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Abstract: 

 

Histopathological image analysis performed by a trained expert is currently regarded as the gold-

standard in the case of many pathologies, including cancers. However, such approaches are 

laborious, time consuming and contain a risk for bias or human error. There is thus a clear need 

for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human 

intervention. Multiphoton Microscopy (MPM) can alleviate some of the drawbacks specific to 

traditional histopathology by exploiting various endogenous optical signals to provide virtual 

biopsies that reflect the architecture and composition of tissues, both in-vivo or ex-vivo. Here we 

show that MPM imaging of the dermoepidermal junction (DEJ) in unstained tissues provides 

useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, 

we show that MPM images collected on the DEJ, besides being easy to interpret by a trained 

specialist, can be automatically classified into healthy and dysplastic classes with high precision 

using a Deep Learning method and existing pre-trained Convolutional Neural Networks. Our 

results suggest that Deep Learning enhanced MPM for in-vivo skin cancer screening could 

facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches. 
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INTRODUCTION 

As a result of their inherent optical sectioning capabilities and intrinsic contrast mechanisms, 

Multiphoton Microscopies (MPM) have emerged over the past three decades as very powerful 

tools for the label-free characterization of tissue morphology, functionality and biochemical 

composition (Hoover and Squier, 2013, König, 2018, Williams et al., 2001), in-vivo and ex-vivo. 

Among these, Two-Photon Excitation Fluorescence (TPEF) microscopy(So et al., 2000) and 

Second-harmonic Generation (SHG) microscopy(Campagnola and Loew, 2003), have 

demonstrated their usefulness for exploring important properties of tissues, which allow 

establishing their anatomical and functional states, and extracting valuable pathological cues(Balu 

et al., 2015, Muensterer et al., 2017, Zipfel et al., 2003a, Zipfel et al., 2003b)  

TPEF involves the simultaneous absorption of two photons with combined energy 

sufficient to induce an electronic transition to an excited electronic state(So et al., 2000). 

Interestingly, TPEF allows to image in-vivo, ex-vivo or in-vitro the emission of various 

endogenous fluorophores such as NADH, FAD, melanin and others. Subsequently, TPEF 

microscopy allows a non-invasive assessment of cell morphology, size variation of cell nuclei, 

blood vessel hyperplasia, or inflammatory reaction related aspects, which are important for 

assessing the state of a tissue(Benninger and Piston, 2013, Skala et al., 2005, Stanciu et al., 2014, 

Zipfel et al., 2003a). In SHG, two incident photons are combined into a single emitted photon with 

halved energy via a nonlinear process involving virtual states (Campagnola and Dong, 2011). One 

of the main applications of SHG for tissue characterization and diagnostics is imaging of 

collagen(Chen et al., 2012), which is the main structural protein in the extracellular matrix of 

animal tissues. Investigating collagen distribution with SHG enables a precise and non-invasive 

assessment of extracellular matrix modifications, which represent a hallmark of cancers(Bonnans 

et al., 2014, Lu et al., 2012), and of many other pathologies(Raines, 2000).  

The usefulness of TPEF and SHG to characterize human skin has been demonstrated both 

ex-vivo (Paoli et al., 2009, Paoli et al., 2008) and in-vivo (Balu et al., 2015, Cicchi et al., 2014, 

Dimitrow et al., 2009, Koehler et al., 2011, Saager et al., 2015, Sun et al., 2017). Subsequently, 

MPM tomographs capable of providing virtual biopsies in-vivo have become available in many 

medical centers across the world(König, 2018). The utility of MPM techniques for characterizing 

skin, or other organs/parts of the human body, is manifold as they can (i) enhance our 

understanding of tissue anatomy and functionality, (ii) enable fast and accurate tissue 
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characterization both ex-vivo and in-vivo. Because of these advantages, MPM is likely to soon 

become one of the central elements of in-vivo skin tissue characterization frameworks, while also 

representing a powerful tool to complement traditional diagnostics techniques such as 

immunohistochemistry or brightfield microscopy of H&E stained tissues. Recent advances in 

digital staining, where images taken by other modalities (including MPM) are transformed into 

virtual H&E images(Bocklitz et al., 2016, Borhani et al., 2019, Rivenson et al., 2019), facilitate 

the interpretation of MPM images by histopathologists, which we anticipate to massively boost 

the penetration of these techniques into the clinical practice.   

