels for recovery is represented by:

x*  = [α, 0, 0, 0, 0, 0, 0, 0, 0, 0]

where  α  denotes  the  level  of  stress  at  the  initial  time  point.  It  is  critically  important  that  x  be

standardized prior to model fitting, thus a value of x*
t = 0 represents average exogenous conditions (i.e.

average precipitation) and α is stress in units of standard deviations for the exogenous predictor. In this

way, ecologists can statistically subject disparate ecosystems to the same level of relative stress (e.g. a

2σ decline  in  precipitation)  and  allow  the  system  to  return  to  nominal  values  when  estimating

ecosystem resistance and resilience to stress, thereby eliminating stochasticity and observation error

present in current methods.
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After  determining  the  appropriate  value  for  α,  the  IRF  for  ecosystem  state  (y*)  can  be

calculated either recursively or, in the case of the simple x* used here, analytically. Ecologists can then

use the IRF to quantify various components of ecosystem response to stress. In the context of IRFs,

stress responses can be defined as:

1. Resistance – The standardized decline in ecosystem state when subjected to an initial stress of α in

the exogenous variable at  t = 0. More negative values imply lower resistance. For example, stronger

drought-induced declines in primary production, or bleaching-induced reductions in coral cover, yield

more negative resistance values. Units are in standard deviations of the ecosystem state, provided that y

has been appropriately standardized beforehand.

2. Resilience – The standardized decline in ecosystem state in the time step immediately following an

initial stress of  α in the exogenous variable. More negative values imply lower resilience. Positive

values indicate positive legacy effects.  Such situations occur when, for example,  drought  causes a

buildup of soil  nitrogen that can stimulate plant growth when rainfall  returns to normal levels the

following year (Hofer et al. 2017). Units are in standard deviations of the ecosystem state, provided

that y was appropriately standardized beforehand.

3. Recovery – The amount of time required for the ecosystem state to recover to half of its resistance

value. In other words, how much time is required for the ecosystem state to regain a given percentage

of the decline experienced during stress. Larger values imply slower recovery. Units are in time steps t

(i.e.  years for annual primary production). Note that I in this paper, I chose 50% recovery arbitrarily

and ecologists could modify this value depending on the question or system under study.

For the simplified x* listed above, each quantity has analytical solutions for ARX(p) models of different

orders (Table 2). 

ARX(0) Models
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The ARX(0) model is a simply linear regression of standardized ecosystem state against a

standardized exogenous variable. The IRF is given by:

y*
t = βxx*

t

Resistance to the initial stress at t* = 0 is then:

y*
0 = βxx*

0 = βxα

In this model, there are no ecosystem resilience or recovery values because the ecosystem recovers

immediately and perfectly  in the absence of legacy effects.  That  is,  the ecosystem state  returns to

average conditions following the return of the exogenous value to average conditions:

y*
1 = βxx*

1 = 0

ARX(1) Models

ARX models with one lag effect are given by the equation:

yt = βxxt + φ1yt-1 + εt

In this case, the IRF can be calculated via recursive substitution:

y*
t = φt

1βxα

Assuming  that  the  ecosystem state  was  at  average  conditions  prior  to  stress  (y*
-1  = 0)  this  gives

ecosystem resistance as:

y*
0 = βxα 

Resilience is ecosystem state at the next time step:

y*
1 = φ1βxα

Recovery is the time required to achieve a 50% return to nominal levels:

t = log(0.5) / log(φ1)

ARX(2) Models
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ARX(2) models include two lagged time steps:

yt = βxxt + φ1yt-1 + φ2yt-2 + … + φpyt-p + εt

General solutions require linear algebra. The equation above can be placed into matrix algebra form as:

y t =Ψyy t−1 +x0 βx

[
y t−1

y t ]=[ 0 1
ψ 2 ψ1 ][

y t−2

y t−1 ]+[0α ]βx

which, when expanded, yields the two equations:

[
y t−1

y t ]=[
y t−1

ψ 2 y t−2 +ψ 1 y t −1 +βxα ]
Assuming that both the ecosystem state and exogenous values were at average conditions prior to the

stress (i.e. y*
-2 = y*

-1 = 0), then resistance is given by:

y0 =x0 βx

However, because this is a vector of length 2, resistance at t = 0 is actually the second element of the

vector:

( x0 βx )2

Recursive substitution yields the value for resilience at t = 1:

y1=(Ψyx0 βx )2

where again the subscript denotes the second element of the vector. More generally, the IRF has the

form:

( y
t )2=(Ψy t x0 βx )2

Importantly, Ψt is the matrix power of t1. Recovery cannot be calculated analytically because ARX(2)

models exhibit oscillations, and there may be more than one time point where y*
t = 0.5 y*

0. As a result,

recovery is best quantified as the first time point where y*
t is closest to 0.5:

1 Care must be taken for matrix powers in many programming languages. In R, typing psi^2 simply squares every element of psi and is
not the same as psi %*% psi, which is the matrix square of psi. In Python, the square of a matrix is calculated using the 
matrix_power function in the numpy.linalg module.
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argmint[|(Ψtβxx0)2 – 0.5(βxx0)2|]1

where the subscript 1 denotes the first element of the set in the event that multiple points satisfy the

condition within the brackets. The interior of the brackets denotes the absolute value of the difference

between the IRF and half of resistance.

