1 Inhibition of a negative feedback for persistent epithelial cell–cell junction

2 contraction by p21-activated kinase 3

3

4 Authors: Hiroyuki Uechi and Erina Kuranaga*

5

6 Affiliations: Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences,

- 7 Tohoku University, 6-3, Aramaki-aza-aoba, Aoba-ku, Sendai 980-8578, Japan
- 8
- 9 *Corresponding author (erina.kuranaga.d1@tohoku.ac.jp)
- 10

11

12 Abstract

13	Actin-mediated mechanical forces are central drivers of cellular dynamics. They generate
14	protrusive and contractile dynamics, the latter of which are induced in concert with myosin II
15	bundled at the site of contraction. These dynamics emerge concomitantly in tissues and even
16	each cell; thus, the tight regulation of such bidirectional forces is important for proper cellular
17	deformation. Here, we show that contractile dynamics can eventually disturb cell-cell junction
18	contraction in the absence of p21-activated kinase 3 (Pak3). Upon Pak3 depletion, contractility
19	induces the formation of abnormal actin protrusions at the shortening junctions, which reduces
20	E-cadherin levels at adherens junctions. Such E-cadherin dilution dissociates myosin II from
21	the contracting junctions, leading to a reduction in junctional tensile forces. Overexpressing E-
22	cadherin restores the association of myosin II at the junctions and junction contraction. Our
23	results suggest that contractility both induces and perturbs junction contraction and that the
24	attenuation of such perturbations by Pak3 facilitates persistent junction shortening.
25	

25

26

27	The cell collectives composing animal bodies sculpt tissue architectures through various
28	cellular behaviors such as cell division, deformation, rearrangement, and migration. The
29	cytoskeletal protein actin is the central protein that drives these cellular behaviors by generating
30	mechanical forces ^{1–7} . While actin generates protrusive forces by forming branched and bundled
31	structures, it also supplies contractile forces by forming bundled structures and loosely
32	organized networks in concert with non-muscle myosin II. Such bidirectional force generation
33	by actin can coexist in each cell and even at the same position within cells. During single-cell
34	migration, protrusive actin dynamics extend cells at the leading edge, while actomyosin (the
35	actin and myosin II complex) contraction causes retraction at the rear of the cell along the
36	migrating direction ^{8,9} . A recent study of <i>Drosophila</i> eye development demonstrated that
37	pulsatile extension by protrusive branched actin networks and counterbalancing actomyosin
38	contractility-mediated shortening of each cell-cell contact control cellular shape ¹⁰ . Thus, the
39	tight regulation of actin dynamics is important for proper force induction and the resultant
40	cellular dynamics.
41	Epithelial cell intercalation is one of the multicellular dynamics driven by the
42	contractile forces of actomyosin and contributes to directional tissue extension and

43 movement^{11–13}. This process consists of the directional exchange of cellular positions within

44	cell collectives, which is driven by cell-cell junction remodeling (i.e., shortening of cell-cell
45	junctions and subsequent growth of new ones in new directions) ¹⁴ . During shortening, actin
46	and myosin II are highly enriched at the adherens junctions (AJs) of cell-cell junctions to form
47	contractile actomyosin bundles that then shorten the junctions ^{1,11,15–19} . The mechanisms
48	inducing contractile forces via actomyosin are well studied; however, it is still unknown
49	whether actomyosin-mediated contractions are negatively affected during cell-cell junction
50	shortening, and if so, how the shortening is sustained.
51	The rotation of Drosophila male genitalia is an example of epithelial cell
52	intercalation ²⁰ . During metamorphosis, male genitalia located at the posterior end of the body
53	undergo 360° dextral rotation around the anterior-posterior axis (Fig. 1a) ^{21,22} . This rotation is
54	observed from 24 to 36 h after puparium formation (APF), and is composed of two movements
55	of epithelial cells: the initial 180° dextral movement of the genitalia along with the surrounding
56	epithelia, which is called the posterior compartment of the A8 segment (A8p), at the anterior
57	side of the genitalia, and the subsequent 180° dextral movement of the anterior compartment
58	of the A8 segment (A8a), the latter of which starts at 26 h APF ^{20–22} . During rotation, the A8a
59	cells frequently induce left-right polarized junction remodeling in relation to the anterior-
60	posterior axis in the confined space between the A8p epithelia and the A7 segment, which

61	results in unidirectional epithelial cell movement ^{20,23} . Consistent with other tissues, the
62	accumulation of actomyosin at the AJs of cell-cell junctions induces junction contraction in
63	this model. Down-regulation of contractile activity, such as via RNA interference (RNAi) of
64	myosin II regulatory light chain (MRLC), compromises the remodeling and hence results in
65	insufficient A8a cell movement, leading to incomplete rotation of the genitalia ²⁰ .
66	Here, we examined actin and myosin II dynamics in the A8a epithelia during the
67	rotation of Drosophila genitalia and revealed that, upon junction contraction, actin dynamics
68	at cell-cell junctions are compromised in p21-activated kinase 3 (Pak3) mutant flies. These
69	aberrant actin dynamics disturb the distribution of E-cadherin and myosin II at the junctions,
70	and thus eventually disrupt the junction contraction. These findings suggest that Pak3 blocks
71	the negative feedback of contractility and ensures persistent junction contraction and
72	rearrangement of epithelial cells.
73	
74	Results

75 Pak3 is required for A8a cell movement during the rotation of *Drosophila* genitalia. To 76 understand the molecular basis underlying epithelial cell–cell junction remodeling, we 77 searched for genes involved in the movement of A8a cells. In the control flies, time-lapse

78	images showed that male genitalia underwent the 360° full rotation during metamorphosis, and
79	all male flies had the normal orientation of genitalia (Fig. 1a,b). We found that RNAi targeting
80	Pak3 in the A8a epithelia under the control of the AbdB-Gal4 driver caused insufficient
81	movement of the A8a epithelia during rotation, while the genitalia still underwent the 180°
82	movement with respect to the A8a epithelia (Fig. 1a) ^{24,25} . In addition, depleting Pak3 induced
83	the misorientation of genitalia in approximately 60% of adult male flies, similar to that reported
84	for MRLC depletion (Fig. 1b) ²⁰ . Co-expression of Dicer2, which augments RNAi efficiency ²⁶ ,
85	with Pak3 RNAi increased the frequency of misorientation to $> 90\%$, which was associated
86	with a decline in rotation angle, while the overexpression (OE) of Pak3 tagged with green
87	fluorescent protein (Pak3::GFP) restored the normal orientation, excluding the possibility of
88	an off-target effect of this Pak3 RNAi (Fig. 1b). These results indicate that Pak3 is involved in
89	epithelial tissue dynamics.
90	Immunostaining of fixed epithelia revealed that Pak3 was expressed in the A8a cells,
91	as indicated by its decreased signals in Pak3 RNAi cells that were clonally introduced into
92	wild-type tissues (Fig. 1c). Signals for the lateral membrane-associating protein Discs large

93

94 clones, suggesting that Pak3 RNAi does not compromise the integrity of epithelial cells (Fig.

(Dlg)²⁷ at cell-cell boundaries were indistinguishable between wild-type cells and Pak3 RNAi

95 lc).