In this work we perform MPM imaging of transversal tissue sections containing the 

dermoepidermal junction (DEJ)(Briggaman and Wheeler Jr, 1975), which separates the dermis 

and the epidermis, two morphologically distinct compartments that interact in several ways and at 

different levels to create, control, or restore tissue homeostasis. It is known that processes 

occurring near DEJ coordinate the growth and differentiation of the epidermis and are essential in 

demonstrating the complicated pathogenesis of epidermal tumors, irrespective of their benign or 

malignant nature. Our interest in characterizing this region is two-fold: (a) the DEJ lies at a depth 

accessible with MPM systems developed for clinical in-vivo applications(Breunig et al., 2018, 

Saager et al., 2015) (b) during epidermal carcinogenesis important changes take place in the DEJ, 

which can be linked to early hyperplastic and neoplastic phases. These changes can be classified 

by their appearance, their extent and their frequency, the most prominent ones being related to the 

destructive modifications occurring in the basal lamina when dealing with an invasive neoplastic 

proliferation (even in early stages). The first part of our experiment shows that many of these subtle 

changes, which are difficult to assess with conventional microscopy, are available with label-free 

MPM imaging of the DEJ.   

The second part of our experiment finds motivation in the fact that manual evaluation 

approaches for histopathological image analysis and diagnostics are both time consuming and 

prone to errors (Brown, 2004, Chatterjee, 2014, Reid et al., 1988). To address this, we show that TPEF 

and SHG images collected on the DEJ can be analyzed by using Deep Learning (DL) (LeCun et 

al., 2015), to automatically and precisely distinguish between healthy and dysplastic skin tissues. 

Although our method is developed and tested on MPM datasets collected on fixed transversal 

tissue sections, it is on-the-fly translatable to in-vivo skin characterization assays for cancer 
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screening/diagnostics based on clinically validated MPM tomographs capable to scan epithelial 

tissues in both horizontal and vertical directions (Breunig et al., 2018).  

RESULTS AND DISCUSSIONS 

MPM imaging of the DEJ for tissue state assessment 

In Fig. 1 we present a set of MPM images (overlaid TPEF and SHG signals) of the DEJ, collected 

on normal and dysplastic epithelial tissues (transversal sections, see Methods). These are showed 

under a pseudo-coloring scheme: blue-color for collagen-rich tissues (providing contrast for SHG), 

red-color for autofluorescent tissue regions (probed by TPEF), and violet-color for co-localized 

SHG and TPEF signals. The displayed images demonstrate the utility of MPM signals collected 

on the DEJ in being helpful to a histopathologist in his task to assess the skin tissues state.  

         In Fig. 1a-c) we can observe a normal appearance of the DEJ, as the MPM images show a 

complex, yet intact, collagen framework mainly of the basement membrane of the epidermis (Fig. 

1a) and of the superficial dermis (Fig. 1b,c), where the bright TPEF signals highlight the red blood 

cells in the capillary network of the superficial dermis. The delicate walls of the capillary are also 

highlighted by a continuous red line corresponding to TPEF signals. The epidermis exhibits 

homogeneous TPEF signals determined by cytokeratins inside the keratinocytes. We note that 

those signals have a monotonous cytoplasmic pattern in the squamous cells of the epidermis due 

to the keratin content. The keratinization is a dynamic process exhibiting a gradient of keratin 

content from the basal layer to the stratum corneum. Subsequently, increased TPEF signals in this 

layer correspond to a greater content of keratin. The corneous layer exhibits stronger TPEF 

emission having more mature keratin (corneocytes) – blue arrow in Fig. 1b,c); the epidermis has 

an overall honeycomb appearance. Fig. 1d-f) depict images of the DEJ in dysplastic tissues. In Fig. 

1d,e) the strong TPEF signals in the papillary dermis originate from the hemoglobin in the red 

blood cells, which has been previously documented(Sun et al., 2015, Zheng et al., 2011). The 

presence of cells with abnormal individual keratinization (dyskeratotic cells) is shown by TPEF 

signals similar of those of the red blood cells which are marked with green arrows in Fig. 1e). 

TPEF signals also indirectly outline the nuclear contour of the squamous cells, which is important 

for assessing their state (the irregular nuclear contour is an important feature of neoplastic lesions, 

in situ or malignant). The increased nuclear ratio, dyskeratotic cells and parakeratosis are common 

features of actinic keratosis.  In the case of the basement membrane the collagen framework is still 
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visible and suggests an in-situ lesion, but the rest of the collagen framework of the papillary dermis 

has a more fragmented pattern suggesting a degenerative process (prolonged solar exposure). Fig. 