 

Resistance and resilience of a cool-season grassland to drought

The simplicity of IRFs can be demonstrated with an example application.  I  estimated the

resistance, resilience, and recovery of aboveground net primary production (ANPP) in a northern, cool-

grass prairie to extreme drought using primary production and precipitation data from Manyberries,

Alberta (Smoliak 1986) (Figure 2). Prior to analyses, both ANPP and precipitation were examined for

gap years (n = 4 non-sequential gap years). Because ARX models cannot work with missing years, I

first interpolated the four missing production and precipitation values using a radial basis function.

After  standardizing  ANPP and  precipitation  as  described  above,  I  detrended  both  time  series  by

calculating the residuals of each time series regressed against time to ensure weak stationarity required

by autoregressive models. I then calculated resistance and resilience following the methods in Table 1.

Next, I used IRFs to estimate resistance, resilience, and recovery. To do so, I fit ARX(0), ARX(1), and

ARX(2) models to  the dataset  using dedicated time series  methods (the ARIMAX function in  the

statsmodels.tsa Python module). After model fitting, I identified the best-fitting model using Bayesian

Information Criteria (BIC). I chose BIC because BIC penalizes additional terms more heavily than AIC

and is therefore more conservative.

Primary production at Manyberries was highly contingent on annual precipitation (Figure 2A).

Using Method 1 (see Table 1), the slope of the primary production – precipitation relationship provides

an estimate of 0.14 ± 0.02 g ANPP per mm ppt. However, calculating sensitivity following Method 2

provides an estimate of 0.10 g ANPP per mm ppt, significantly lower than the estimate of sensitivity
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from Method 1 (p = 0.046). I then estimated drought resistance using Methods 3 and 4 for every year in

which precipitation fell beneath the 5% quantile (standardized precipitation < -1.64). In Manyberries,

only the year 1973 met this criteria. According to Method 3, during 1973 Manyberries experienced a

51% decline in ANPP relative to the long-term mean. However, using percent change from the previous

year  provided  only  a  36%  decline  in  ANPP,  despite  the  previous  year  possessing  near  average

precipitation (standardized precipitation for 1972 = -0.26). This highlights the influence of potential

observation error; the preceding year with average precipitation had below average ANPP due to either

process or observation errors, but it is impossible to know how severely those errors biased sensitivity

estimates. Thus, each method outlined in Table 1 provides significantly different, sometimes vastly so,

estimates of drought sensitivity at  Manyberries AB, and often on different,  non-comparable scales.

Furthermore, these methods cannot disentangle observation error from process error, nor incorporate

potential legacy effects that might affect the prior year’s ANPP.

IRFs  can  rectify  these  issues  by  using  ARX models.  For  example,  BIC  model  selection

identified clear legacy effects (Table 3). Because both one and two-year lags were equally plausible

(Table 3), I chose the ARX(1) model as the most parsimonious fit to the data. Positive autocorrelation

(φ1 = 0.42 ± 0.09) suggests that extremely low ANPP in a given year would be followed by lower than

expected ANPP the next, such that drought might negatively impact ANPP for several years after the

initial event. To visually and empirically quantify ecosystem responses to drought, I calculated the IRF,

resistance, resilience, and recovery time of ANPP after a 2σ decline in rainfall (Fig. 2B). A 2σ drought

resulted  in  a  1.2σ decline  in  ANPP,  and  strong  legacy  effects  inhibited  complete  recovery  for

approximately  7  years  (Fig.  2B).  However,  Manyberries  production  was  quite  resilient,  having

recovered 50% of its function in 0.80 years, such that the year following drought saw only a 0.51σ

decline in ANPP (Figure 2B). 
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Climate constraints on grassland resistance and resilience to drought

By standardizing both the severity of stress and ecosystem response, IRFs can be used to

compare ecosystem resistance and resilience across sites of differing biotic and abiotic contexts. For

example, ecologists commonly use long term time series data to assess how grasslands vary in drought

resistance and resilience across global or continental climate gradients (Sala et al. 2012, Knapp et al.

2015a).  However,  previous  efforts  have  been,  quite  understandably,  hindered by the  difficulties  in

standardizing  drought  effects  across  sites  and  accurately  quantifying  drought  resistance  free  from

temporal stochasticity. Here, I used IRFs to calculate ecosystem resistance, resilience, and recovery of

14 globally distributed herbaceous sites previously identified to possess significant legacy effects. 