96

97	Pak3 is required for cell-cell junction shortening. To examine the role of Pak3 in cellular
98	dynamics, we monitored the dynamics of cell-cell junctions labeled with GFP-tagged E-
99	cadherin (E-Cad::GFP), an adhesive AJ component, during A8a cell movement ^{28,29} . In the
100	control epithelia, we observed that cell-cell junctions undergo shortening, form four-way
101	vertices, and subsequently grow in other directions, consistent with a previous report (Fig. 1d;
102	Supplementary Movie 1) ²⁰ . In the Pak3-depleted A8a cells, junctions frequently failed to
103	complete shortening; that is, they did not shorten sufficiently to form four-way vertices and
104	instead went back to the original direction (Fig. 1d; Supplementary Movie 2). To quantify these
105	defective junction dynamics, we categorized the junctions in A8a cells according to their
106	dynamics as follows: junctions that completed shortening and grew in other directions
107	(remodeling), junctions that completed shortening, but failed to grow in other directions after
108	forming four-way vertices (growth defect), junctions that shortened sufficiently to reach 1.5
109	μ m in length, but failed to form four-way vertices (shortening defect), and junctions that did
110	not shorten to less than 1.5 μ m in length (no remodeling) (Fig. 1e). Then, the populations of
111	junctions in each category were examined. In the control cells, approximately 55% of junctions

112 underwent remodeling, and few junctions showed defects during a 4-h period following the 113 initiation of A8a cell movement (from 26 to 30 h APF, Fig. 1f). By contrast, in Pak3 RNAi 114 cells, the frequency of junction remodeling was decreased to < 10%, and instead, the number 115 of shortening junctions that failed to form four-way vertices (categorized as a shortening 116 defect) was significantly increased (Fig. 1f). Similar propensities were observed in the A8a cells of a Pak3 hypomorphic mutant $(Pak3^{d02472})^{30}$, although the decline in remodeling 117 118 frequency was not substantial compared to that in Pak3 RNAi cells (Fig. 1f). Meanwhile, the 119 frequency of the growth defect was not altered in these Pak3 mutants (Fig. 1f). These results 120 suggest that Pak3 is required for junction shortening during cell intercalation.

121

Pak3 suppresses aberrant actin dynamics in response to junction contraction. Junction shortening is driven by the contractile forces of actomyosin accumulating at the AJs of junctions, and Pak protein families are known to regulate actin dynamics^{5,31–33}. These findings and our observations led us to speculate that Pak3 has roles in actin dynamics during junction shortening in the A8a epithelia. To test this possibility, we performed time-lapse imaging of GFP-tagged Lifeact (Lifeact::GFP), which labels F-actin³⁴. In the control A8a cells, actin was distributed predominantly at cell–cell junctions (Fig. 2a; Supplementary Movie 3). Magnified

129	images showed that, whereas the majority of Lifeact::GFP signals were localized along
130	junctions, actin frequently generated small protrusions arising from the junctions (Fig. 2b). The
131	maximum size of these actin-positive protrusions was $1.1 \pm 0.34 \ \mu\text{m}$ in height (perpendicular
132	to the junctions) and 2.1 \pm 1.1 μ m in width (parallel to the junctions) (Fig. 2c). These
133	observations suggest that actin not only merely forms into bundled structures along cell-cell
134	junctions but also generates small protrusive structures in the A8a cells undergoing junction
135	remodeling. In Pak3 RNAi cells, actin also localized to cell-cell junctions, but generated
136	significantly larger protrusive structures, compared to those in the control cells (Fig. 2a-c;
137	Supplementary Movie 4). Similar actin-positive structures were also observed in <i>Pak3^{d02472}</i>
138	flies with another actin-labeling probe, GFP-tagged actin-binding domain of utrophin
139	(UtrABD::GFP) (Fig. 2d) ^{35,36} . To semi-quantify these actin dynamics in Pak3 RNAi cells, we
140	defined a "large" actin protrusion as a Lifeact-positive cluster at junctions that was greater than
141	1.5 μ m in height and greater than 3 μ m in width in a planar section; both lengths approximately
142	exceeded the mean + 1 standard deviation (S.D.) of each length of the actin protrusions in the
143	control cells, respectively (Fig. 2c,e). We then examined the frequency of the appearance of
144	such large protrusions at each junction (Fig. 2f). While greater than 95% of cell-cell junctions
145	in the control cells did not generate large protrusions, these structures emerged at almost all

146	junctions at least once per hour in Pak3 RNAi cells (Fig. 2f). Again, overexpressing Pak3
147	partially alleviated the formation of large protrusions: although these structures were still
148	observed in approximately 50% of junctions, they were absent from greater than 40% of
149	junctions, and only a few junctions formed large protrusions more than three times per hour
150	(Fig. 2f). These data suggest that Pak3 suppresses the formation of aberrant actin protrusions
151	in the A8a cells.
152	Branched actin networks induce the formation of protrusive actin structures and are
153	generated by the Arp2/3 complex, which is stimulated by the WAVE regulatory complex
154	(WRC) ^{1,3} . To determine whether this pathway is involved in the formation of large protrusions,
155	we used RNAi targeting Abi, a component of the WRC, in Pak3-depleted cells ^{37,38} . Depletion
156	of Abi suppressed the generation of large actin protrusions, although it did not completely
157	restore actin dynamics (Fig. 2f). This suggests that the aberrant actin protrusions are in part
158	composed of branched actin-networks.
159	To further characterize these aberrant actin protrusions in Pak3 RNAi cells, we

161 cells, junctions failed to undergo remodeling (Fig. 1f), but instead underwent repeated

160

162 shrinkage and extension (Fig. 2g). We found that the generation of large protrusions was

explored the correlation between their emergence and junction dynamics. In Pak3-depleted

163	initiated frequently when the junctions were shortening rather than when they were extending
164	(Fig. 2g). Approximately 80% of the large actin protrusions emerged at shortening junctions
165	(Fig. 2h). These observations raise the possibility that junction contraction sensitizes cells to
166	the formation of large protrusions. To evaluate this possibility, we depleted MRLC or Rock,
167	an upstream activator of myosin II ^{1,5} . Depletion of these factors suppressed the emergence of
168	large protrusions in Pak3 RNAi cells (Fig. 2f). Collectively, these results suggest that Pak3
169	suppresses the formation of branched network-containing actin protrusions at cell-cell
170	junctions upon contraction of the junctions.

171

Pak3 retains myosin II cables and tension at cell-cell junctions. During the emergence of 172 173 aberrant actin protrusions, the junctions failed to continue shortening and instead re-extended 174 (Fig. 2g), implying that while large protrusions are induced upon junction contraction, they in 175 turn perturb contraction. To understand how junction contraction is compromised, we examined the dynamics of myosin II. Time-lapse imaging of GFP-tagged MRLC 176 (MRLC::GFP) showed that the majority of MRLC::GFP signals were observed as a single 177 178 cable at cell-cell junctions (Fig. 3a). In the control cells, the MRLC::GFP signals still remained 179 as a single cable at the initiation of junction shortening; however, when the junction lengths

180	were decreased, the MRLC::GFP signals split into two distinct cables at the shortening
181	junctions (Fig. 3a, arrowheads). In Pak3-depleted cells, we found that the MRLC::GFP cables
182	had already split before the junctions had shortened sufficiently (Fig. 3a, arrowheads).
183	Measurement of the lengths of junctions when MRLC::GFP cables split revealed that depleting
184	Pak3 significantly increased their length from 1.3 ± 0.41 to 2.2 ± 0.72 µm (Fig. 3b). Since E-
185	Cad::GFP signals did not segregate at shortening junctions (Fig. 1d), this observation suggests
186	that myosin II is dissociated from shortening cell-cell junctions.
187	To examine the interplay between the large actin protrusions and myosin II cables in
188	Pak3 RNAi cells, we next observed myosin II and actin dynamics simultaneously using
189	MRLC::GFP and Lifeact tagged with red fluorescent protein (Lifeact::Ruby) ³⁴ . We categorized
190	the aberrant actin and myosin II dynamics into the following three groups and examined their
191	proportions: splitting of myosin II cables, generation of large actin protrusions, and both (Fig.
192	3c–e). At junctions greater than 3 μ m in length, which roughly exceed the mean + 1 S.D. of
193	the length with split myosin II cables in Pak3-depleted cells (Fig. 3b), large protrusive
194	structures were still generated in the absence of myosin II splitting, suggesting that the
195	dissociation of myosin II from cell-cell junctions is not located upstream from the formation
196	of aberrant actin protrusions (Fig. 3d). In contrast, at junctions less than 3 μ m in length (or