1f) is representative for the MPM images collected on tissues affected by actinic keratosis, showing 

the usefulness of this technique to highlight the degeneration and fragmentation of the collagen 

fibers due to solar elastosis (area marked by dotted line).  

A landmark study (Barsky et al., 1983) showed that the basement membrane, one of the 

main components allowing the identification of the DEJ in the case of healthy and dysplastic 

tissues,  is lost in the case of invasive tumors of the skin. The MPM images collected on malignant 

tissues, Fig. 2, containing relevant borders of such tumors, are in accordance with this previous 

study, the DEJ no longer being visible. These images contain nonetheless features that allow a 

histopathologist to assess the tissue state, and tumor invasion patterns. For example, In Fig. 2a) we 

can observe a region corresponding to normal epidermis (left- area marked by dotted line) 

demonstrated by monotonous cytoplasmic TPEF signals, and to the basement membrane nearby, 

easily observable based on strong SHG signals. On the right, we can observe similar cytoplasmic 

signals in a moderate differentiated squamous cell carcinoma (SCC); few keratin pearls (green 

circles in Fig 2a-c) or dyskeratotic cells are seen (blue arrows in Fig. 2a-c). We observe here that 

the large irregular nuclei are indirectly highlighted by TPEF  (yellow dotted line in Fig. 2a-c). This 

front of invasion shows a pushing borders invasion pattern on the remaining structures. The 

collagen in the remaining dermis is fragmented (shown by SHG dot-like blue signals and marked 

by orange diamonds in Fig. 2a-c). Interestingly, solar elastosis has a strong, almost homogenous 

red signal in TPEF suggesting that this process promotes the presence of endogenous 

chromophores in regions affected by this condition. Fig. 2a-c) are also representative for SCC. In 

these three images we can easily observe the large dyskeratotic cells (blue arrows) with strong 

TPEF signals. Large, individual or grouped cells with squamous differentiation are found in the 

papillary dermis, admixed with red blood cells (with very strong TPEF signals – marked by red 

circles) and lymphocytes (rounded small cells with a dimmer appearance – marked by blue circles); 

Irregular, parakeratotic pearls can also be seen (green circles). The collagen framework, 

highlighted by blue signals from SHG, is partially destroyed, suggesting an invasive lesion. 

Following our analysis of the MPM images collected on epithelial tissues, it can be 

observed that the DEJ region can be easily identified in the case of healthy and dysplastic tissues. 
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In the case of malignant tissues, components of the DEJ are lost, this region being compromised 

and no longer identifiable. MPM imaging of transversal tissue sections containing the DEJ holds 

thus potential for screening/diagnostics, in fixed, fresh and in-vivo samples, allowing a 

histopathologist to differentiate healthy from dysplastic (unlabeled) tissues. Such utility is of great 

importance especially with respect to in-vivo assays, since identifying dysplastic lesions is often 

difficult with non-invasive methods, and patients are reluctant to allow the physician to resort to 

excisional biopsy when they are not convinced of the risk. Furthermore, such non-invasive in-vivo 

screening/diagnostic methods based on transversal (xz scanning direction) MPM imaging of the 

DEJ would represent a key tool for patients who cannot be subjected to excisional biopsy without 

the risk for complications(Abhishek and Khunger, 2015), e.g. patients suffering of 

hemophilia(Chapin et al., 2017), or in patients where cutaneous excision may result in a defect that 

is difficult to correct by plastic surgery(Bayat et al., 2003).   

Automated identification of healthy and dysplastic tissues with MPM and Deep 

Learning 

The first part of our experiment showed that the DEJ is easily identified in MPM images collected 

on transversal sections of healthy and dysplastic tissues and provides important cues for a 

histopathologist to assess the tissue state. In malignant tissues the DEJ is compromised and hence 

not identifiable. Considering these, we hypothesized that an important utility of DEJ investigation 

with MPM systems dedicated to clinical imaging, e.g. (Balu et al., 2015, Koehler et al., 2011, 

König, 2008, Weinigel et al., 2014), would refer to potential assays that aim to screen patients with 

dysplastic modifications of the skin, which are difficult to implement with traditional non-invasive 

modalities. To further explore this utility, in the second part of our experiment we implemented 

and evaluated a DL method that augments the potential of MPM imaging of the DEJ, aiming to 

achieve automated and precise classification of tissues either as healthy or dysplastic.  