Using (Sala et al. 2012), I identified 14 datasets composed of both annual precipitation and

aboveground primary production in herbaceous communities. Gap years in either primary production

or precipitation were filled using a radial basis function. Ideally, time series would contain at least

thirty  consecutive  years  of  data.  Unfortunately,  very  few ecological  datasets  span that  duration.  I

therefore  kept  datasets  with  ten  or  more  years.  Prior  to  analyses,  I  gap-filled,  standardized,  and

detrended each dataset as was done for Manyberries, AB (see above). To illustrate the disparity among

existing methods for estimating ecosystem stress resistance, I calculated resistance for each dataset

using  two  ‘slope-based’ methods  (Methods  1  and  2,  Table  1)  and  two  ‘percent-based’ methods

(Methods 3 and 4, Table 1). I then used BIC to distinguish between ARX(0), ARX(1), and ARX(2)

models. After identifying the appropriate autoregressive order, I calculated IRFs, resistance, resilience,

and recovery following a 2σ decline in precipitation. In this way, ecosystem resistance, resilience, and

recovery were all derived for the same magnitude of rainfall reduction relative to ambient conditions at

each site. To assess climate constraints on ecosystem resistance, resilience, and recovery from drought,

I regressed each metric against mean annual precipitation derived from WorldClim.
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The  four  resistance  methods  gave  quantitatively  different  results.  The  two  ‘slope-based’

methods were poorly correlated (r = 0.24), largely due to the presence of one outlier from Method 2

(Fig. 3A). The outlier exemplifies the danger of Method 2, representing a site with a large change in

ANPP but little change in precipitation between pre-drought to drought years. The degree to which this

point is influenced simply by observation error between years is unknown. The remaining points were

scattered around the 1:1 line but, importantly, the order of sites differed between Methods 1 and 2 (Fig.

3A). The least sensitive site identified by Method 1 was only the fourth least resistant site in Method 2,

while the most sensitive site according to Method 1 was only the fifth most sensitive site according to

Method 2 (Fig. 3A). Re-ordering issues were less severe between the two ‘percent-based’ methods,

largely due to the higher degree of correlation between Methods 3 and 4 (r = 0.83, Fig. 3B). However,

comparing across ‘slope-based’ and ‘percent-based’ methods yielded much weaker correlation among

sensitivity estimates (Methods 1 vs. 3: r = 0.47, Fig. 3C; Methods 1 vs. 4: r = -0.42, Fig. 3D) and, as a

result, strong reordering of sites. For example, the most sensitive site identified by Method 1 was the

fourth-most  sensitive  site  in  Method 3,  while  the most  sensitive site  in  Method 3 was ninth-most

sensitive site in Method 1. Thus, there is a strong need for a method of estimating sensitivity that is

applied consistently across studies to facilitate comparisons across different time series.

Using the IRF method revealed that primary production at the majority of sites (71%) was best

described by an ARX(0) model, indicative of no legacy effects (Table 4). Of the four sites exhibiting

significant lag effects, three were best fit by an ARX(1) model while only one site was best described

by an ARX(2) model (Table 4). Resistance to a 2σ decline in precipitation varied among sites from a

minimum of -2.0 SD decrease in ANPP at XLN to a maximum of 0.5 SD increase in ANPP at NRB

(Figure 3A). Indeed, a significant positive relationship between drought resistance and mean annual

precipitation (p = 0.008) indicated that drier herbaceous sites were generally less resistant than mesic

systems. Yet the relationship was not strong (R2 = 0.41); even dry sites varied significantly in drought
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resistance. For example, JRN possesses roughly the same mean annual precipitation as XLN, yet JRN

was 68% more resistant to a 2σ reduction in rainfall than XLN (Fig. 3A). Such variability in drought

resistance among sites of similar precipitation has been previously reported (Huxman et al. 2004) and

could derive from differences in species composition, rainfall patterns (e.g. monsoonal, Mediterranean,

etc.), or management history among sites. Relatively few sites demonstrated lag effects, such that most

sites did not exhibit either resilience or recovery (Fig. 3B,C). There was no relationship between mean

annual precipitation and either the strength of resilience/recovery or the probability of a legacy effect

(Fig. 3B,C).

Discussion

Given the expected increase in both the severity and intensity of extreme stress events as

climate change progresses, it  is imperative that we accurately quantify how ecosystems respond to

stress. Estimating ecosystem vulnerability to stress using long-term time series data is a promising

approach, but ecologists have not yet coupled time series data with the appropriate statistical tools.

