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Abstract 

Cortical activity tracks the rhythms of phrases and sentences during speech 

comprehension, which has been taken as strong evidence that the brain groups words 

into multi-word chunks. It has prominently been argued, in contrast, that the tracking 

phenomenon could be explained as the neural tracking of word properties. Here we 

distinguish these two hypotheses based on novel tasks in which we dissociate word 

properties from the chunk structure of a sequence. Two tasks separately require 

listeners to group semantically similar or semantically dissimilar words into chunks. 

We demonstrate that neural activity actively tracks task-related chunks rather than 

passively reflecting word properties. Furthermore, without an explicit ‘chunk 

processing task,’ neural activity barely tracks chunks defined by semantic similarity - 

but continues to robustly track syntactically well-formed meaningful sentences. These 

results suggest that cortical activity tracks multi-word chunks constructed by either 

long-term syntactic rules or temporary task-related rules. The properties of individual 

words are likely to contribute only in a minor way, contrary to recent claims. 

 

Introduction 

How the brain processes language is a central question in cognitive science, 

neuroscience, and linguistics. In general, speech utterances such as sentences are not 

memorized sequences, but instead are proposed to reflect compositional processes 

which allow us to understand and produce countless new sentences never heard before 

(such as the one you are currently reading). Therefore, to derive the meaning of a 

sentence, the brain has to integrate information across words, the meaning of which 

are stored in long-term memory. How the brain integrates information across words, 

however, remains debated (Hagoort and Indefrey, 2014; Goucha et al., 2017; Romeo 

et al., 2018), and a variety of hypotheses have been proposed (Townsend and Bever, 

2001; Ferreira et al., 2002; Everaert et al., 2015). At one end of the spectrum, it has 

been hypothesized that the brain applies a set of syntactic rules to recursively combine 

words into larger chunks, forming a hierarchically organized syntactic structure, and 

then derives meaning of a sentence based on its syntactic structure (Chomsky, 1957; 
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Frazier and Fodor, 1978; Friederici, 2002). At the other end of the spectrum, it has 

been hypothesized that the brain does not construct multi-word chunks at all but 

instead directly integrates information across words by statistical and semantic 

analysis (Elman, 1990; Frank et al., 2012; Christiansen and Chater, 2016). It is 

challenging to adjudicate among these hypotheses, as multi-word chunks are 

‘intermediate’ mental representations that can are hard to measure directly. 

 

Recent neurophysiological results have been shown that when presented with speech, 

the brain concurrently tracks multiple levels of linguistic units, such as sentences, 

phrases, words, and syllables (Fig. 1) (Ding et al., 2016; Makov et al., 2017; 

Brodbeck et al., 2018; Broderick et al., 2018; Ding et al., 2018; Keitel et al., 2018). 

Critically, neural tracking of phrases and sentences remains when the phrasal and 

sentential boundaries are not cued by prosodic features or by the transitional 

probability between words. This phenomenon has been taken as strong evidence for 

the hypothesis that the brain applies grammatical rules to group words into chunks 

(Ding et al., 2016; Martin and Doumas, 2017). This hypothesis is referred to as the 

rule-based chunking hypothesis in what follows. Challenging this position, it has been 

argued that neural tracking of phrases and sentences can potentially be explained by 

neural tracking of properties of individual words alone. In the following, we illustrate 

these ideas using sentence-level tracking as an example; the same principle also 

applies to phrase-level tracking. 

 

First, it is known that some neural populations are selectively tuned to words from 

specific syntactic (Caramazza and Hillis, 1991; Daniele et al., 1994) or semantic 

categories (Warrington and Shallice, 1984; Bi et al., 2016). For the experimental 

paradigm shown in Fig. 1, all sentential stimuli have the same syntactic structure. 

Therefore, neural activity tracking lexical properties, such as part of speech 

information or lexical semantic information that distinguishes objects and actions, 

may appear to track sentences (dark and light blue curves in Fig. 1). Consistent with 

this lexical property model, it has been shown that apparent neural tracking of 
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sentences could be observed if the neural response independently represents each 

word using multidimensional features learned by statistical analysis of large corpora 

(Frank and Yang, 2018). In other words, neural populations that are tuned to lexical 

features of individual words may show activity that apparently tracks sentence 

structures. 

 

Second, it is well established that the neural response to a word depends on the 

context and the response amplitude is smaller if the word is semantically related to 

previous words (Lau et al., 2008; Kutas and Federmeier, 2011). In general, words 

within the same sentence are more related than words from neighboring sentences. 

Therefore, for a context-dependent neural response, its amplitude is expected to be 

stronger at the beginning of a sentence, leading to apparent neural tracking of 

sentences (red curve, Fig. 1). This model considers semantic relatedness between 

words, but it does not consider the sentence structure: Semantic relatedness is 

evaluated the same way within and across sentence boundaries. Apparent sentence 

tracking behavior is generated since words within a sentence are more closely related. 

 

The lexical property model and semantic relatedness model do not assume linguistic 

chunks and therefore provide different explanations for sentence/phrase-tracking 

responses than the rule-based chunking model (green curve, Fig. 1). The rule-based 

chunking model, however, has additional flexibility, allowing the same sequence of 

words to be grouped differently based on different sets of rules. This flexibility is 

most clearly demonstrated when processing structurally ambiguous sequences. For 

example, “sent her kids story books” can be chunked as “sent [her kids] story books” 

or “sent her [kids story books]” (Shultz and Pilon, 1973). For such structurally 

ambiguous sentences, the rule-based chunking model, but not the lexical property 

model or the semantic relatedness model, would predict different phrase-tracking 

responses when the sentence is chunked differently.  
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Here, we distinguish the rule-based chunking model from the word-based models by 

designing a structurally ambiguous word sequence and two different rules to bias the 

chunking of this sequence. The word sequence is a sequence of nouns that describe 

either living (L) things or nonliving (N) things (Fig. 2A). The sequence has no 

syntactically defined chunks. Nevertheless, the participants are explicitly instructed 

about how to chunk the sequence, and the chunks are differently constructed in 2 

separate conditions. While participants listen to the word sequences, we recorded 

cortical responses using MEG. Both word-level models, i.e., the lexical property 

model and the semantic relatedness model, predict the same neural response when 

participants listen to the same word sequence regardless of how the sequence is 

chunked. The rule-based chunking model, however, predicts chunk-dependent neural 

responses. Additionally, we also tested how the brain encodes the word sequence and 

sentence sequences without explicit chunking tasks. 