197	shortening junctions), most of the splitting cables were observed concomitantly with large actin
198	protrusions (Fig. 3e). This observation raises the possibility that the emergence of large actin
199	protrusions triggers the segregation of myosin II at shortening junctions. To test this possibility,
200	we depleted Abi in Pak3 RNAi cells. This manipulation reduced the length at which the
201	junctions showed split myosin II cables, suggesting that myosin II dissociation is associated
202	with the generation of aberrant actin protrusions (Fig. 3f,g).
203	We hypothesized that the failure of junction contraction observed in Pak3-depleted
204	cells was attributed to the dissociation of myosin II from shortening junctions and the
205	consequent reduction in tension at the junctions. To evaluate tension at junctions, we cut the
206	junctions by ablation with a 365-nm laser and measured the displacement of their vertices,
207	which reflects junctional tension (Fig. 3h,i) ^{39,40} . This showed that the initial speed of
208	displacement upon laser ablation was decreased in Pak3 RNAi cells (Fig. 3i). Collectively,
209	these results suggest that Pak3 ensures junction contraction by retaining myosin II attachment
210	and tension at cell–cell junctions.
211	
212	Dilution of E-cadherin at cell-cell junctions mediates myosin II dissociation. To clarify

213 how the large actin protrusions and consequent segregation of myosin II at shortening junctions

214	are connected, we again explored the distribution of E-cadherin, since it is a central component
215	of the cadherin-catenin core complex that acts as a scaffold for actomyosin at AJs ^{29,41} .
216	Magnified time-lapse images of E-Cad::GFP in the control cells revealed that while the
217	majority of E-Cad::GFP signals were localized along cell-cell junctions, they frequently
218	formed small protrusions arising from the junctions (Fig. 4a, arrowheads; Supplementary
219	Movie 5). These protrusions were positive for E-Cad::GFP and Lifeact::Ruby, suggesting that
220	E-cadherin is associated with actin protrusions (Fig. 4b). We also found that E-Cad::GFP levels
221	were sometimes decreased locally at the base of these protrusions on the junctions (Fig. 4a,
222	broken line). These observations suggest that actin protrusions can reduce the local levels of
223	junctional E-cadherin. The junctions in Pak3-depleted cells also generated E-Cad::GFP-
224	positive protrusions, but they were larger in size (Fig. 4a, arrowheads; Supplementary Movie
225	6). In addition, the local regions associated with E-Cad::GFP dilution on junctions were
226	extended (Fig. 4a, broken lines). These observations suggest that Pak3 depletion enhances the
227	reduction in E-cadherin levels at cell-cell junctions.
228	We then asked whether this dilution of E-cadherin is involved in the formation of

230 levels in the Pak3-depleted A8a cells and examined if this manipulation suppressed these

229

aberrant actin protrusions and/or myosin II segregation. To this end, we upregulated E-cadherin

231	dynamics. A comparison of E-Cad::GFP intensities at the local regions with and without actin
232	protrusions (Intw/ and Intw/o, respectively) within each junction in Pak3-depleted cells revealed
233	that the levels of endogenous E-cadherin tagged with GFP (knock-in, KI) were significantly
234	reduced to approximately 80% in the presence of actin protrusions (Fig. 4c-e). Overexpressing
235	E-Cad::GFP under the control of the ubiquitin promoter, which slightly increased E-cadherin
236	protein levels ⁴² , attenuated the local reduction in E-Cad::GFP levels upon the formation of
237	actin protrusions (Fig. 4c,e). However, this manipulation did not attenuate the generation of
238	large actin protrusions, indicating that E-cadherin dilution is located downstream from the
239	formation of actin protrusions (Fig. 4f).
239 240	formation of actin protrusions (Fig. 4f). We next induced the overexpression of intact E-cadherin ⁴³ . This manipulation
240	We next induced the overexpression of intact E-cadherin ⁴³ . This manipulation
240 241	We next induced the overexpression of intact E-cadherin ⁴³ . This manipulation suppressed the dissociation of myosin II from cell–cell junctions in Pak3 RNAi cells, which
240 241 242	We next induced the overexpression of intact E-cadherin ⁴³ . This manipulation suppressed the dissociation of myosin II from cell–cell junctions in Pak3 RNAi cells, which was indicated by a reduction in the length of junctions with split MRLC::GFP cables, similar
240241242243	We next induced the overexpression of intact E-cadherin ⁴³ . This manipulation suppressed the dissociation of myosin II from cell–cell junctions in Pak3 RNAi cells, which was indicated by a reduction in the length of junctions with split MRLC::GFP cables, similar to the effect of Abi RNAi (Figs. 3f,g and 4g,h). Taken together, these results suggest that the

247 E-cadherin maintains tissue dynamics. We finally explored whether overexpressing E-

248	cadherin also restored tissue dynamics in Pak3 RNAi flies. E-Cad::GFP overexpression
249	partially restored the junction-remodeling frequency in Pak3-depleted cells and slightly
250	decreased the frequency of the shortening defect (Fig. 5a). In addition, this manipulation
251	decreased the number of adult males with abnormal orientations of genitalia (Figs. 1b and 5b).
252	These results suggest that the E-cadherin-mediated association of myosin II at junctions is
253	required for completing junction shortening, leading to proper cell intercalation and epithelial
254	cell movement.
255	
256	Discussion
257	During cell-cell junction shortening, actin and myosin II accumulate at junctions, and the
258	resultant actomyosin bundles generate contractile forces ^{5,44} . In contrast, previous reports
259	demonstrated that myosin II contractility potentiates actin unbundling and depolymerization in
260	vitro and in vivo ^{45,46} , which could compromise contraction. It has also been recently shown
261	that cell-cell contacts concomitantly induce both myosin II-driven contraction and protrusive
262	branched actin-mediated extension ¹⁰ . Therefore, it would be reasonable to suppose that there
263	is a mechanism to maintain contractility for persistent cell-cell junction shortening. In this
264	study, we found that, in the absence of Pak3, aberrant actin dynamics at junctions disturb

265	junction contraction during their shortening. On the basis of our results, we suppose the
266	following scenario in cells lacking Pak3 (Fig. 5c): (i) upon contraction of cell-cell junctions,
267	actin dynamics at the junctions are altered to generate abnormally large protrusions; (ii) these
268	aberrant protrusions cause the dilution of E-cadherin at the junctions; (iii) the decrease in E-
269	cadherin levels weakens the association of myosin II cables at the junctions; and (iv) the
270	dissociation of myosin II cables causes insufficient transmission of their contractility to the
271	junctions, leading to a decrease in junctional tension and incomplete junction shortening. In
272	the normal condition (in the presence of Pak3), Pak3 blocks excess formation of actin
273	protrusions, keeps E-cadherin and myosin II localized at junctions, and thus ensures persistent
274	junction contraction, which is necessary for completing cell-cell junction remodeling and the
275	resultant tissue movement (Fig. 5c).
276	This scenario proposes a possible negative feedback mechanism (Fig. 5c, green
277	arrows); the contractile forces of myosin II at junctions drive junction shortening, but they can
278	oppositely perturb shortening by concomitantly altering actin dynamics, such as inducing the
279	formation of WRC-dependent branched actin networks. Since Pak proteins are reported to
280	regulate actin dynamics ^{47,48} , Pak3 is a candidate for counteracting such undesirable actin

281 dynamics, although its precise molecular mechanism is still unclear. Considering that Pak