Most current methods possess flaws that potentially bias estimates of ecosystem susceptibility to stress

and potentially misidentify legacy effects. To resolve these issues, I advocate for using IRFs derived

from autoregressive time series models as a single quantitative framework that can accurately estimate

ecosystem resistance, resilience, and recovery from severe stress events. Impulse response functions

have numerous advantages over prior techniques, including the separation of observation and process

errors,  standardizing drought  intensity  among different  locations,  and rigorously  testing  for  legacy

effects. 

Legacy effects have previously been suggested to be widespread among terrestrial ecosystems

(Sala et al.  2012). However, evidence for legacy effects is mixed. Previous studies using the same

datasets here reported significant autocorrelation of primary production in only six grasslands (at a
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significance threshold of p = 0.1, Sala et al. 2012), while the information theoretic approach advocated

here identified significant autocorrelation in only four grasslands, albeit  at  a stronger threshold for

significance. These qualitatively similar patterns suggest that legacy effects may be rare. This is not to

say that legacy effects do not occur; controlled experiments identified strong drought legacies in the

Patagonian  steppe  of  southern  Argentina  (Yahdjian  and  Sala  2006).  Experiments  have  even

demonstrated positive legacy effects of drought in herbaceous communities of Europe (Hofer et al.

2017).  Instead,  it  appears that grassland systems dominated by fast-growing, perennial,  herbaceous

species tend to be highly resilient and recover quickly from stress (Stuart-Haëntjens et al. 2018), such

that drought legacies in grasslands might not be widespread. In contrast, forests are dominated by slow-

growing, woody trees and shrubs and are often much less resilient to drought than grasslands (Stuart-

Haëntjens et al. 2018). It is therefore plausible that legacy effects are much more common in forests

than  in  grasslands  (Anderegg  et  al.  2015).  Testing  this  hypothesis  using  the  statistical  framework

proposed here represents an interesting direction of future research.

The  method  proposed  here  also  yields  results  consistent  with  previous  studies  regarding

regional and global patterns in grassland resistance to drought. Multiple experimental and observational

studies reported that arid and semi-arid grasslands are most sensitive to drought stress (Huxman et al.

2004, Knapp et al. 2015a). Likewise, the 2σ reduction in rainfall tested here provided the same result;

semi-arid grasslands experience stronger reductions in primary production relative to normal inter-

annual variation than did mesic grasslands. However, patterns in resilience across climates reported

here did differ from previous work. Stuart-Haëntjens et al. (2018) reported strong regional variation in

grassland resilience to drought; semi-arid grasslands were significantly less resilient to drought than

were mesic grasslands. In contrast, the IRF method identified relatively few instances of legacy effects,

such that most grasslands were recovered immediately following stress and there was no clear trend

with climate. Inconsistencies between the results of this study and Stuart-Haenjens et al. (2018) likely
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arise from key differences in the underlying data; this study used long-term, observational time series

to  calculate  resilience,  whereas  Stuart-Haenjens  et  al.  (2018)  compiled  data  from  experimental

droughts. Applying the IRF method to more grassland sites, consisting of longer time series, could

prove fruitful in assessing abiotic constraints on ecosystem resilience to drought.

One advantage of the method proposed here is the relative ease with which ARX models can

be  fit  and  IRFs  calculated  in  common  statistical  programming  languages.  The  following

recommendations would prove beneficial  for ecologists  wishing to implement  the method outlined

here:

1.  Properly pre-treat data – Data must be processed properly prior to analysis with autoregressive

models. First, data must be examined for gaps, as simple ARX models proposed here do not function

with non-contiguous data. Small gaps can be filled with a data imputation function (e.g.  radial basis

functions, used here). Second, data must be detrended. ARX models assume stationarity, wherein the

mean and variance do not change through time. Detrending data can stabilize the mean through time,

but variances must still be checked visually. Third, data should be standardized in order to facilitate

comparison among sites. For example, if precipitation is not standardized, then α = -2 for the IRF is

only a 2mm decline in rainfall, rather than an extreme 2σ event.

2.  Use a 2σ increase or decrease in the exogenous stressor – If all ecologists use a 2σ change in the

exogenous  stressor,  then  results  are  perfectly  comparable  among  studies.  I  chose  2σ because  it

represents an extreme event. For example, a 1σ decline in rainfall is the 16% quantile, whereas a 2σ

decline in rainfall represents a drought falling in the 2% quantile (assuming a normal distribution),

thereby representing an extreme stress event.

3.  Report the autoregressive order and parameter values – Reporting the parameters enables future

researchers to easily extract the IRF and calculate ecosystem stress responses under different  x*. For

example, ecologists could standardize all IRFs to a 2σ stress if variation exists in the literature, or could
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assess  ecosystem  recovery  using  values  different  from  a  50%  return  in  ecosystem  function.

Alternatively, future researchers could use IRFs to assess how systems respond to multiple stress events

of either identical or varying magnitude.