The employed DL image classification method was inspired from a recent work(Huttunen 

et al., 2018), and dealt with a total of 358 MPM images from healthy (n = 14) and dysplastic (n = 

14) unstained tissue sections, collected to contain the DEJ (see Methods). Images were randomly 

divided into validation (70%) and training sets (30%), the latter being augmented with the two 

strategies: (i) by reflecting the original images horizontally and vertically, and (ii) by repeatably 

blurring these horizontal and vertical reflections by using a five-layer Gaussian image pyramid, 
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(see Methods). The first augmentation strategy resulted in 1000 training images, while application 

of both yielded a set consisting of 5000 images. The test set always consisted of 108 images. This 

DL classification experiment was repeated 25 times, each time using a random selection of the 

validation/training images.  

Previous work showed that better classification accuracy of MPM images of (ovarian) 

tissues is achieved by exploiting images with merged (summed) TPEF and SHG signals, compared 

to addressing solely TPEF or SHG images (Huttunen et al., 2018). Here, we have extended the 

number of MPM signals for automated tissue classification, by additionally including in our 

evaluation framework the metabolic redox ratio (REDOX), which is calculated based on the TPEF 

emission originating from FAD and NADH molecules in the tissue(Georgakoudi and Quinn, 2012, 

Skala et al., 2007). We have thus experimented DL classification of MPM derived images 

representing the following summed-up signals: a) SHG+TPEF, b) SHG+TPEF+REDOX, c) 

TPEF+REDOX, d) SHG+REDOX. The resulting mean sensitivities, specificities and accuracies 

along with their standard deviations are shown in Fig. 3. 

The classification performance of the trained network (GoogLeNet) for all four different 

MPM signal permutations was in general outstanding (~90% or better). The best classification 

sensitivity (93.5 ± 2.3%, see Fig. 3a), specificity (95.0 ± 2.4%, see Fig. 3b) and accuracy (94.2 ± 

1.6%, see Fig. 3c) were achieved using combined TPEF+SHG images. Use of 

“TPEF+SHG+REDOX” images resulted in best classification specificity (95.7 ± 2.8%, see Fig. 

3b) alongside with excellent sensitivity (92.1 ± 3.6%) and accuracy (93.7 ± 1.7%). The 

classification performance was on average improved ~4 % when the image pyramid scheme was 

employed, compared to the case when data augmentation was done only with horizontal and 

vertical reflections of the original images. While the number of training images (5000 vs 1000) 

could also explain this improvement, we believe that the main underlying reason refers to the fact 

that different layers of a Gaussian image pyramid approximate images of the original objects 

collected at different scales(Florack et al., 1992, Sporring et al., 2013) (the reason why we adopted 

this data augmentation strategy). Therefore, by including layers of the image pyramid in the 

training process it is as if we expose the network to images collected at different magnifications, 

conferring thus scale invariance to the classification framework. The advantage of scale invariance 

for the performance of DL classification of MPM images collected on epithelial tissues derives 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 22, 2019. ; https://doi.org/10.1101/743054doi: bioRxiv preprint 

https://doi.org/10.1101/743054
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

from the fact that the morphology of skin varies with age(Branchet et al., 1991), anatomical 

site(Gambichler et al., 2006, Huzaira et al., 2001) and other factors. Convolving laser-scanning 

microscopy images (in our case the MPM images used for training) with a Gaussian filter is also 

known to suppress noise(Van Kempen et al., 1997), which might as well have contributed to the 

observed classification performance increase.     

Conclusions 

In this work we have focused our attention on MPM imaging of transversal tissue sections 

containing the DEJ, a region of the skin which is known to harbor important processes and 

modifications that are relevant with respect to the pathogenesis of epidermal tumors. We showed 

that MPM images contain features that are easy to interpret, which allow assessing the integrity of 

the DEJ, and differentiating healthy from dysplastic tissues. We regard this as being of great 

medical interest because compromised DEJ structures are a major hallmark of cancer progression 

and invasiveness and identifying these at a very early stage of the disease in a non-invasive manner 

compatible with in-vivo deployment has great importance for timely implementing the appropriate 

therapeutic strategies. Secondly, we have shown that MPM images of the DEJ, besides being easily 

interpreted by a trained expert, can also be automatically classified with DL either as healthy or 

dysplastic. To this end, we have demonstrated a DL approach based on the GoogLeNet network, 

which provides real-time image classification, with sensitivity, specificity and accuracy all 

exceeding 90%.  