 

Results 

Word Sequences and Model Predictions 

In Experiment 1, participants were instructed to parse a sequence of words into 

chunks and each chunk consisted of 2 words. The words were drawn from 2 

categories, i.e., living and nonliving things. The experiment contrasted 2 conditions in 

which the chunks were constructed based on different rules. In one condition, referred 

to as the same-category condition, the 2 words in a chunk belonged to the same 

semantic category (Fig. 2A, upper panel). In the other condition, referred to as the 

different-category condition, the 2 words in a chunk were drawn from different 

categories (Fig. 2A, lower panel). Based on these rules, there were 2 valid chunks in 

the same-category condition, i.e., LL and NN, and also 2 valid chunks in the different-

category condition, i.e. NL and LN.  

 

The same- and different-category conditions were presented in separate blocks. In 

each condition, participants had to parse the sequences into chunks, i.e., pairs of 

words, and detect invalid chunks that were occasionally presented. They had to press 
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different keys after trials containing or not containing invalid chunks (Fig. 2B). The 

sequences in each condition (N = 60) were further divided into 2 types of sequences, 

i.e., the alternating-order sequence (N = 30) and the random-order sequence (N = 30). 

In the alternating-order sequence, the 2 valid chunks in each condition were 

interleaved while in the random-order sequence the 2 valid chunks were presented in 

random order. The alternating-order sequences and the random-order sequences were 

intermixed and presented randomly in each block. The neural responses to these 2 

types of sequences were separately analyzed. The alternating-order sequences allowed 

an intuitive comparison between the same- and different-category conditions, which 

would be detailed in the following. The random-order sequences were designed as 

fillers to increase variability, but model simulations in the following show that they 

can also distinguish the 3 hypotheses in Fig. 1. 

 

Simulations of the neural responses to the alternating- and random-order sequences by 

the 3 models are shown in Fig. 2 for both the same- and different-category conditions. 

The lexical property model considers 2 neural populations that selectively respond to 

living and nonliving word meanings, respectively. The simulated neural response 

analyzed in the frequency domain demonstrates that none of the population shows a 

chunk-rate response peak in the spectrum (dark and light blue curves in Fig. 2CD). In 

contrast to the lexical property model, the semantic relatedness model and the rule-

based chunking model predict a chunk-rate response peak (red and green curves 

respectively in Fig. 2CD). The semantic relatedness model further predicts that the 

chunk-rate response is stronger for the alternating-order sequence than the random-

order sequence (Fig. 2E). The rule-based chunking model, however, predicts similar 

response amplitude for the 2 kinds of sequences (Fig. 2E). 

 

A more fundamental difference between the semantic-relatedness model and rule-

based chunking model lies in their predictions about the chunk-rate response phase. 

The semantic-relatedness model predicts a 180° phase difference between same- and 

different-category conditions, while the rule-based chunking model predicts a 0° 
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phase difference between conditions. For the alternating-order sequence, these 

predictions are straightforward: These sequences are offset by 1 word between the 

same- and different-category conditions. Consequently, neural activity tracking 

semantic relatedness between words is offset by the duration of a word between 

conditions. For neural activity oscillating at the chunk rate, this time lag leads to a 

180° phase difference (Fig. 2F). For the random-order sequence, although less 

straightforward, model simulation shows that the chunk-rate response has a 180° 

phase difference between conditions (Fig. 2F). For the rule-based model, however, the 

response is aligned with the chunk boundaries, which are not affected by the 

conditions and sequence types. Therefore, the rule-based model predicts the same 

response phase, i.e. a 0° phase difference, for the same- and different-category 

conditions (Fig. 2F).  

 

In summary, the 3 models considered in this study lead to different predictions about 

the neural response properties (Fig. 2). Details about the model simulations are given 

in Supplementary Fig. 1. The lexical property model and the semantic relatedness 

model are simulated based on neurons that have ideal tuning to living/nonliving 

things, but similar results can be obtained using realistic semantic models of words, 

i.e., the word2vec model learned by statistical analysis of natural language 

(Supplementary Fig. 2). The word2vec model, a connectionism model that does not 

explicitly model phrasal structures, can successfully capture semantic relationship 

between words (Bengio et al., 2003). In the following, we turn to the actual neural 

responses obtained using MEG and evaluate their consistency with the simulations 

made for the 3 different models. 

 

Task-dependent Neural Tracking of Alternating-order Sequences 

First, we analyzed the MEG responses to the alternating-sequences. The MEG 

responses were separately averaged for the same- and different-category conditions 

and the mean response was transformed to the frequency domain. The response 

spectrum averaged over all MEG gradiometers showed clear peaks at the chunk and 
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word rates (Fig. 3A, left 2 plots). The chunk-rate response power was significantly 

stronger than the power in neighboring frequency bins in both conditions (P = 0.0001 

for both the same- and different-category conditions; bootstrap, Methods, FDR 

corrected). The chunk-rate spectral peak was consistent with the semantic relatedness 

model and the rule-based chunking model, but not with the lexical property model 

(Fig. 2C). More importantly, the phase difference between conditions is closer to 0° 

than 180° in all MEG sensors (Fig. 4AB), consistent with the rule-based chunking 

model (Fig. 2F). Specifically, the response phase difference was significantly different 

from 180° in 99% of the sensors (303 out of 306, P < 0.01, bootstrap, Methods, not 

corrected for multiple comparisons). For the response phase difference averaged over 

all MEG sensors, the 99% confidence interval over participants ranged from -50° to 

15°, which is centered around 0° and does not include 180°. 

 

In the response topography, the chunk- and word-rate responses both show bilateral 

activation over the temporal lobes (Fig. 3CD). The chunk-rate response was stronger 

in the left hemisphere: The response averaged over left hemisphere sensors was 

significantly stronger than the response averaged over the right hemisphere sensors (P 

= 0.014 and 0.017 for the same- and different-category conditions respectively; 

bootstrap, Methods). The word-rate response was significantly stronger in the right 

hemisphere for the same-category condition (P = 0.019; bootstrap, Methods) but did 

not differ across the different-category condition (P = 0.157; bootstrap, Methods). 

Neural source localization showed that both the chunk- and the word-rate responses 

were mainly generated from bilateral temporal lobes (Fig. 3CD). 