4. Use designated AR model fitting functions – The ARX functions specified here could all be fit using

least  squares.  Doing so,  however,  requires  trimming the  first  two data  points  from all  model  fits

because we cannot use information theory or likelihood ratio tests to compare models fit to different

datasets (e.g. n  points for ARX(0),  n-1 points for ARX(1),  n-2 points for ARX(2), etc.).  For small

datasets, the loss of two data points can substantially alter the results. For example, using OLS to fit an

ARX(0) model to the RMY data without the first two data points (n =  8) results in no relationship

between primary production and precipitation (p = 0.65) because the first two data points are the driest

and wettest years. Using the full dataset (n = 10) yields a stronger primary production – precipitation

relationship  (p  = 0.12).  Common  statistical  languages  have  ARIMAX  functions  (R:  TSA library,

Python: statsmodels module) wherein the user can specify the AR order, incorporate an exogenous

predictor, and utilize the full dataset.

In  conclusion,  IRFs  provide  ecologists  with  a  quick  and  simple  means  for  quantifying

ecosystem  responses  to  extreme  stress,  while  enabling  ecologists  to  capitalize  on  the  increased

availability of long-term, observational time series data. Ecologists can use this method to quantify the

components  of  ecosystem  stress  response  in  a  standardized  way  across  many  sites.  Site-specific

information  on  species  composition,  long-term  climate,  rainfall  patterns,  or  any  other  important

variable  can  then  be  used  to  identify  the  abiotic  and  biotic  factors  that  dictate  ecosystem  stress

response. For example, the brief analyses presented here suggest that dry grasslands are often more

sensitive to  drought  than wet  grasslands,  but  also that  our understanding of differential  ecosystem

sensitivity  to  drought  remains  incomplete.  As a  result,  IRFs should greatly  improve our  ability  to
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predict how ecosystems will respond to the increased severity and frequency of extreme events in the

future.

Acknowledgments

I would like to thank newly minted Drs. R. Griffin-Nolan and A. Hoffman for their helpful comments

on drafts of this manuscript. This work was funded by an NSF DEB award (1941390) to NPL.

References

Anderegg, W.R. L, J.M. Kane, and L.D. Anderegg (2013) Consequences of widespread tree mortality 

triggered by drought and temperature stress. Nature Climate Change 3:30.

Anderegg, W. R. L., C. Schwalm, F. Biondi, J. J. Camarero, G. W. Koch, M. E. Litvak, K. Ogle, J. D. 

Shaw, E. Shevliakova, A. P. Williams, A. Wolf, E. Ziaco, and S. Pacala. 2015. Pervasive drought 

legacies in forest ecosystems and their implications for carbon cycle models. Science 349:528–

532.

Chang, R. W., C. Y. Chang, L. C. Lai, M. S. Wu, T. H. Young, Y. S. Chen, C. H. Wang, and K. C. 

Chang. 2017. Determining arterial wave transit time from a single aortic pressure pulse in rats: 

vascular impulse response analysis. Scientific Reports 7:1–9.

Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogée, V. Allard, M. Aubinet, N. Buchmann, C. 

Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grünwald, 

B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, 

J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J.-F. Soussana, M. J. Sanz, E. D. 

Schulze, T. Vesala, and R. Valentini. 2005. Europe-wide reduction in primary productivity caused 

by the heat and drought in 2003. Nature 437:529–533.

466

468

470

472

474

476

478

480

482

484

486

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/743708doi: bioRxiv preprint 

https://doi.org/10.1101/743708
http://creativecommons.org/licenses/by-nc-nd/4.0/


Creal, D. D., and J. C. Wu. 2017. Monetary policy uncertainty and economic fluctuations. International 

Economic Review 58:1317–1354.

Gambetti, L., and A. Musso. 2017. Loan supply shocks and the business cycle. Journal of Applied 

Econometrics 32:764–782.

Gazol, A., J. J. Camarero, W. R. L. Anderegg, and S. M. Vicente-Serrano. 2017. Impacts of droughts on

the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography 26:166–

176.

Gazol, A., J. J. Camarero, S. M. Vicente-Serrano, R. Sánchez-Salguero, E. Gutiérrez, M. de Luis, G. 

Sangüesa-Barreda, K. Novak, V. Rozas, P. A. Tíscar, J. C. Linares, N. Martín-Hernández, E. 

Martínez del Castillo, M. Ribas, I. García-González, F. Silla, A. Camisón, M. Génova, J. M. 

Olano, L. A. Longares, A. Hevia, M. Tomás-Burguera, and J. D. Galván. 2018. Forest resilience to

drought varies across biomes. Global Change Biology 24:2143–2158.

Griffin-Nolan, R. J., C. J. W. Carroll, E. M. Denton, M. K. Johnston, S. L. Collins, M. D. Smith, and A.

K. Knapp. 2018. Legacy effects of a regional drought on aboveground net primary production in 

six central US grasslands. Plant Ecology 219:505–515.