282	proteins and the WRC are activated by Rho GTPases ^{47,49,50} , it is possible that the presence of
283	Pak3 sequesters these GTPases from the branching network-forming machineries. In addition,
284	since Pak proteins are involved in a diverse array of biological events and have various
285	substrates ^{31,51–54} , the identification of Pak3 substrates in this context will further deepen our
286	understanding of how cells accomplish persistent junctional dynamics.
287	
288	Methods
289	Fly genetics. The following <i>Drosophila</i> stocks were used: w ¹¹¹⁸ , hs-flp, Act>CD2>Gal4, UAS-
290	mCD8::mCherry, UAS-Lifeact::GFP, UAS-Lifeact::Ruby, His2Av::mRFP, UAS-Dicer2, UAS-
291	MRLC (sqh) RNAi (JF01103), and UAS-Abi RNAi (HMC03190) (Bloomington Drosophila
292	Stock Center); UAS-MRLC RNAi (7916) and UAS-Rock RNAi (3793) (Vienna Drosophila
293	Resource Center); UAS-Pak3 RNAi (14895R-1) (National Institute of Genetics, Japan); UAS-
294	E-cadherin and Ubi-E-cadherin::GFP (Drosophila Genomics and Genetic Resources); UAS-
295	Pak3::GFP (a gift from S. Hayashi); AbdB-Gal4 ^{LDN} (ref. 24); Pak3 ^{d02472} (ref. 30); E-
296	Cad:: GFP^{28} ; sqh^{AX3} ; sqh - sqh :: GFP (MRLC:: GFP^{55} ; sqh - $UtrABD$:: GFP^{36} ; and UAS-
297	<i>Histone2B (H2B)::ECFP</i> ⁵⁶ . The flies were raised, and all experiments were performed at 25°C.
298	Somatic RNAi clones were induced using the FLP/FRT technique ⁵⁷ in white pupae (at 0 h

APF) by heat shock (37°C for 15 min).

Antibodies. Antibodies against Dlg (4F3; Developmental Studies Hybridoma Bank) and
Pak3⁵⁸ were used.

302	Immunohistochemistry. Pupae were dissected and fixed in 4% paraformaldehyde in
303	phosphate-buffered saline (PBS) for 20 min at room temperature (RT) and permeabilized with
304	0.1% Triton X-100 in PBS (PBT). The permeabilized samples were incubated in PBT with 5%
305	donkey serum (blocking buffer) for 30 min at RT, incubated with primary antibodies in
306	blocking buffer overnight at 4°C, washed with PBT, incubated in blocking buffer for 30 min
307	at RT, and incubated with secondary antibodies (Alexa Fluor 647 goat anti-mouse IgG; Life
308	Technologies) in blocking buffer for 2 h at RT. The samples were washed with PBT and
309	mounted with 70% glycerol in PBS. Fluorescence microscopy images were captured on a TCS
310	SP8 with a 63× numerical aperture (NA) 1.3 glycerol objective (Leica). Images are maximum
311	intensity projections of serial optical sections taken at a 0.5-µm z step size.
312	Live imaging. Pupae were prepared as described previously ²¹ . Time-lapse imaging of flies was
313	performed using an SP8 confocal microscope with $63 \times NA 1.3$ glycerol and $20 \times NA 0.75$ dry
314	objectives (Leica), except for the images in Figs. 1D and 3A and Movies S1 and S2, which
315	were obtained using an inverted microscope with a $60 \times$ NA 1.3 silicone oil objective

316	(Olympus) equipped with a spinning-disc confocal unit (CSU-W1; Yokogawa) and a Zyla 4.2
317	PLUS sCMOS camera (Andor). All images are maximum intensity projections at the level of
318	the AJs taken at a 1-µm z step size, except for images showing rotation of the genitalia (Fig.
319	1A), which are maximum intensity projections of the posterior end of flies taken at a 5- μ m z
320	step size. Time-lapse images were acquired at 10-s, 20-s, 2-min, or 10-min intervals.
321	Laser ablation. Laser ablation was performed with a 365-nm MicroPoint laser (Andor). To
322	cut junctions, a 365-nm laser pulse was applied for 1 iteration to the point at the middle of the
323	targeted junctions at the level of AJs, which was determined by maximum E-Cad::GFP
324	intensity.
325	Tracking of junction dynamics. Junction dynamics were analyzed manually with Fiji
325 326	Tracking of junction dynamics. Junction dynamics were analyzed manually with Fiji software. Projected time-lapse images were used. In the A8a epithelia, junctions were tracked
326	software. Projected time-lapse images were used. In the A8a epithelia, junctions were tracked
326 327	software. Projected time-lapse images were used. In the A8a epithelia, junctions were tracked from the initiation of movement (26 h APF) to the time when the genitalia angles were greater
326 327 328	software. Projected time-lapse images were used. In the A8a epithelia, junctions were tracked from the initiation of movement (26 h APF) to the time when the genitalia angles were greater than 90° (30 h APF) ²¹ . Junctions that were remodeled at least once were categorized as
326327328329	software. Projected time-lapse images were used. In the A8a epithelia, junctions were tracked from the initiation of movement (26 h APF) to the time when the genitalia angles were greater than 90° (30 h APF) ²¹ . Junctions that were remodeled at least once were categorized as "remodeling." Junctions that failed to resolve four-way vertices were categorized as "growth

as "shortening defect." "No remodeling" included junctions that did not shorten to less than
1.5 μm in length.

335 Quantification of junction length, fluorescence intensity, and actin dynamics. Cell-cell 336 junction length was determined as the distance between vertices, except for when split MRLC::GFP cables emerged, which was determined as the distance between myosin II cables 337 338 in cells surrounding the shortening junctions when the myosin II cables in cells forming the 339 shortening junctions first segregated. The mean fluorescence intensity of E-Cad::GFP at a 340 region on the junctions was measured using a line along the junctions. The frequency of the 341 emergence of large actin protrusions was counted at each junction within 1 h. 342 Statistical analysis. All statistical analyses were performed using R. To assess significance, 343 the following tests were used: two-way analysis of variance (ANOVA) followed by Tukey's 344 test for comparing the percentage of remodeling junctions; two-way ANOVA followed by Dunnett's test for comparing junction length with split myosin II cables among Pak3 RNAi 345 346 cells; unpaired two-tailed t-test for comparing two samples; one-sample t-test for the 347 significance of the Intw//Intw/o ratio with test values of 1; and unpaired two-tailed Mann-348 Whitney U-test followed by Bonferroni's test for comparing the frequency of the appearance 349 of actin diffusive structures.

350

351 Acknowledgements

- 352 We thank S. Hayashi for providing the UAS-Pak3::GFP fly strain; N.T. Sherwood for
- providing the *Pak3*^{d02472} fly strain; T. Lecuit for providing the *sqh-UtrABD::GFP* fly strain; N.
- Harden for providing the anti-Pak3 antibodies; E. Maekawa, A. Isomura and Y. Umegaki, S.
- 355 Sato, K. Takahashi and A. Kuranaga for supporting the experiments; and members of the S.
- 356 Hayashi, T. Nishimura, S. K. Yoo, Y.-C. Wang, and all member of our laboratory for
- 357 discussions. We are grateful to "ThinkSCIENCE" for language proofreading of the manuscript.
- 358 This work was supported by grants from JST CREST Grant Number JPMJCR1852, Japan
- 359 (E.K.), the research grand for Astellas Foundation for Research on Metabolic Disorders (E.K.),
- 360 the Takeda Science Foundation (E.K.), the Japan Foundation for Applied Enzymology (E.K.),
- 361 MEXT KAKENHI grant number JP26114003 (E.K.), and JSPS KAKENHI grant numbers
- 362 JP24687027 (E.K.), JP16H04800 (E.K.), and JP18K14691 (H.U).
- 363

364

365 Author contributions

366 H.U. conceived the study, performed the experiments, analyzed the data, and wrote the

367 manuscript. E.K. conceived the study, analyzed the data, and revised the manuscript.

368

369	Competing	g interests
-----	-----------	-------------

370 The authors declare no competing interests.

371

372 Materials and correspondence

373 Further information and requests for resources and reagents should be directed to and will be

fulfilled by the corresponding author, Erina Kuranaga (<u>erina.kuranaga.d1@tohoku.ac.jp</u>).