 

Task-dependent Neural Tracking of Random-order Sequences 

The MEG responses to random-order sequences was analyzed the same way as the 

responses to alternating-order sequences. In the response spectrum, clear peaks were 

observed both for the chunk and word rates (Fig. 3A, right 2 plots). The chunk-rate 

response power was significantly stronger than the power in neighboring frequency 

bins in both conditions (P = 0.0001 for both the same- and different-category 
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conditions; bootstrap, Methods, FDR corrected). The chunk-rate response power was 

not significantly different between random- and alternating-order sequences (P = 

0.879 and 0.320 for same- and different-category conditions respectively; bootstrap, 

Methods, FDR corrected; Fig. 3B). The word-rate response power was significantly 

stronger for random-order sequence than alternating-order sequence in different-

category condition (P = 0.022; bootstrap, Methods) but not for the same-category 

condition. Furthermore, for the chunk-rate response, the phase difference between 

conditions was closer to 0° than 180° in all MEG sensors (Fig. 4DE). The phase 

difference was significantly different from 180° in 99% of the sensors (303 out of 306 

sensors, P < 0.01, bootstrap, Methods, not corrected for multiple comparisons). For 

the phase difference averaged over MEG sensors, the 99% confidence interval over 

participants ranged from -45° to 71°, which was centered around 0° and did not 

include 180°. Altogether, both the power and phase results are consistent with the 

prediction of the rule-based chunking model. The response waveform is shown for a 

representative MEG sensor, which oscillates in phase in the 2 conditions (Fig. 4CF). 

The representative sensor has the highest normalized power at the chunk rate, when 

averaged over the 2 conditions. 

 

In the response topography, the chunk- and word-rate responses both showed bilateral 

activation over the temporal lobes (Fig. 3CD). The chunk-rate response was 

significantly stronger in the left hemisphere for the different-category condition (P = 

0.0002; bootstrap, Methods) but not for the same-category condition (P = 0.353; 

bootstrap, Methods). The word-rate response showed no significant lateralization (P = 

0.103 and P = 0.089 for same- and different-category conditions respectively; 

bootstrap, Methods). Neural source localization results showed that both the chunk- 

and the word-rate responses were mainly generated from bilateral temporal lobes (Fig. 

3CD). 

 

Task Modulation of Neural Tracking of Semantic Chunks 

In Experiment 1, we designed 2 sets of chunks and explicitly asked participants to 
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parse sequences into 2-word chunks. In Experiment 2, we further investigate whether 

semantic similarity can automatically drive chunk-tracking neural responses without 

an explicit chunking task. For this purpose, we presented sequences that had the same 

structure as the alternating-order sequences in the same-category condition of 

Experiment 1. Participants, however, perform 3 different tasks in separate blocks. The 

first task consisted of a chunk-level task, similar to the task in Experiment 1, i.e. 

detecting invalid chunks. The second task consisted of a word-level task, detecting if 

a concrete noun, i.e., living or nonliving things, was replaced by an abstract noun. The 

third task was an auditory task, detecting a change in the speaker’s voice. 

 

Fig. 5A, B, and C show the MEG response spectrum for the chunk-level, word-level, 

and auditory tasks, respectively. When participants perform the chunk-level task, a 

strong chunk-rate response was observed in the spectrum, replicating results of 

Experiment 1. When performing the auditory and word-level tasks, however, the 

chunk-rate responses were weaker. The chunk-rate response power was significantly 

stronger than the power in neighboring frequency bins during all 3 tasks (P = 0.0001, 

0.001, and 0.0001 for chunk-level, word-level and auditory tasks respectively; 

bootstrap, Methods, FDR corrected). While the chunk-rate response was statistically 

significant for all 3 tasks, the response was significantly stronger in the chunk-rate 

task than the word-level task (7.6 dB difference; P = 0.0006; bootstrap, Methods) and 

the auditory task (8.2 dB difference; P = 0.0004; bootstrap, Methods). These results 

indicate that semantic similarity between words can drive a chunk-tracking response 

without an explicit chunking task but the chunk-tracking response is greatly enhanced 

during an explicit chunking task.  

 

In the response topography, the chunk- and word-rate responses both showed bilateral 

activation over temporal lobes (Fig. 5). The chunk-rate responses were stronger in the 

left hemisphere during the chunk-level task (P = 0.0002; bootstrap, Methods) but not 

during the word-level and auditory tasks (P = 0.209 and 0.158 respectively; bootstrap, 

Methods). The word-rate response showed left lateralization during the auditory task 
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(P = 0.042; bootstrap, Methods) but not during the chunk-level and word-level tasks 

(P = 0.058 and 0.065 respectively; bootstrap, Methods). Source localization showed 

that both the chunk- and the word-rate responses were mainly originated in bilateral 

temporal lobes (Fig. 5). 

 

Task-irrelevant Neural Tracking of Sentences and Word Sequences 

The data above show that neural activity can spontaneously track word chunks 

defined by semantic similarity. However, without an explicit chunking task, the 

chunk-rate response is rather weak. Here, a control condition is used to further 

validate whether the weak chunk-rate response is driven by semantic similarity, rather 

than, e.g., the tendency to segment any word sequence into 2-word chunks. In the 

control condition, living and nonliving things were presented in a random order, not 

consistently forming pairs belonging to the same semantic category.  

 

Additionally, chunking of natural languages relies on both semantic and syntactic 

cues. Therefore, in the final condition, we investigate whether word chunks defined 

by syntactic rules can drive chunk-rate responses even in the absence of an explicit 

chunking task. In the sentence condition, each sentence started with a 2-syllable noun, 

followed by a 2-syllable verb. In both the control condition and the sentence 

condition, participants performed a word-level task, detecting occasionally occurring 

abstract nouns. 

 

The responses to sentences and random words are shown in Fig. 5DE. During the 

word-level task, a strong chunk-rate response was observed for the sentence condition 

but not for the control condition. Only for the sentence condition, the chunk-rate 

response power was significantly stronger than the power in neighboring frequency 

bins (P =0.0002; bootstrap, Methods). The chunk-rate response was also stronger in 

the sentence condition than the control condition (P = 0.0004; bootstrap, Methods). 

Furthermore, the chunk-rate response was also stronger for sentences than chunks 

grouped by semantic similarity (P = 0.001, 0.0004, and 0.0004 for the chunk-level, 
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word-level, and auditory tasks respectively; bootstrap, Methods; FDR corrected). 

Therefore, rules drive a chunk-rate response more strongly than semantic similarity. 

 

As for the response topography, in the sentence condition, the chunk-rate response 

topography showed activation over bilateral temporal lobes (Fig. 5DE) and the 

activation was stronger in the left hemisphere (P = 0.0002; bootstrap, Methods). In the 

control condition, the chunk-rate response was not statistically significant, without 

clear activation in the sensor and source space. The word-rate response also showed 

activation over bilateral temporal lobes and the activation was stronger in the left 

hemisphere for both the sentence and control condition (P = 0.049 and 0.027 

respectively; bootstrap, Methods). Neural source localization confirmed that the 

chunk-rate response in the sentence condition and the word-rate responses were 

mainly generated from bilateral temporal lobes (Fig. 5DE). 