Heisler-White, J., A. K. Knapp, and E. F. Kelly. 2008. Increasing precipitation event size increases 

aboveground net primary productivity in a semi-arid grassland steppe. Oecologia 158:129-140.

Hofer, D., M. Suter, N. Buchmann, and A. Lüscher. 2017. Nitrogen status of functionally different 

forage species explains resistance to severe drought and post-drought overcompensation. 

Agriculture, Ecosystems and Environment 236:312-322.

Hoover, D. L., A. K. Knapp, and M. D. Smith. 2014. Resistance and resilience of a grassland 

ecosystem to climate extremes. Ecology 95:2646–2656.

488

490

492

494

496

498

500

502

504

506

508

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/743708doi: bioRxiv preprint 

https://doi.org/10.1101/743708
http://creativecommons.org/licenses/by-nc-nd/4.0/


Huxman, T. E., M. D. Smith, P. A. Fay, A. K. Knapp, M. R. Shaw, M. E. Loik, S. D. Smith, D. T. 

Tissue, J. C. Zak, J. F. Weltzin, W. T. Pockman, O. E. Sala, B. M. Haddad, J. Harte, G. W. Koch, S.

Schwinning, E. E. Small, and D. G. Williams. 2004. Convergence across biomes to a common 

rain-use efficiency. Nature 429:651–654.

Joos, F., R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. Von Bloh, V. Brovkin, E. J. Burke, M. 

Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. 

Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G. K. Plattner, A. Reisinger, J. 

Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. 

Weaver. 2013. Carbon dioxide and climate impulse response functions for the computation of 

greenhouse gas metrics: a multi-model analysis. Atmospheric Chemistry and Physics 13:2793–

2825.

Knapp, A. K., C. J. W. Carroll, E. M. Denton, K. J. La Pierre, S. L. Collins, and M. D. Smith. 2015a. 

Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia 177:949–

957.

Knapp, A. K., D. L. Hoover, K. R. Wilcox, M. L. Avolio, S. E. Koerner, K. J. La Pierre, M. E. Loik, Y. 

Luo, O. E. Sala, and M. D. Smith. 2015b. Characterizing differences in precipitation regimes of 

extreme wet and dry years: implications for climate change experiments. Global Change Biology 

21:2624–2633.

Lloret, F., E. G. Keeling, and A. Sala. 2011. Components of tree resilience: effects of successive low-

growth episodes in old ponderosa pine forests. Oikos 120:1909–1920.

510

512

514

516

518

520

522

524

526

528

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/743708doi: bioRxiv preprint 

https://doi.org/10.1101/743708
http://creativecommons.org/licenses/by-nc-nd/4.0/


Millar, J. R., Z. R. Nicholls, P. Friedlingstein, and M. R. Allen. 2017. A modified impulse-response 

representation of the global near-surface air temperature and atmospheric concentration response 

to carbon dioxide emissions. Atmospheric Chemistry and Physics 17:7213–7228.

Le Nohaïc, M., C. L. Ross, C. E. Cornwall, S. Comeau, R. Lowe, M. T. McCulloch, and V. Schoepf. 

2017. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant 

corals in northwestern Australia. Scientific Reports 7:14999.

Oesterheld, M., J. Loreti, M. Semmartia, and O. E. Sala. 2001. Inter-annual variation in primary 

production of a semi-arid grassland related to previous-year production. Journal of Vegetation 

Science 12:137-142.

Perkins, S. E., L. V Alexander, and J. R. Nairn. 2012. Increasing frequency, intensity and duration of 

observed global heatwaves and warm spells. Geophysical Research Letters 39:L20714.

Sala, O. E., L. A. Gherardi, L. Reichmann, E. Jobbagy, and D. P. C. Peters. 2012. Legacies of 

precipitation fluctuations on primary production: theory and data synthesis. Philosophical 

Transactions of the Royal Society B: Biological Sciences 367:3135–3144.

Schultz, W., R. M. Carelli, and R. M. Wightman. 2015. Phasic dopamine signals: from subjective 

reward value to formal economic utility. Current Opinion in Behavioral Sciences 5:147–154.

Senbet, D. 2016. Measuring the channels of monetary policy transmission: a factor-augmented vector 

autoregressive (FAVAR) approach. Journal of Central Banking Theory and Practice 5:5–40.

Smale, D. A., T. Wernberg, E. C. J. Oliver, M. Thomsen, B. P. Harvey, S. C. Straub, M. T. Burrows, L. 

V Alexander, J. A. Benthuysen, M. G. Donat, M. Feng, A. J. Hobday, N. J. Holbrook, S. E. 

Perkins-Kirkpatrick, H. A. Scannell, A. Sen Gupta, B. L. Payne, and P. J. Moore. 2019. Marine 

530

532

534

536

538

540

542

544

546

548

550

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/743708doi: bioRxiv preprint 

https://doi.org/10.1101/743708
http://creativecommons.org/licenses/by-nc-nd/4.0/


heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate 

Change IN PRESS.