375

376 REFERENCES

- 1. Lecuit, T., Lenne, P.-F. & Munro, E. Force Generation, Transmission, and Integration
- 378 during Cell and Tissue Morphogenesis. *Annu. Rev. Cell Dev. Biol.* (2011).
- 379 doi:10.1146/annurev-cellbio-100109-104027
- 380 2. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: The
- 381 mechanics of actomyosin contractility. *Nature Reviews Molecular Cell Biology* (2015).
- 382 doi:10.1038/nrm4012
- 383 3. Krause, M. & Gautreau, A. Steering cell migration: Lamellipodium dynamics and the

384		regulation of directional persistence. Nature Reviews Molecular Cell Biology (2014).
385		doi:10.1038/nrm3861
386	4.	Heisenberg, CP. & Bellaïche, Y. Forces in Tissue Morphogenesis and Patterning.
387		<i>Cell</i> 153 , 948–962 (2013).
388	5.	Levayer, R. & Lecuit, T. Biomechanical regulation of contractility: Spatial control and
389		dynamics. Trends in Cell Biology 22, 61–81 (2012).
390	6.	Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679-690
391		(2017).
392	7.	Pinheiro, D. & Bellaïche, Y. Mechanical Force-Driven Adherens Junction Remodeling
393		and Epithelial Dynamics. Dev. Cell 47, 3-19 (2018).
394	8.	Mayor, R. & Etienne-Manneville, S. The front and rear of collective cell migration.
395		Nat. Rev. Mol. Cell Biol. 17, 97–109 (2016).
396	9.	Ladoux, B., Mège, R. M. & Trepat, X. Front-Rear Polarization by Mechanical Cues:
397		From Single Cells to Tissues. Trends in Cell Biology (2016).
398		doi:10.1016/j.tcb.2016.02.002
399	10.	Del Signore, S. J., Cilla, R. & Hatini, V. The WAVE Regulatory Complex and
400		Branched F-Actin Counterbalance Contractile Force to Control Cell Shape and

401		Packing in the Drosophila Eye. Dev. Cell 44, 471-483.e4 (2018).
402	11.	Walck-Shannon, E. & Hardin, J. Cell intercalation from top to bottom. Nat. Rev. Mol.
403		<i>Cell Biol.</i> 15 , 34–48 (2014).
404	12.	Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and
405		morphogenesis. Science 340, 1185–1189 (2013).
406	13.	Irvine, K. D. & Wieschaus, E. Cell intercalation suring Drosophila germband
407		extension and its regulaton by pair00rule segmentation genes. Development 120, 827-
408		841 (1994).
409	14.	Guirao, B. & Bellaïche, Y. Biomechanics of cell rearrangements in Drosophila.
410		Current Opinion in Cell Biology 48, 113–124 (2017).
411	15.	Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls
412		planar cell intercalation and axis elongation. Nature 429, 667-71 (2004).
413	16.	Martin, A. C. Pulsation and stabilization: Contractile forces that underlie
414		morphogenesis. Developmental Biology (2010). doi:10.1016/j.ydbio.2009.10.031
415	17.	Fernandez-Gonzalez, R., Simoes, S. de M., Röper, JC., Eaton, S. & Zallen, J. A.
416		Myosin II Dynamics Are Regulated by Tension in Intercalating Cells. Dev. Cell 17,
417		736–743 (2009).

25

418	18.	Simões, S. de M. et al. Rho-Kinase Directs Bazooka/Par-3 Planar Polarity during
419		Drosophila Axis Elongation. Dev. Cell 19, 377–388 (2010).
420	19.	Zallen, J. A. & Wieschaus, E. Patterned Gene Expression Directs Bipolar Planar
421		Polarity in Drosophila. Dev. Cell 6, 343–355 (2004).
422	20.	Sato, K. et al. Left-right asymmetric cell intercalation drives directional collective cell
423		movement in epithelial morphogenesis. Nat. Commun. 6, 10074 (2015).
424	21.	Kuranaga, E. et al. Apoptosis controls the speed of looping morphogenesis in
425		Drosophila male terminalia. Development 138, 1493–1499 (2011).
426	22.	Suzanne, M. et al. Coupling of apoptosis and L/R patterning controls stepwise organ
427		looping. Curr. Biol. 20, 1773–1778 (2010).
428	23.	Sato, K., Hiraiwa, T. & Shibata, T. Cell Chirality Induces Collective Cell Migration in
429		Epithelial Sheets. Phys. Rev. Lett. 115, (2015).
430	24.	de Navas, L., Foronda, D., Suzanne, M. & Sánchez-Herrero, E. A simple and efficient
431		method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4
432		insertions in the bithorax complex of Drosophila. Mech. Dev. 123, 860-867 (2006).
433	25.	Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates
434		and generating dominant phenotypes. Development 118, 401-415 (1993).

435	26.	Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene
436		inactivation in Drosophila. Nature 448, 151–156 (2007).
437	27.	Macara, I. G. Parsing the polarity code. Nature Reviews Molecular Cell Biology
438		(2004). doi:10.1038/nrm1332
439	28.	Huang, J., Zhou, W., Dong, W., Watson, A. M. & Hong, Y. From the Cover: Directed,
440		efficient, and versatile modifications of the Drosophila genome by genomic
441		engineering. Proc. Natl. Acad. Sci. U. S. A. 106, 8284–9 (2009).
442	29.	Takeichi, M. Dynamic contacts: Rearranging adherens junctions to drive epithelial
443		remodelling. Nature Reviews Molecular Cell Biology 15, 397-410 (2014).
444	30.	Ozdowski, E. F., Gayle, S., Bao, H., Zhang, B. & Sherwood, N. T. Loss of Drosophila
445		melanogaster p21-activated kinase 3 suppresses defects in synapse structure and
446		function caused by spastin mutations. Genetics (2011).
447		doi:10.1534/genetics.111.130831
448	31.	Bokoch, G. M. Biology of the p21-Activated Kinases. Annu. Rev. Biochem. (2003).
449		doi:10.1146/annurev.biochem.72.121801.161742
450	32.	Hofmann, C. The genetics of Pak. J. Cell Sci. (2004). doi:10.1242/jcs.01392
451	33.	Mentzel, B. & Raabe, T. Phylogenetic and structural analysis of the Drosophila

452		melanogaster p21-activated kinase DmPAK3. Gene (2005).
453		doi:10.1016/j.gene.2004.12.030
454	34.	Riedl, J. et al. Lifeact: A versatile marker to visualize F-actin. Nat. Methods (2008).
455		doi:10.1038/nmeth.1220
456	35.	Burkel, B. M., Von Dassow, G. & Bement, W. M. Versatile fluorescent probes for
457		actin filaments based on the actin-binding domain of utrophin. Cell Motil.
458		Cytoskeleton (2007). doi:10.1002/cm.20226
459	36.	Rauzi, M., Lenne, PF. & Lecuit, T. Planar polarized actomyosin contractile flows
460		control epithelial junction remodelling. Nature 468, 1110-1114 (2010).
461	37.	Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism
462		of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature (2002).
463		doi:10.1038/nature00859
464	38.	Chen, B. et al. The WAVE regulatory complex links diverse receptors to the actin
465		cytoskeleton. Cell 156, 195–207 (2014).
466	39.	Rauzi, M., Verant, P., Lecuit, T. & Lenne, PF. Nature and anisotropy of cortical
467		forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401–1410
468		(2008).