 

Discussion 

How words are grouped into multi-word chunks such as phrases and sentences during 

speech comprehension is a prominent question in psychology and cognitive 

neuroscience. Here we demonstrate that low-frequency neural activity can track 

multi-word chunks that are mentally constructed based on artificial chunking rules 

instead of word properties (Figs. 3 and 4). These results contradict models that 

assume word-level neural representations only and support a rule-based chunking 

model. The 3 models considered here, however, are all built on well-motivated 

psychological and neuroscientific evidence, and in the following we briefly review 

each model and discuss why the rule-based chunking model is the only one able to 

generate correct predictions about the neural responses. 

 

Lexical Representation Hypothesis 

The lexical representation hypothesis posits that the neural tracking of multi-word 

linguistic chunks is driven by neural tracking of lexical properties of individual words 

(Fig. 1) (Frank and Yang, 2018). This hypothesis builds on the findings that different 
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categories of words have distinct representations in the brain. Both neurological 

studies and functional imaging studies have shown that words from different 

grammatical categories, e.g., verbs and nouns, are separately represented in the brain 

(Vigliocco et al., 2011; Yang et al., 2017) and can be selectively impaired (Caramazza 

and Hillis, 1991; Daniele et al., 1994). Similarly, objects from distinct semantic 

categories, e.g., living and nonliving things, are separately represented in the brain 

and can be selectively impaired (Warrington and Shallice, 1984; Bi et al., 2016). 

 

Neural sensitivity to semantic categories has been mostly reported using fMRI, PET, 

and lesion studies, but few studies have suggested that it can be detected with the 

spatial resolution of MEG. For example, using a multi-channel MEG decoding 

technique, it has been shown that the neural responses to living and nonliving things, 

presented by auditory words, can be distinguished at about 70% accuracy (Chan et al., 

2011). Using similar decoding approaches, the semantic categories of visually 

presented objects have been successfully decoded (Carlson et al., 2011; Sudre et al., 

2012). Although these studies have shown that the spatial pattern of cortical activity 

carries semantic information using sophisticated multivariate neural decoding 

approaches, to our knowledge no study has shown that univariate MEG/EEG 

responses (e.g., single-channel responses or global field power) could clearly 

distinguish the semantic content of words. The neural responses to word chunks (both 

task-defined chunks and syntactically defined sentences), however, can be observed in 

single MEG/EEG sensors and in the global field power (Ding et al., 2016; Jin et al., 

2018), and therefore is not easily explained by the category-dependent spatial 

representations in the brain. 

 

In terms of neural sensitivity to grammatical categories of words, it is shown that the 

event-related potentials (ERP) evoked by verbs and nouns have statistically 

significant differences (Pulvermüller et al., 1999; Barber et al., 2010). This 

phenomenon cannot explain neural tracking of chunks of nouns but can potentially 

explain neural tracking of sentences. Nevertheless, the category-dependent ERP 
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component, i.e., the difference between the ERP to different word categories, is much 

weaker than the ERP averaged across word categories. In other words, the EEG/MEG 

response evoked by an auditory word is dominated by a category-independent 

component. The neural response to sentences, however, is of similar amplitude to the 

response to words (Fig. 4), and therefore can hardly be explained by differential 

neural sensitivity to verbs and nouns. In sum, our study provides compelling evidence 

showing that words from different syntactic or semantic categories are represented by 

distinguishable distributive spatial patterns in the brain. For MEG/EEG responses that 

are summed over large-scale neural networks, however, word category information 

does not strongly modulate the response strength or time course and therefore barely 

contributes to the chunk-tracking MEG response. 

 

Semantic Relatedness Hypothesis and Semantic Predictions 

The semantic relatedness hypothesis posits, in turn, that the neural tracking of multi-

word linguistic chunks is driven by tracking of semantic relatedness between 

neighboring words (Fig. 1). Here, semantic relatedness refers to both semantic 

similarity (e.g., travel - journey) and semantic associations (e.g., travel - plan). The 

semantic-relatedness hypothesis builds on the priming effect in the psychological 

literature (Tulving and Schacter, 1990) and the neural adaptation effect in the 

neuroscience literature (Grill-Spector et al., 2006). It is well established that if a word 

is preceded by a semantically related word, its processed faster (Collins and Loftus, 

1988) and its neural response, especially the ERP N400 component and its MEG 

counterpart, is reduced (Lau et al., 2009; Kutas and Federmeier, 2011; Broderick et 

al., 2018). 

 

In this study, words from the same semantic category are more closely related than 

words drawn from different categories. Nevertheless, the categories used here are 

broad categories (e.g., animals or plants). In general, words from a broad category, 

e.g., animals, are only weakly related compared with words from a narrower category, 

e.g., birds (Vigliocco et al., 2002; Quinn and Kinoshita, 2008). A weak relationship 
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between words predicts a weak priming effect on the neural response (Federmeier and 

Kutas, 1999), which may underlie why semantic relatedness between words does not 

explain the chunk-tracking neural activity. 

 

The semantic relatedness model discussed here builds on the priming and neural 

adaptation effects. Priming and neural adaptation, however, can be caused by multiple 

factors and can be generally observed for any predictable stimulus (Friston, 2005; 

Bar, 2007; Tian and Poeppel, 2013). Previous studies have identified 2 kinds of 

semantic priming, i.e., automatic and strategic priming (Neely, 1977). Automatic 

priming can be caused by, e.g., semantic relatedness between words in long-term 

memory. Strategic priming, however, can actively predict upcoming words based on 

temporally learned association rules. Behavioral experiments have demonstrated a 

cross-category priming effect if the prime word from one category, e.g., tools, is 

known to predict target words from a different category, e.g., animals (Neely, 1977). 

In other words, participants can make use of association rules learned during an 

experiment to actively predict words that have no long-term semantic relationship 

with the prime word. Different from automatic priming that can occur with very short 

SOA between words, strategic priming occurs when the SOA between the prime and 

target words is relatively long, e.g., >400 ms (Hutchison, 2007).  

 

In the current study, the SOA between words is 500 ms, allowing strategic priming to 

occur. Furthermore, since the chunking rule remains the same in each block, listeners 

can prepare in advance about how to parse the sequences, making strategic 

predictions to occur more easily. Based on the knowledge about valid chunks, the 

semantic category of the 2nd word in each chunk is fully predictable in both the same-

category condition and the different-category condition. The 1st word in each chunk is 

also predictable in the alternating-order sequences but not predictable in the random-

order sequences. Since the alternating-order sequences and the random-order 

sequences are mixed, predictability is generally lower for the 1st word than for the 2nd 

word in each chunk. Therefore, for strategic predictions, the predictability of words 
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correlates with the chunk structure. This kind of strategic predictions, however, is 

based on rule-based chunking instead of semantic relatedness stored in long-term 

memory. 