Smith, M. D. 2011. The ecological role of climate extremes: current understanding and future 

prospects. Journal of Ecology 99:651–655.

Smoliak, S. 1986. Influence of climatic conditions on production of Stipa-Bouteloua prairie over a 50-

year period. Journal of Range Management 39:100–103.

Stuart-Haëntjens, E., H. J. de Boeck, N. P. Lemoine, P. Mänd, G. Kröel-dulay, I. K. Schmidt, A. 

Jentsch, A. Stamp, W. R. L. Anderegg, M. Bahn, J. Kreyling, T. Wohlgemuth, F. Lloret, A. T. 

Classen, C. M. Gough, and M. D. Smith. 2018. Mean annual precipitation predicts primary 

production resistance and resilience to extreme drought. Science of the Total Environment 

636:360–366.

Sully, S., D. E. Burkepile, M. K. Donovan, G. Hodgson, and R. van Woesik. 2019. A global analysis of 

coral bleaching over the past two decades. Nature Communications 10:1264.

Thompson, M. V, and J. T. Randerson. 1999. Impulse response functions of terrestrial carbon cycle 

models: methods and application. Global Change Biology 5:371–394.

Wilcox, K. R., Z. Shi, L. A. Gherardi, N. P. Lemoine, S. E. Koerner, D. L. Hoover, E. Bork, K. M. 

Byrne, J. F. Cahill, S. L. Collins, S. E. Evans, A. K. Gilgen, P. Holub, L. Jiang, A. K. Knapp, D. R.

LeCain, J. Liang, P. Garcia-Palacios, J. Peñuelas, W. T. Pockman, M. D. Smith, S. Sun, S. R. 

White, L. Yahdjian, K. Zhu, and Y. Luo. 2017. Asymmetric responses of primary productivity to 

precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Global 

Change Biology:4376–4385.

552

554

556

558

560

562

564

566

568

570

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/743708doi: bioRxiv preprint 

https://doi.org/10.1101/743708
http://creativecommons.org/licenses/by-nc-nd/4.0/


Yahdjian, L., and O. E. Sala. 2006. Vegetation structure constrains primary production response to 

water availability in the Patagonian Steppe. Ecology 87:952–962.

Zeng, S., X. Nan, C. Liu, and J. Chen. 2017. The response of the Beijing carbon emissions allowance 

price (BJC) to macroeconomic and energy price indices. Energy Policy 106:111–121.

 

572

574

576

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/743708doi: bioRxiv preprint 

https://doi.org/10.1101/743708
http://creativecommons.org/licenses/by-nc-nd/4.0/


Method Name Equation Units Citation

Reduction During Stress

1 Sensitivity x t− xt−1

ppt t− ppt t −1

Change in primary 
production per mm 
chain in rainfall

(Wilcox et al. 2017)

2 Sensitivity Δxx
Δxppt

Slope of the primary 
production – 
precipitation 
relationship

(Huxman et al. 2004, Knapp et 
al. 2015a)

3 Sensitivity
100×(

xt− x̄

x̄ )
Percent decline from 
long-term mean

(Griffin-Nolan et al. 2018)

4 Resistance x t

x t−1

Proportion decline 
from pre-drought 
year

(Lloret et al. 2011, Gazol et al. 
2017, 2018)

5 Resistance
ln(

xt

xt−1
)

Log proportion 
decline from pre-
drought year

(Stuart-Haëntjens et al. 2018)

Return Following Stress

6 Recovery xt+1

x t

Proportion increase 
in post-drought year

(Lloret et al. 2011, Gazol et al. 
2017, 2018)

7 Resilience x t+ 1

x t−1

Proportion decrease 
in post-drought year 
from pre-drought

(Lloret et al. 2011)

8 Resilience
ln(

xt+1

xt−1
)

Log proportion 
decrease in post-
drought year from 
pre-drought

(Stuart-Haëntjens et al. 2018)

9 Legacy effects
100×(

x t1
− x̄

x̄ )
Percent decrease in 
post-drought year 
from long-term mean

(Griffin-Nolan et al. 2018)

10 Legacy Effects x t+ 1− x̂ t+ 1 Observed – predicted
for post-drought year

(Sala et al. 2012, Anderegg et 
al. 2015)

Table 1. Definitions and mathematical equations used to calculate ecosystem resistance, resilience,

recovery, and legacy effects following an extreme stress event.
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Model Resistanc
e

Resilienc
e

IRF Recovery

ARX(0) βxα 0 βxx*
t 0

ARX(1) βxα φ1βxα φ1
tβxα log(0.5) / log(φ1)