469	40.	Umetsu, D. et al. Local Increases in Mechanical Tension Shape Compartment
470		Boundaries by Biasing Cell Intercalations. Curr. Biol. 24, 1798–1805 (2014).
471	41.	Lecuit, T. & Yap, A. S. E-cadherin junctions as active mechanical integrators in tissue
472		dynamics. Nature Cell Biology 17, 533–539 (2015).
473	42.	Oda, H. & Tsukita, S. Real-time imaging of cell-cell adherens junctions reveals that
474		Drosophila mesoderm invagination begins with two phases of apical constriction of
475		cells. J. Cell Sci. 114, 493–501 (2001).
476	43.	Oda, H. & Tsukita, S. Nonchordate Classic Cadherins Have a Structurally and
477		Functionally Unique Domain That Is Absent from Chordate Classic Cadherins. Dev.
478		<i>Biol.</i> 216 , 406–422 (1999).
479	44.	Martin, A. C. & Goldstein, B. Apical constriction: themes and variations on a cellular
480		mechanism driving morphogenesis. Development (2014). doi:10.1242/dev.102228
481	45.	Medeiros, N. A., Burnette, D. T. & Forscher, P. Myosin II functions in actin-bundle
482		turnover in neuronal growth cones. Nat. Cell Biol. (2006). doi:10.1038/ncb1367
483	46.	Haviv, L., Gillo, D., Backouche, F. & Bernheim-Groswasser, A. A Cytoskeletal
484		Demolition Worker: Myosin II Acts as an Actin Depolymerization Agent. J. Mol. Biol.
485		(2008). doi:10.1016/j.jmb.2007.09.066

486	47.	Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle
487		trafficking. Trends in Cell Biology (2006). doi:10.1016/j.tcb.2006.08.006
488	48.	Dráber, P., Sulimenko, V. & Dráberová, E. Cytoskeleton in mast cell signaling.
489		Frontiers in Immunology (2012). doi:10.3389/fimmu.2012.00130
490	49.	Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their
491		functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690-701 (2008).
492	50.	Ridley, A. J. Rho GTPases and cell migration. J. Cell Sci. (2001).
493	51.	Radu, M., Semenova, G., Kosoff, R. & Chernoff, J. PAK signalling during the
494		development and progression of cancer. Nature Reviews Cancer (2014).
495		doi:10.1038/nrc3645
496	52.	Duan, R. et al. Group I PAKs function downstream of Rac to promote podosome
497		invasion during myoblast fusion in vivo. J. Cell Biol. (2012).
498		doi:10.1083/jcb.201204065
499	53.	Kamiyama, D. et al. Specification of Dendritogenesis Site in Drosophila aCC
500		Motoneuron by Membrane Enrichment of Pak1 through Dscam1. Dev. Cell (2015).
501		doi:10.1016/j.devcel.2015.09.007
502	54.	Chiang, Yt. A. & Jin, T. p21-Activated protein kinases and their emerging roles in

503	glucose homeostasis. A.	JP Endocrinol. Metab.	(2014)).
-----	-------------------------	-----------------------	--------	----

- 504 doi:10.1152/ajpendo.00506.2013
- 505 55. Royou, A., Sullivan, W. & Karess, R. Cortical recruitment of nonmuscle myosin II in
- 506 early syncytial Drosophila embryos: Its role in nuclear axial expansion and its
- 507 regulation by Cdc2 activity. J. Cell Biol. 158, 127–137 (2002).
- 508 56. Koto, A., Kuranaga, E. & Miura, M. Temporal regulation of Drosophila IAP1
- 509 determines caspase functions in sensory organ development. J. Cell Biol. 187, 219–
- 510 231 (2009).
- 511 57. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult
- 512 Drosophila tissues. *Development* **117**, 1223–1237 (1993).
- 513 58. Bahri, S. et al. The leading edge during dorsal closure as a model for epithelial
- 514 plasticity: Pak is required for recruitment of the Scribble complex and septate junction
- 515 formation. *Development* (2010). doi:10.1242/dev.045088
- 516

517

518 Figure Legends

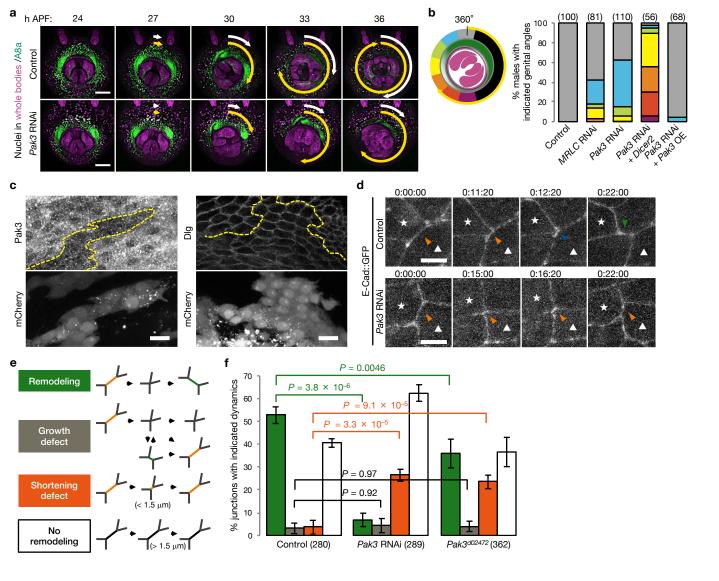
519 Figure 1 | Pak3 is required for cell-cell junction shortening during epithelial junction

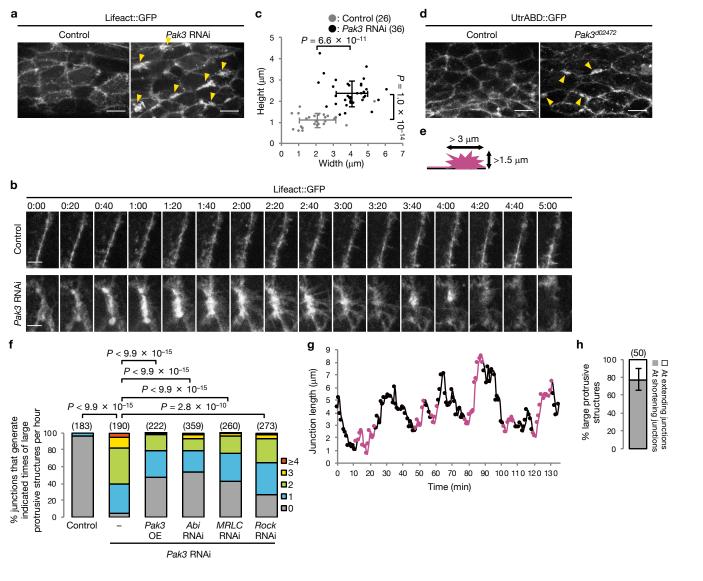
520 remodeling. (a) Representative time-lapse images of male genitalia observed from the 521 posterior end during rotation. The ventral side is located at the top. Nuclei in the A8a cells and 522 the whole body are depicted in green and purple, respectively. Yellow and white arrows 523 indicate the movements of genitalia and the A8a epithelia, respectively. Scale bar, 100 µm. (b) Left. schema for the categorization of genitalia angles. Yellow arrow indicates genitalia 524 525 movement. Gray indicates the 360° rotation of genitalia (normal orientation). Right, 526 percentages of male adult flies with the indicated genitalia angles are shown. Parentheses 527 indicate the number of males examined. (c) A8a epithelia at 28 h APF immunostained for Pak3 528 and Dlg. Pak3 RNAi cells are indicated with mCherry signals. Scale bar, 10 µm. Broken lines 529 indicate the edges of Pak3 RNAi clones. (d) Representative time-lapse images of E-Cad::GFP 530 at remodeling junctions. Stars and triangles indicate cells forming the shortening junctions. 531 Orange, blue, and green arrowheads indicate shortening junctions, four-way vertices, and 532 growing junctions, respectively. Scale bar, 5 µm. (e) Schema representing the categorization 533 of junction dynamics. (f) Mean \pm S.D. of the percentages of junctions with the categorized 534 dynamics. Bar colors correspond to (e). Parentheses indicate the number of examined junctions 535 from 3 pupae per genotype. *P*-values by Tukey's test. Genotypes: **(a)** 536 +/Y; His2Av::mRFP/+; AbdB-Gal4, UAS-H2B::ECFP/+ (Control) and