 

Rule-based Chunking Hypothesis  

The rule-based chunking hypothesis posits that low-frequency neural activity reflects 

the grouping of words into chunks, e.g., phrases and sentences. The hypothesis is 

motivated by linguistic research on syntax (Chomsky, 1957) and psychological 

evidence for the mental representations of chunks (Miller, 1956). Psycholinguistic 

studies have provided evidence that the mental representation of speech is organized 

in the units of clauses and sentences. For example, after listening to a long sentence, 

words from the immediate clause can be better recalled than words from previous 

clauses (Jarvella, 1971; Caplan, 1972). Furthermore, if a click is presented during 

speech, the perceived timing of the click is attracted towards major syntactic 

boundaries (Fodor and Bever, 1965; Garrett et al., 1966). In terms of the neural basis, 

fMRI studies have demonstrated that distributed brain areas are involved in grouping 

words into chunks (Friederici et al., 2000; Lerner et al., 2011; Pallier et al., 2011; 

Bulut et al., 2017). MEG and EEG studies have suggested that low-frequency neural 

activity tracks linguistic structures (Ding et al., 2016; Meyer et al., 2016; Martin and 

Doumas, 2017; Meyer and Gumbert, 2018). Recent work suggests that animals can 

also parse motor sequences into hierarchically organized chunks (Geddes et al., 2018; 

Jiang et al., 2018). 

 

Neural tracking of linguistic structures strongly depends on the task, demonstrating an 

active chunking process. Neural tracking of multisyllabic words and multi-word 

chunks is largely abolished during sleep (Makov et al., 2017) or when the listeners are 

distracted by competing sensory stimuli (Ding et al., 2018). Here, it is further 

demonstrated that neural tracking of a structurally ambiguous sequence relies on the 

chunking rule. Similar findings have been obtained when listening to a sequence of 

pure tones. When listeners imagine that an isochronous tone sequence is divided into 
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groups of 2 or groups of 3, the neural responses to the tone sequence track not only 

individual tones but also the imagined groups (Nozaradan et al., 2011). 

 

The chunk-rate response is consistent with the rule-based chunking model. However, 

it may reflect the actual chunking process or downstream processes building on the 

multi-word chunks. After the chunk structure is parsed, the listener could synchronize 

their attention and predictions to the sequence. Previous studies have suggested that 

entrained neural oscillations may reflect both sequence parsing (Ding et al., 2016; 

Kösem et al., 2016; Meyer et al., 2016; Wang et al., 2017; Meyer and Gumbert, 2018) 

and temporal attention/prediction (Morillon and Baillet, 2017; Jin et al., 2018; 

Rimmele et al., 2018), and could causally modulate speech perception (Kösem et al., 

2018; Riecke et al., 2018; Zoefel et al., 2018). The current results cannot distinguish 

which chunk-related process drives the chunk-rate response. What can, however, be 

concluded here is that the chunk-rate response cannot be driven by properties of 

individual words, and it can only occur after the brain parses a sequence into chunks. 

Thus, the current study and previous studies (Ding et al., 2016) provide strong support 

to notion that the brain can construct superordinate linguistic representations based on 

either long-term syntactic rules or temporary rules learned in an experiment. 

 

 

 

Methods 

Participants 

Thirty-two participants took part in the study (19–27 years old; mean age, 22 years; 

50% female). Sixteen participants took part in Experiment 1 and the other sixteen 

participants took part in Experiment 2. All participants were right-handed, with no 

self-reported hearing loss or neurological disorders. The experimental procedures 

were approved by the Institutional Review Board of the Zhejiang University 

Interdisciplinary Center for Social Sciences and the Ethics Committee of Peking 

University. The participants provided written consent and were paid. 
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Speech Materials 

Experiment 1 presented sequences of nouns and Experiment 2 presented both noun 

sequences and sentence sequences. All words were disyllabic words in mandarin 

Chinese and each syllable was a morpheme. For the noun sequences, each word was 

selected from a pool of 240 disyllabic concrete nouns. These concrete nouns equally 

divided into 2 categories, i.e., living (L) and nonliving (N) things. Living things 

further divided into 2 subcategories, i.e., animals (N = 60; e.g., monkey, panda) and 

plants (N = 60; e.g., tulip, strawberry). Nonliving things also further divided into 2 

subcategories, i.e., small manipulatable objects (N = 60; e.g., teacup, toothbrush) and 

large non-manipulatable objects (N = 60; e.g., playground, hotel). In each noun 

sequence, all living nouns were randomly drawn from a subcategory, i.e., all being 

animals or plants, and all nonliving nouns were also randomly drawn from a 

subcategory, i.e., all being manipulatable or non-manipulatable objects. Details about 

how the nouns constructed noun sequences were provided in the Sequence Structure 

section.  

 

In some conditions in Experiment 2, additional 30 disyllabic abstract nouns were used 

to create outliers (e.g., honor, spirit). For the sentence condition in Experiment 2, 80 

sentences were constructed. Each sentence had 4 syllables, with the first 2 syllables 

constructing a noun (or a common noun phrase) and last 2 syllables constructing a 

verb or (or a common verb phrase). In the following, to simplify the discussion, we 

refer to all the 2-syllable units as words. 

 

For both the noun sequences and sentences sequences, each disyllabic word was 

independently synthesized by the iFLYTEK synthesizer (http://peiyin.xunfei.cn/; 

female voice, Xiaoying). All disyllabic words were adjusted to the same intensity and 

the same duration, i.e., 500 ms, following the procedure in Ding et al. 2016. Within a 

word, no additional control was applied to the intensity and duration of individual 

syllables and coarticulation could exist between these syllables. Compared with 

speech materials in which each syllable was independently synthesized, the disyllabic 

words synthesized as a whole sounded more natural. 

 

When constructing sequences, the synthesized disyllabic words were directly 

concatenated, without any additional pause in between. Therefore, words are 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 21, 2019. ; https://doi.org/10.1101/742585doi: bioRxiv preprint 

javascript:void(0);
http://peiyin.xunfei.cn/
https://doi.org/10.1101/742585
http://creativecommons.org/licenses/by-nc-nd/4.0/


isochronously presented at 2 Hz. For speech stimuli generated according to this 

procedure, each disyllabic word was an acoustically independent unit and larger 

chunks consisting of multiple words had no acoustically defined boundaries. 

 

Sequence Structure 

In Experiment 1, pairs of nouns constructed chunks and chunks further constructed 

sequences. The experiment compared 2 conditions in which the chunks were 

constructed based on different rules. For the same-category condition, the 2 nouns in 

each chunk belonged to the same category. For the different-category condition, 

however, the 2 nouns in each chunk were from different categories. Since the study 

only considered 2 categories of words, there were 2 valid chunks in the same-category 

condition, i.e., LL and NN, and 2 valid chunks in the different-category, i.e., NL and 

LN. Each chunk is 1 s in duration. 