The demonstrated methodology for automated classification of MPM data sets collected on the 

DEJ can be on-the-fly transferred to in-vivo screening assays based on clinically validated 

multiphoton tomographs, which are already available in many institutions worldwide. In such 

assays, a target region of the patient’s skin should be scanned with an MPM tomograph in xz 

direction (transversally), and once the DEJ is visible, an MPM image containing it could be 

instantly classified as healthy or dysplastic with the demonstrated DL strategy (or adapted 

variants). Overall, our results show that MPM and DL are likely to play a huge role in the 

forthcoming years in terms of speeding up and improving the current methodologies used in skin 

cancer screening and diagnosis. 
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METHODS 

Image acquisition and processing 

Combined SHG and TPEF imaging (to which we refer throughout the paper as MPM 

imaging) was performed using an upright Leica TCS-SP confocal laser-scanning microscope 

modified for nonlinear optical imaging. We used for excitation a Ti:Sapphire laser (Chameleon 

Vision II, Coherent) tuned at 860 nm, with ~140 fs pulses and a repetition rate of 80 MHz. A 40X 

magnification and 0.75 numerical aperture objective was used for focusing the laser beam on the 

sample and for collecting the backward-generated MPM signals (Fig. 4, representation adapted 

from (Stanciu et al., 2017)). The average power reaching the sample plane was kept below 15 mW. 

Images were acquired with a linear laser beam polarization obtained by using a polarization stage 

generator (PSG) comprised of an achromatic quarter-wave plate (AQWP05M-980, Thorlabs) and 

an achromatic half-wave plate (AHWP05M-980, Thorlabs), mounted in motorized rotation stages 

(PRM1/MZ8, Thorlabs) and placed in the laser beam path before the microscope. Three different 

input polarizations at 0º, 60º and 120º were used. The spectral detection available with the Leica 

TCS SP microscope allowed us to collect three channels simultaneously: the SHG channel (425 – 

435 nm) and two TPEF channels – 440 – 490 nm corresponding to intrinsic fluorescence of reduced 

pyridine nucleotides (NAD(P)H) and 510 – 600 nm detecting the flavin adenine dinucleotide 

(FAD) fluorescence. The SHG/TPEF images were the Kalman average of four consecutive frames. 

The final SHG image was obtained by averaging the three SHG images acquired at different laser 

beam polarizations, resulting in a polarization independent SHG image(Gao et al., 2006). Image 

processing was performed using FIJI(Schindelin et al., 2012), and consisted of applying a 0.5 

radius mean filter to reduce noise. In addition, contrast was automatically enhanced, and a 0.7 

gamma correction was applied in order to enhance the visibility of low intensity collagen fibers in 

the SHG images. The TPEF images corresponding to the NAD(P)H and FAD configurations were 

processed similarly, and the final TPEF image was formed by averaging the two separate TPEF 

NAD(P)H and FAD images. A composite RGB image was obtained by inserting the processed 

SHG and TPEF images into the blue and red channels, respectively. 
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Brightfield microscopy (BM) images of H&E stained samples were collected using a Leica DM 

3000 LED brightfield microscope, equipped with an MC 190 HD camera.  A HC PL Fluotar 

5x/0.15 ∞/-/OFN25/C objective was used to record overlapping image tiles that were stitched 

together to form large mosaics representing the entire sample slides. The sample regions that were 

imaged with MPM were also imaged with BM at high magnification (50X).  

Sample preparation and imaging 

The skin tissue samples used in this experiment consist in (i) lesions typical to SCC, which 

has been regarded as an ideal prototype for lesions with a malignant/invasive character, (ii) lesions 

that are considered premalignant/non-invasive/"in situ", e.g. from patients diagnosed with actinic 

keratosis or Bowen disease. Normal skin-tissue fragments have also been included in the study 

and were obtained from healthy regions close to the resection margins of the considered 

malignant/premalignant lesions. For each of the three investigated tissue categories we have 

imaged 14 pairs of histological slides, each corresponding to a distinct case. To obtain a pair of 

histological slides, from a formaldehyde-fixed paraffin-embedded histological block, two skin 

tissue sections were consecutively cut; one was left unstained for MPM imaging, while the other 

was stained with H&E for conventional histopathology. Using BM mosaics collected on this latter, 

trained histopathologists marked the positions of the DEJ, and MPM images were collected at 

random sites across the marked DEJ on the unstained sample pair.  The regions imaged with MPM 

were also imaged with BM at high magnification (50X) for ground-truth. The imaging framework 

is presented in Fig. 5.  