ARX(2) (βxx0)2 (Ψβxx0)2 (Ψtβxx0)
2

argmint[|(Ψtβxx0)2 - 0.5(βxx0)2|]1

Table  2. Analytical equations for calculating resistance, resilience, IRF, and recovery for ARX models

of different orders. Note that these equations rely on the special form of x* described in text. More

complex solutions exist for general forms of x*. The subscript 2 denotes the second element of a column

vector (see text).
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Model BIC ΔBICBIC Parameters
(mean ± 1 SE)

ARX(0) 123.4 14.8 βx: 0.65 ± 0.11

ARX(1) 108.6 0.0
βx: 0.61 ± 0.09
φ1: 0.42 ± 0.09

ARX(2) 109.1 0.5

βx: 0.58 ± 0.09
φ1: 0.51 ± 0.10
φ2:  -0.19  ±
0.10

Table 3. BIC model selection criteria for ARX(0), ARX(1), and ARX(2) models fit to primary

production/precipitation data from Manyberries, AB.
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Site ARX(
0)

ARX(
1)

ARX(
2)

Badkhyz, Turkmenistan
(BDK)

0.0 2.8 6.3

Cheyenne, Wyoming
(CHY)

0.0 2.4 4.3

Dzhanybek, Kazakhstan
(DZH)

0.0 3.0 6.5

Jornada, New Mexico
(JRN)

0.0 3.2 4.8

Konza Prairie, Kansas
(KNZ)

0.0 3.3 6.7

Kursk, Russia
(KRS)

0.0 1.3 3.5

Manyberries, Alberta
(MBR)

4.1 0.0 2.1

Nairobi, Kenya
(NRB)

0.0 0.8 2.6

Niwot Ridge, Colorado
(NWT)

14.0 0.0 0.4

Rio Mayo, Argentina
(RMY)

0.1 2.1 0.0

Sevilleta, New Mexico
(SEV)

0.0 0.9 1.3

Fort Collins, Colorado
(SGS)

0.0 0.0 2.7

Tumugi, China
(TMG)

1.6 0.0 2.0

Xilingol, China
(XLN)

1.90 1.80 0.0

Table 4. ΔBIC values of ARX(p) models for 14 grassland sites used in Sala et al. (2012). Bold denotesBIC values of ARX(p) models for 14 grassland sites used in Sala et al. (2012). Bold denotes

the best model, chosen by ΔBIC values of ARX(p) models for 14 grassland sites used in Sala et al. (2012). Bold denotesBIC < 2. In the case of multiple competing models (ΔBIC values of ARX(p) models for 14 grassland sites used in Sala et al. (2012). Bold denotesBIC < 1), I chose the

simplest model following the principle of parsimony.
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Figure List

1. A)  Time series of aboveground net primary production at the shortgrass steppe near Fort Collins,

Colorado. The red point denotes the drought of 2012, the green point denotes primary production in the

year  following drought.  The orange dashed line shows predicted primary production based on the

primary production – precipitation relationship. B) The primary production – precipitation relationship

for the shortgrass steppe. The orange shaded area is the 95% CI of the mean, while the blue shaded area

is  the  95% CI of  individual  observations.  Green point  shows the recovery year  of  2013 and how

“legacy effects”  are  sometimes  calculated  (Table  1).  C)  Using the  mean 95% CI  (orange line)  to

statistically  test  for  legacy effects  results  in  high false  positive rates  as  sample  size increases  and

uncertainty about  the mean decreases,  while  using the  observation  95% CI (blue line)  avoids  this

complication.  Lines  were  generated  by  simulating  10,000  precipitation  time  series,  then  using  a

simulating  primary  production  –  precipitation  relationship  to  estimate  primary  production  in  the

absence of legacy effects. Type I error rates are the proportion of observations in a simulated time

series that would be considered to possess significant legacy effects, despite being simulated without

legacy effects.

2. A) Time series of aboveground net primary production (ANPP) at Manyberries, AB. Blue line shows

the fitted ARX(1) model. Inset shows the ANPP – precipitation relationship.  B) IRF for the ARX(1)

model fitted to Manyberries, AB. Values for resistance, resilience, and recovery to a 2σ drought were

calculated following Table 2.

3.  Comparison of Methods 1, 2, 3, and 4 for estimating ecosystem resistance to drought for the 14

herbaceous systems (see Table 1 for definitions). Panel A) compares two ‘slope-based’ methods, panel

B)  compares to ‘percent-based’ methods,  while  panels  C)  and  D)  compare a ‘slope-based’ method

(Method 1) to both ‘percent-based’ methods. The dashed line in panels  A) and B) are the 1:1 line of

perfect correspondance.
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4. Relationship between precipitation and A) resistance, B) resilience, and C) recovery following a 2σ

drought for 14 herbaceous systems.  
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Figure 1
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Figure 2
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Figure 3642
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Figure 4
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