 

Each sequence consisted of 12 chunks and therefore was 12 s in duration. In each 

sequence, the 2 valid chunks were concatenated in either an alternating order or a 

random order (Fig. 2A). The alternating-order sequence in each condition had a fixed 

structure, repeating a 4-words unit 6 times, i.e., NNLL for the same-category 

condition and NLLN for the different-category condition. In each random-order 

sequence, every chunk was randomly and independently chosen from the 2 valid 

chunks. After the category of each word was determined and the actual words were 

filled in. Each word was randomly drawn from a pool of 60 words (see Speech 

Materials), with the additional constraint that no word repeated in a sequence. 

 

Experiment 2 considered 3 kinds of sequences, all of which consisted of 24 disyllabic 

words and was 12 s in duration. One kind of sequence was the same as the 

alternating-order sequence constructed by same-category chunks in Experiment 1. In 

the 2nd kind of sequence, each noun was randomly chosen from the living and 

nonliving nouns, without any chunk structure. The 3rd kind of sequence was 

constructed by the 4-syllable sentences. 

 

Experimental procedures and tasks 

Experiment 1: The same-category condition and the different-category were 

presented in separate blocks and the order of the 2 blocks was counterbalanced across 
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participants. In each condition, 30 alternating-order sequences and 30 random-order 

sequences were mixed and presented in a random order. In 8 alternating-order 

sequences and 8 random-order sequences, the living noun in one chunk was switched 

with the nonliving noun in another chunk so that the 2 chunks were no longer valid 

(Fig. 2B). These 16 sequences with invalid chunks were outlier sequences. The outlier 

sequences (N = 16) and normal sequences (N = 44) were mixed and presented in a 

random order. However, only the normal sequences are involved in the neural 

response analysis. The participants had a rest after listening to 30 sequences. 

 

Before each condition, instructions were given about the chunk structures. During the 

experiment, participants were asked to mentally segment the sequences into 2-word 

chunks and judge whether all the chunks were valid chunks. In other words, they had 

to distinguish normal and outlier sequences and indicate their decisions by pressing 

different keys at the end of each sequence. After the key press, the next sequence was 

presented after a silent interval randomized between 1 and 2 s (uniform distribution). 

 

At the beginning of the experiment, participants were familiarized with all the 

synthesized words. In the familiarization session, after hearing a word, the 

participants pressed a key to see the word on a screen. Then, the participants could 

press one key to hear the word again or press another key to hear the next word. After 

this familiarization session, the participants learned the sequence structure and 

listened to 2 normal sequences and 2 outlier sequences, which were presented in 

random order. They had to tell the experimenter whether they heard outliers and what 

the outlier chunks were. Next, a practice session was given which was the same as the 

MEG experiment, except that it was ended after the participants made 4 correct 

responses in 5 consecutive sequences. In the MEG experiment, the participants made 

correct responses in 85 ± 2% and 86 ± 2% of sequences for the same-category 

condition and different-category condition, respectively (mean ± SEM across 

participants). 

 

Experiment 2: The experiment consisted of 5 conditions that were presented in 

separate blocks. In 3 conditions, participants performed different tasks while listening 

to the alternating-order sequence of same-category chunks. One task was a chunk-

level task that had to detect weather an invalid chunk appeared at a random position in 
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the sequence. The 2nd task was a word-level task, detecting if a concrete noun at a 

random position was replaced by an abstract noun. The 3rd task was an auditory task, 

detecting if the speaker’s voice was changed for a word at a random position of the 

sequence. The voice change was implemented by the change-gender function in Praat 

(Boersma, 2006). The participants made correct responses in 80 ± 5%, 91 ± 2% and 

96 ± 2% of sequences during the chunk-level task, word-level task and auditory task, 

respectively.  

 

The other 2 conditions presented random word sequences and sentence sequences, 

respectively. The participants performed a word-level task in these 2 conditions, 

detecting whether a word was replaced by an abstract noun. The participants made 

correct responses in 95 ± 1% and 88 ± 2% of sequences for the random word 

sequences and sentence sequences, respectively. 

 

After listening to a sequence, participants pressed different keys to indicate whether 

they detected an outlier or not. After the key press, the next sequence was presented 

after a silent interval randomized between 1 and 2 s (uniform distribution). Each 

condition consisted of 20 normal sequences and 5 outlier sequences, which were 

mixed and presented in a random order. Only the normal sequences were involved in 

the neural data analysis. All 5 conditions were presented in a random order, with the 

constraint that the 3 conditions using alternating-order chunk sequences are next to 

each other and the random word and sentence conditions are also next to each other. 

Participants were informed of the task before each stimulus condition. 

 

Before the MEG recording section, participants were familiarized with all the 

synthesized words using the same procedure in Experiment 1. Participants were also 

familiarized with the task before each condition by listening to 1 normal sequence and 

1 outlier sequence.  

 

Data Acquisition 

Neuromagnetic responses were recorded using a 306-sensor whole-head MEG system 

(Elekta-Neuromag, Helsinki, Finland) at Peking University, sampled at 1 kHz. The 

system had 102 magnetometer and 204 planar gradiometers. Four MEG-compatible 

electrodes were used to record EOG at 1000 Hz. Two electrodes were placed at the 
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left and right temples and their difference was the horizontal EOG (right minus left). 

Another 2 electrodes were placed above and below the right eye and their difference 

was the vertical EOG (upper minus lower). To remove ocular artifacts in MEG, the 

horizontal and vertical EOG were regressed out from the MEG recordings using the 

least-squares method. 

 

Four head position indicator (HPI) coils were used to measure the head position inside 

MEG. The positions of 3 anatomical landmarks (nasion, left, and right pre-auricular 

points), the 4 HPI coils, and at least 200 points on the scalp were also digitized before 

experiment. For MEG source localization purposes, structural Magnetic Resonance 

Imaging (MRI) data were collected from all participants using a Siemens Magnetom 

Prisma 3-T MRI system (Siemens Medical Solutions, Erlangen, Germany) at Peking 

University. A 3-D magnetization-prepared rapid gradient echo T1-weighted sequence 

was used to obtain 1 × 1 × 1 mm3 resolution anatomical images.  