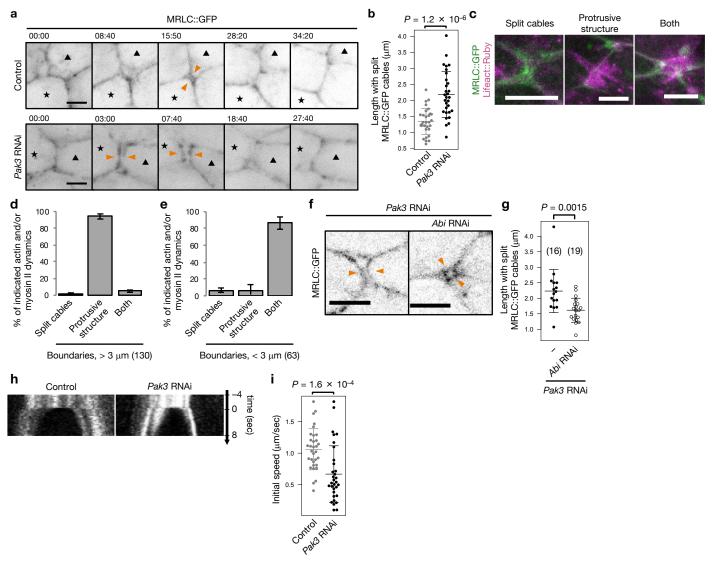
537	+/Y;His2Av::mRFP/+;AbdB-Gal4, UAS-H2B::ECFP/UAS-Pak3 RNAi; (b) $+/Y$;;AbdB-
538	Gal4/+ (Control), +/Y;;AbdB-Gal4/UAS-MRLC RNAi, +/Y;;AbdB-Gal4/UAS-Pak3 RNAi,
539	+/Y;UAS-Dicer2/+;AbdB-Gal4/UAS-Pak3 RNAi, and $+/Y;;AbdB-Gal4$, UAS-
540	Pak3::GFP/UAS-Pak3 RNAi; (c) hs-flp/Y;E-Cad::GFP;Act>CD2>Gal4, UAS-
541	mCD8::mCherry/UAS-Pak3 RNAi; (d and f) +/Y;E-Cad::GFP;AbdB-Gal4, UAS-
542	H2B::ECFP/+ (Control), +/Y;E-Cad::GFP;AbdB-Gal4, UAS-H2B::ECFP/UAS-Pak3 RNAi,
543	and $+/Y$; E -Cad:: GFP ; $Pak3^{d02472}$.
544	Figure 2 Pak3 depletion enhances the formation of large actin protrusions. (a) Images of
545	actin labeled with Lifeact::GFP in the A8a cells. Arrowheads indicate some actin protrusions.
546	Scale bar, 10 µm. (b) Magnified time-lapse images of Lifeact::GFP at cell-cell junctions. Scale
547	bar, 3 μ m. (c) Mean ± S.D. of the width and height of actin protrusion. Parentheses indicate
548	the number of examined protrusions from 5 pupae per genotype. <i>P</i> -values by unpaired <i>t</i> -test.
549	(d) Images of actin labeled with UtrABD::GFP in the A8a cells. Arrowheads indicate some
550	actin protrusions. Scale bar, 10 μ m. (e) Schema of large actin (magenta) protrusions at a
551	boundary (black). (f) Percentages of junctions generating large actin protrusions for the
552	indicated number of times per hour are shown. Parentheses indicate the number of examined
553	junctions from 4–5 pupae per genotype. P-values by Mann-Whitney U-test. (g) Graph showing

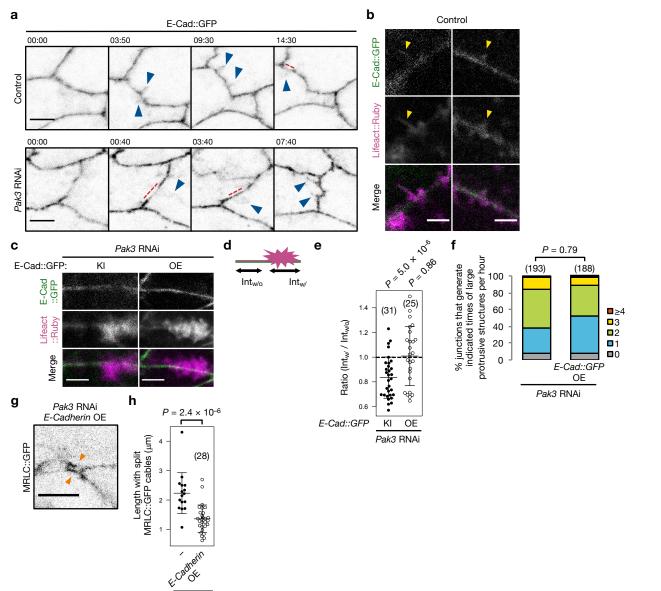
554	the length of a representative junction that repeats shortening and re-extension. The timings
555	when large actin protrusions emerge are shown in magenta. (h) Mean \pm S.D. of the timing of
556	the onset of large actin protrusion formation. Parenthesis indicates the number of protrusions
557	from 15 junctions of 3 pupae. Genotypes: (a-c) +/Y;UAS-Lifeact::GFP/+;AbdB-Gal4/+
558	(Control) and $+/Y;UAS$ -Lifeact::GFP/+;AbdB-Gal4/UAS-Pak3 RNAi; (d) $+/Y;sqh$ -
559	$UtrABD::GFP/+$ (Control) and $+/Y;sqh-UtrABD::GFP/+;Pak3^{d02472};$ (f) $+/Y;UAS-$
560	<i>Lifeact::GFP/+;AbdB-Gal4/+</i> (Control), +/Y;UAS-Lifeact::GFP/+;AbdB-Gal4/UAS-Pak3
561	RNAi, +/Y;UAS-Lifeact::GFP/+;AbdB-Gal4, UAS-Pak3::GFP/UAS-Pak3 RNAi, +/Y;UAS-
562	Lifeact::GFP/UAS-Abi RNAi;AbdB-Gal4/UAS-Pak3 RNAi, +/Y;UAS-Lifeact::GFP/UAS-
563	MRLC RNAi; AbdB-Gal4/UAS-Pak3 RNAi, and +/Y; UAS-Lifeact:: GFP/UAS-Rock
564	RNAi;AbdB-Gal4/UAS-Pak3 RNAi; (g and h) +/Y;UAS-Lifeact::GFP/+;AbdB-Gal4/UAS-
565	Pak3 RNAi.

Figure 3 | Pak3 depletion causes the dissociation of myosin II and reduces tension at 566 junctions. (a) Time-lapse images of MRLC::GFP at shortening junctions. Stars and triangles 567 indicate cells forming the shortening junctions. Orange arrowheads indicate splitting myosin 568 569 II cables. Scale bar, 3 μ m. (b) Mean \pm S.D. of the lengths of junctions with split myosin II 570 cables; 30 junctions from 3 (Control) and 4 (Pak3 RNAi) pupae were examined. P-value by