MPM image classification with Deep Learning 

For classifying the MPM images we employed a pre-trained convolutional neural network 

(GoogLeNet), originally trained to perform 1000-fold multi-class classification of images by using 

a database consisting of ~1.2 million annotated images(Deng et al., 2009, Szegedy et al., 2015). 

Typically, very large data sets are needed to train networks from scratch and to overcome problems 

related to overfitting(Krizhevsky et al., 2012). To address this, we used a pre-trained 

network(Deng et al., 2009, Szegedy et al., 2015) which alleviates the cumbersome problem of 

generating large scale MPM training datasets(Huttunen et al., 2018). This way, we were able to 

use a relatively small data set of MPM images of the DEJ to fine-train the network to perform 

binary classification of target MPM images. As annotated training data was available, a supervised 
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learning scheme was employed(Erhan et al., 2010). Prior to the fine-training, we replaced the final 

classification layers of the original network (layers after ‘pool5’) with new fully connected (FC), 

softmax and classification output layers in order to perform binary classification of MPM images. 

The data workflow of the approach is illustrated in Fig. 6. 

To further address overfitting problems raised by the relatively small training data set, 

(Krizhevsky et al., 2012), we employed data augmentation, which is known to help in this 

matter(Wang and Perez, 2017). We augmented MPM training data in two ways: (i) by casting 

horizontal and vertical reflections (a commonly met strategy), and (ii) with a novel strategy that 

combines horizontal/vertical reflections with the image pyramid in the Gaussian-Scale 

Space(Adelson et al., 1984). Here, each layer of the image pyramid (5 in total: σ = [0.5, √2/2, 1, 

√2, 2]) was horizontally and vertically reflected. The effect of the Gaussian blur pyramid scheme 

on an MPM image of the DEJ is illustrated in Supplementary Material, Fig. S2.  
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Figures 

 

Fig. 1. MPM images of the DEJ collected on normal and dysplastic epithelial tissues. Field of view: 

250x250 µm2. (A version of these MPM images without marked elements is available as Supplementary 

Material, Fig. S1).  
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Fig. 2. MPM images collected on malignant epithelial tissues on DEJ related regions. Field of view: 

250x250 µm2. (A version of these MPM images without marked elements is available as Supplementary 

Material, Fig. S1). 
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Fig. 3. Calculated classification sensitivity (a), specificity (b) and accuracy (c) with the error bars 

corresponding to the respective standard deviations. (a)-(c) Classification performance is on average 

improved ~4 % when the data augmentation includes also a 5-level Gaussian blur pyramid (red markers), 

compared to data augmentation not utilizing the pyramid (blue markers). (a)–(c) Highest classification 

sensitivity (93.5 ± 2.3%), specificity (95.0 ± 2.4%) and accuracy (94.2 ± 1.6%) are achieved by using 

combined TPEF+SHG images for training.  
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Fig. 4. Configuration of the MPM imaging setup. 
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Fig. 5. Schematic demonstration of the employed imaging protocol. A) Representative photograph of 

two consecutively cut tissue fragments, the first stained with H&E, and the second left unstained. B) 

Large mosaic depicting the entire histology slide assembled by stitching overlapping BM images (5X 

obj.)  C) Example of MPM images (40X obj.) collected on the unstained samples at random positions 

across the DEJ. All acquired MPM images were registered to high magnification BM images (50X 

obj.) collected on the corresponding regions of the H&E stained sample, in order to re-confirm that 

they indeed depict the DEJ, which is captured transversally.  
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Fig. 6. Convolutional Neural Network based workflow for binary classification of MPM images. The 

input images are fed to the pre-trained network (GoogLeNet) that first performs feature extraction 

effectively transforming the data into a more optimal representation. Subsequent image classification 

is performed by the FC, Softmax and classification layers that, contrary to the convolutional layers, 

are trained from scratch during the fine-training process. 
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