 

Data Processing 

Temporal Signal Space Separation (tSSS) was used to remove the external 

interference from MEG signals (Taulu and Hari, 2009). Since the current study only 

focused on responses at 1 and 2 Hz, the MEG signals were bandpass filtered between 

0.5 and 3 Hz using a linear-phase finite impulse response (FIR) filter, and 

downsampled at 20 Hz. The response during each sequence was extracted and was 

referred to as a trial. The MEG signals were further denoised using a semi-blind 

source separation technique, the Denoising Source Separation (DSS). The DSS was a 

linear transform that decomposed multi-sensor MEG signals into components (de 

Cheveigné and Simon, 2008). The bias function of the DSS was chosen as the 

response averaged over trials within each condition. A common DSS for all conditions 

was derived based on the response covariance matrices averaged over conditions. The 

first 6 DSS components were retained and transformed back to the sensor space for 

further analysis. This DSS procedure was commonly used to extract cortical responses 

entrained to speech (Ding et al., 2016; Zhang and Ding, 2017). 

 

Source Localization 

The MEG responses averaged over trials were mapped into source space using cortex 

constrained minimum norm estimate (MNE) (Hämäläinen and Ilmoniemi, 1994), 
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implemented in the Brainstorm software (Tadel et al., 2011). The T1-weighted MRI 

images were used to extract the brain volume, cortex surface, and innermost skull 

surface using the Freesurfer software (http://surfer.nmr.mgh.harvard.edu/). In the MRI 

images, the 3 anatomical landmarks (nasion, left, and right pre-auricular points) were 

marked manually. Both three anatomical landmarks and digitized head points were 

used to align the MRI images with MEG sensor array. The forward MEG model was 

derived based on the overlapping sphere model (Huang et al., 1999). The identity 

matrix was used as noise covariance. Source-space activation was measured by the 

dynamic statistical parametric map (dSPM) (Dale et al., 2000) and the value was in 

arbitrary unit (a.u.). Individual source-space responses, consisting of 15,002 

elementary dipoles over the cortex, was rescaled to the ICBM 152 brain template 

(Fonov et al., 2011) for further analyses.  

 

Frequency-domain analysis 

In the frequency-domain analysis, to avoid the onset response, the response during the 

first second of each trial were removed. Consequently, the neural response was 11 s in 

duration for each trial. The average of all trials was transformed into the frequency 

domain using the Discrete Fourier Transform (DFT) without any additional smoothing 

window. The frequency resolution of the DFT analysis was 1/11 Hz. If the complex-

valued DFT coefficient at frequency f was denoted as X(f), the response power and 

phase were |X(f)|2 and ∠X(f) respectively. For the response power analysis, responses 

from the 2 collocated gradiometers were always averaged. Additionally, normalized 

power was calculated to compensate the baseline response power. The normalized 

power at frequency f was the difference between the power at f and the power 

averaged over 4 neighboring frequency bins (2 bins on each side). For the phase 

analysis, all magnetometers and gradiometers were separately analyzed. The circular 

mean was used to average the neural response phase over participants or sensors. The 

circular phase coherence was used to measure the spread of response phase across 

participants (Fisher, 1993). 

 

Statistical tests. 

All tests were based on bias-corrected and accelerated bootstrap (Efron and 

Tibshirani, 1994). In the bootstrap procedure, all participants were resampled with 

replacement 10000 times. All comparisons in this study were paired comparisons. For 
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one-sided comparison of response power, if the response power in one condition was 

greater than the other condition in A% of the resampled data, the significance level is 

(100A + 1)/10001. For two-sided comparisons, if the response power was greater in 

one condition for A% of the resampled data, the significance level is (200A + 

1)/10001. 

 

Spectral peak: The statistical significance of a spectral peak at frequency f was tested 

by comparing the response power at f with the power averaged over 4 neighboring 

frequency bins (2 bins on each side, one-sided comparison). The significance test was 

only applied to the response power at the chunk and word rates. A false discovery rate 

(FDR) correction was applied to these two frequencies. 

 

Power difference between conditions or hemispheres: A two-sided test was used to 

compare the normalized power between conditions. To characterize response 

lateralization in the sensor space, normalized response power was averaged over the 

left and right hemispheres respectively (96 gradiometers in each hemisphere). 

 

Response phase: A two-sided test was used to compare the response phase difference 

between conditions. The A% confidence interval of the phase difference was 

measured by the smallest angle that could cover A% of the 10000 resampled phase 

difference. If the confidence interval did not include 0° or 180°, the response phase 

significantly deviated from 0° or 180° (significance level 1 − A%). 

 

 

Model Simulations 

The lexical property model and the semantic relatedness model were based on lexical 

features. For the simple model illustrated in Fig. 2, only 2 features were considered, 

i.e., is-living or is-nonliving. Each feature took a binary value, i.e., 1 for yes and 0 for 

no. For the realistic model illustrated in Supplementary Fig. 2, 300 feature dimensions 

were used and each feature was coded by a real number. The features were derived 

based on the word2vec model (Bengio et al., 2003) and the model was trained based 

on large copora (the ‘combination’ corpora) (Li et al., 2018). The word2vec model is 

built on recurrent neural networks that do not consider phrasal structures. 
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In model simulations, each feature dimension was denoted by a pulse sequence. A 

pulse was placed at the onset of each word and its amplitude was the feature value 

(Supplementary Fig. 1). For the word2vec model, the amplitude could be negative. 

For the lexical property model, the neural response was simulated by convolving the 

feature pulse sequence with a response function, which was a 500-ms duration 

Gaussian window. For the lexical property model, the neural response to each feature 

was independently simulated and transformed into frequency domain. For the simple 

model in Fig. 2, the 2 feature dimensions were shown separately. For the word2vec 

model that used 300 feature dimensions, the power spectrum was averaged over 

feature dimensions (Frank and Yang, 2018). 

 

For the semantic similarity model, the similarity between feature vectors was 

measured by the Euclidean distance (Supplementary Fig. 1). A pulse sequence 

denoting the Euclidean distance between the current word and the previous word was 

used to simulate the neural response. Based on this method, if neighboring words 

were represented by similar feature vectors, their distance would be small and 

consequently the neural response amplitude would be small, consistent with the neural 

adaptation effect. 

 

The rule-based chunking model predicted a consistent change of neural activity within 

the duration of a chunk, but had no specific assumptions about the waveform of the 

neural response. Here, to facilitate the comparison with the semantic relatedness 

model, it is further assumed that the response was stronger at the chunk onset. The 

rule-based chunking model was also simulated by convolving the response function 

with a pulse sequence. In the pulse sequence, a pulse was placed at the word onset. 