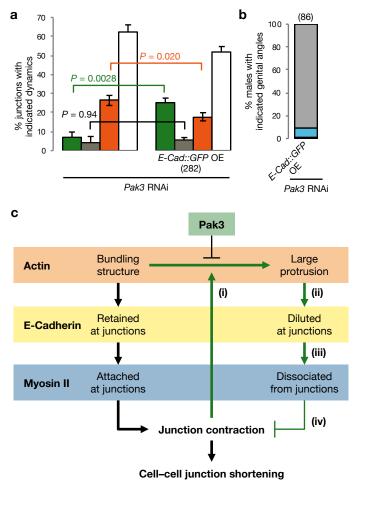

571	unpaired t -test. (c) Representative images of cell–cell junctions with split myosin II cables,
572	large actin protrusions, and both (from the left). Scale bar, 5 μ m. (d and e) Mean ± S.D. of the
573	percentages of aberrant actin and myosin II dynamics as categorized in (c) at cell-cell junctions
574	larger than (d) and smaller than (e) 3 μ m. Parentheses indicate the number of examined
575	junctions from 3 pupae. (f) Representative images of split MRLC::GFP cables (orange
576	arrowheads) at junctions. Scale bar, 5 μ m. (g) Mean ± S.D. of the lengths of junctions with
577	split myosin II cables. Parentheses indicate the number of examined junctions from 5 (Pak3
578	RNAi) and 6 (Pak3 and Abi RNAis) pupae. <i>P</i> -value by Dunnett's test. (h) Kymographs of cell-
579	cell junctions labeled with E-Cad::GFP and ablated with a 365-nm laser at $t = 0$. (i) Mean \pm
580	S.D. of the initial speed of vertex displacement after ablation; 32 junctions from 9 (Control)
581	and 8 (Pak3 RNAi) pupae were examined. P-value by unpaired t-test. Genotypes: (a and b)
582	<i>MRLC^{4X3}/Y;MRLC-MRLC::GFP;AbdB-Gal4, UAS-H2B::ECFP/+</i> (Control) and
583	MRLC ^{AX3} /Y;MRLC-MRLC::GFP;AbdB-Gal4, UAS-H2B::ECFP/UAS-Pak3 RNAi; (c - e)
584	MRLC ^{AX3} /Y;MRLC-MRLC::GFP/UAS-Lifeact::Ruby;AbdB-Gal4, UAS-H2B::ECFP/UAS-
585	<i>Pak3 RNAi</i> ; (f and g) <i>MRLC</i> ^{4X3} / <i>Y</i> ; <i>MRLC</i> - <i>MRLC</i> :: <i>GFP</i> /+; <i>AbdB</i> - <i>Gal4</i> , <i>UAS</i> -H2B:: <i>ECFP</i> /UAS-
586	Pak3 RNAi and MRLC ^{4X3} /Y;MRLC-MRLC::GFP/UAS-Abi RNAi;AbdB-Gal4, UAS-
587	H2B::ECFP/UAS-Pak3 RNAi; (h and i) +/Y;E-Cad::GFP;AbdB-Gal4, UAS-H2B::ECFP/+


588 (Control) and +/Y;E-Cad::GFP;AbdB-Gal4, UAS-H2B::ECFP/UAS-Pak3 RNAi.


589	Figure 4 Reduction of E-cadherin levels at junctions induces myosin II dissociation. (a)
590	Magnified time-lapse images of E-Cad::GFP at junctions. Arrowheads indicate E-Cad::GFP-
591	positive protrusions, and broken lines indicate the local decrease in E-Cad::GFP levels at the
592	bases of the protrusions. Scale bar, 3 μ m. (b and c) Images of junctions with E-Cad::GFP and
593	Lifeact::Ruby in control (b) and Pak3 RNAi (c) cells. Arrowheads indicate E-Cad::GFP and
594	Lifeact::Ruby double-positive protrusions. Scale bar, 2 (b) and 3 (c) μ m. (d) Schema of E-
595	Cad::GFP intensities at local areas on the junctions with ($Int_{w/o}$) and without ($Int_{w/o}$) large actin
596	(magenta) protrusions. (e) Mean \pm S.D. of the ratio of $Int_{w/o}$ per junction. Parentheses
597	indicate the number of examined junctions from 4 (Pak3 RNAi) and 3 (Pak3 RNAi and E-
598	Cad::GFP overexpression) pupae. P-value by unpaired t-test. (f) Percentages of junctions
599	forming large actin protrusions for the indicated number of times per hour are shown.
600	Parentheses indicate the number of examined junctions from 4 pupae per genotype. P-values
601	by Mann-Whitney U-test. (g) Representative images of split MRLC::GFP cables (orange
602	arrowheads) at junctions. Scale bar, 5 μ m. (h) Mean ± S.D. of the lengths of junctions with
603	split myosin II cables. The Pak3 RNAi data (left) are the same as in Fig. 3g. Parenthesis
604	indicates the number of examined junctions from 6 pupae. P-value by Dunnett's test.


605	Genotypes: (a) $+/Y$; E-Cad:: GFP; AbdB-Gal4, UAS-H2B:: ECFP/+ (Control) and $+/Y$; E-
606	Cad::GFP;AbdB-Gal4, UAS-H2B::ECFP/UAS-Pak3 RNAi; (b) +/Y;E-Cad::GFP/UAS-
607	<i>LifeAct::Ruby;AbdB-Gal4/+;</i> (c and e) +/ <i>Y;E-Cad::GFP/UAS-Lifeact::Ruby;AbdB-</i>
608	Gal4/UAS-Pak3 RNAi and +/Y;Ubi-E-Cad::GFP/UAS-Lifeact::Ruby;AbdB-Gal4/UAS-Pak3
609	<i>RNAi</i> ; (f) +/ <i>Y</i> ; <i>UAS-Lifeact::Ruby</i> /+; <i>AbdB-Gal4/UAS-Pak3 RNAi</i> and +/ <i>Y</i> ; <i>UAS-</i>
610	Lifeact::Ruby/Ubi-E-Cad::GFP;AbdB-Gal4/UAS-Pak3 RNAi; (g and h) MRLC ^{4X3} /Y;MRLC-
611	MRLC::GFP/UAS-E-cadherin;AbdB-Gal4, UAS-H2B::ECFP/UAS-Pak3 RNAi.
612	Figure 5 E-cadherin overexpression rescues tissue dynamics. (a) Mean ± S.D. of the
613	percentages of junctions with the categorized dynamics. Bar colors correspond to Fig. 1e. The
614	Pak3 RNAi data (left) are the same as in Fig. 1f. Parenthesis indicates the number of examined
615	junctions from 3 pupae per genotype. P-values by Tukey's test. (b) Percentages of male adult
616	flies with genitalia angles indicated in Fig. 1b are shown. Parenthesis indicates the number of
617	males examined. (c) Schema of Pak3-dependent junction contraction. (i)-(iv) indicate the
618	negative feedback mechanism (green arrows, described in the Discussion section). Genotypes:
619	(a) +/Y;Ubi-E-Cad::GFP/E-Cad::GFP;AbdB-Gal4, UAS-H2B::ECFP/UAS-Pak3 RNAi; (b)
620	+/Y;Ubi-E-Cad::GFP/+;AbdB-Gal4, UAS-H2B::ECFP/UAS-Pak3 RNAi.
621	Supplementary Movie 1. Dynamics of cell-cell junctions during the movement of control

- 622 A8a cells. E-cadherin was visualized with E-Cad::GFP. Scale bar, 10 μ m. Genotype, +/Y;E-
- 623 *Cad::GFP;AbdB-Gal4, UAS-H2B::ECFP/+*.
- 624 Supplementary Movie 2. Dynamics of cell-cell junctions during the movement of Pak3 RNAi
- 625 A8a cells. E-cadherin was visualized with E-Cad::GFP. Scale bar, 10 μ m. Genotype, +/Y;E-
- 626 *Cad::GFP;AbdB-Gal4, UAS-H2B::ECFP/UAS-Pak3 RNAi.*
- 627 **Supplementary Movie 3.** Dynamics of actin at cell–cell junctions in the control A8a cells.
- 628 Actin was visualized with Lifeact::GFP. Scale bar, 10 μm. Genotype, +/Y;UAS-
- 629 *Lifeact::GFP;AbdB-Gal4/+*.
- 630 **Supplementary Movie 4.** Dynamics of actin at cell–cell junctions in the Pak3 RNAi A8a cells.
- 631 Actin was visualized with Lifeact::GFP. Scale bar, 10 μm. Genotype, +/Y;UAS-
- 632 Lifeact::GFP;AbdB-Gal4/UAS-Pak3 RNAi.
- 633 **Supplementary Movie 5.** Dynamics of E-Cad::GFP at cell–cell junctions in the control A8a
- 634 cells. Scale bar, 3 μm. Genotype, +/*Y*;*E*-*Cad*::*GFP*;*AbdB*-*Gal4*, UAS-H2B::ECFP/+.
- 635 Supplementary Movie 6. Dynamics of E-Cad::GFP at cell–cell junctions in Pak3 RNAi A8a
- 636 cells. Scale bar, 3 μm. Genotype, +/*Y*;*E*-*Cad*::*GFP*;*AbdB-Gal4*, UAS-H2B::ECFP/UAS-Pak3
- 637 *RNAi*.
- 638



Pak3 RNAi