The pulse amplitude was 1 for the first word in the chunk and was 0.5 for the second 

word in the chunk. 
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Figure Legend 

 

 

Figure 1. Three models for sentence-tracking neural activity. The stimuli in this 

illustration are all 2-word sentences (noun + verb). Words are isochronously presented 

at 2 Hz. Sentence boundaries are marked by black dashed lines while word boundaries 

within a sentence are marked by gray dotted lines. The lexical property model 

assumes neurons that are selectively tuned to nouns and verbs. The semantic 

relatedness model assumes that the neural response to a word is attenuated if the word 

is preceded by a semantically related word. Additionally, it is assumed that words 

within a sentence are more closely related than words across a sentence boundary. The 

rule-based chunking model assumes a consistent change of neural activity within a 

mentally constructed chunk. Here, to facilitate the comparison with the semantic 

relatedness model, it is further assumed that the neural response is stronger at the 

chunk onset. All the 3 models can generate sentence-tracking neural activity. 
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Figure 2. Stimuli in Experiment 1 and model simulations. (A) Stimuli consist of 

isochronously presented nouns, describing either living (L) or nonliving (N) things. 

Two words construct a chunk and the chunks further construct sequences. Different 

chunks are used in the same-category condition (upper panel) and different-category 

condition (lower panel). Sequences in each condition further divides into alternating-

order (left panel) and random-order (right panel) sequences. In the illustration, chunk 

boundaries are marked by black dashed lines while word boundaries within a chunk 

are marked by gray dotted lines. (B) The task is to decompose each sequence into 2-

word chunks and detect invalid chunks. Three trials and the correct responses are 

shown for each condition (tick and cross for normal and outlier trials respectively). 

Red underlines highlight the invalid chunks. (C) Predicted neural responses to the 

alternating-order sequences. The lexical model separately considers neurons 

selectively tuned to living and nonliving things. The semantic relatedness model and 

the rule-based chunking model, but not the lexical property model, generate a chunk-

rate response. The tilted blue regions illustrate that the alternating-order sequences 

only differ by a time lag between the same-category and different-category 

conditions. Neural responses predicted by the lexical property and semantic 

relatedness models also differ by a time lag between conditions. (D) Predicted 

responses to the random-order sequences. (E) Predicted chunk-rate response power. 

The semantic relatedness model, but not the rule-based chunking model, predicts a 

difference in response power between alternating- and random-order sequences. (F) 

The semantic relatedness model predicts a 180° phase difference between same- and 

different-category conditions, while the rule-based chunking model predicts a 0° 

phase difference. * P <0.05, ** P < 0.01 
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Figure 3. Response power results of Experiment 1. (A) The response power spectrum 

averaged over participants and MEG gradiometers. A chunk-rate response peak and a 

word-rate response peak are observed. The shaded area covered 1 SEM over 

participants on each side. (B) Normalized chunk- and word-rate response power. The 

chunk- and word-rate response power does not significantly differ between 

conditions. (C, D) Response topography (gradiometers) and source localization 

results, averaged over participants. Only statistically significant sensors (shown by 

black dots) and vertices are shown (P < 0.05, FDR corrected) are shown in the 

topography and localization results. Chunk-rate and word-rate responses are mainly 

generated from bilateral temporal areas. The neural source localization results are 

shown by the dSPM values. * P <0.05, ** P < 0.01 
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Figure 4. Phase difference between the same-category and the different-category 

conditions, for the alternating-order sequences (A-C) and random-order sequences (D-

F). (A, D) Phase difference between conditions for each MEG sensor (both 

magnetometers and gradiometers). The results are grand averaged over participants. 

The phase difference angle of each sensor is indicated by a bar originating from the 

location of the sensor (shown by a black dot). The coherence of phase difference over 

participants is indicated by length of the bars. The phase difference angle is coded by 

both the orientation and the color of the bar. (B, E) Histogram of the phase difference 

for all 306 MEG sensors. The phase difference angle is closer to 0° (predicted by the 

rule-based chunking model) than 180° (predicted by the semantic relatedness model). 

(C, F) Response from a representative sensor (circled position in red in A and D). The 

waveform is filtered around 1 Hz, i.e., the chunk rate, which is highly consistent for 

the same-category chunk condition and the different-category chunk condition. 
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Figure 5. Results of Experiment 2. A-E) The response spectrum averaged over 

participants and MEG gradiometers are shown on the left. The response topography at 

the chunk- and word-rate (gradiometers) are shown in the grayscale plots in the 

middle. The source localization results are shown in the right (see the legend of Fig. 3 
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for details). For the topography and source localization results, only statistically 

significant sensors (shown by black dots) and vertices are shown (P < 0.05, FDR 

corrected) are shown. F) The normalized power at chunk and word rates. For the 

alternating-order chunk sequence, the chunk-rate response is stronger when 

participants attend to the chunks but remain significant when participants attend to 

words or auditory features. No significant chunk-rate response is observed for a 

random word sequence while a clear sentence-rate response is observed for a sentence 

sequence. The word-rate response is comparable across conditions. * P <0.05, ** P < 

0.01 
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Supplementary Figure 1. Procedures to simulate the lexical property model and the 

semantic relatedness model. The left panel illustrates the representation of lexical 

features. Each feature dimension is represented by a pulse sequence, with a pulse 

being placed at the onset of each word and the amplitude of the pulse being 

modulated by the word feature. One feature dimension is illustrated here and it is a 

binary feature denoting nonliving things. For the models using word2vec features, 

each feature is coded by a real number instead of the binary numbers shown in this 

illustration. Neural response predicted by the lexical property model is simply the 

feature sequence convolving a response function, which is a 500-ms Gaussian 

window. For the semantic relatedness model, the Euclidean distance is used to 

measure semantic similarity between feature vectors. Since the neural response does 

not completely disappear even the same word repeats, we provide a DC offset to the 

Euclidean distance sequence, i.e., the partial adaptation model in the figure. 
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Supplementary Figure 2. Model simulations based on word representations learned 

from natural language. The 300-dimensional vectorial representation of each word is 

learned from large corpus using the word2vec model (Bengio et al., 2003; Li et al., 

2018). Unlike the simulations in Fig. 2, the 300-dimentional features here are purely 

data driven, not necessarily corresponding to specific semantic categories, e.g., living 

and nonliving things. For lexical property model, the neural responses to all 300 

features were averaged in frequency domain. For semantic relatedness model, the 

semantic relatedness between neighboring words is measured by the Euclidean 

distance between the 300-dimentional representations. The rule-based model does not 

depend on word representations and therefore is not plotted here. (A) Response 

spectrum. The semantic relatedness model, but not the lexical property model, 
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generates a chunk-rate response, consistent with the results in Fig. 2. (B) The 

normalized chunk-rate response power. For the lexical property model, the normalized 

power has negative values (n.v.) or is close to zero. The semantic relatedness model 

predicts a difference in response power between alternating- and random-order 

sequences, consistent with the results in Fig. 2. (C) The semantic relatedness model 

predicts a 180° phase difference between same- and different-category conditions, 

consistent with the results in Fig. 2. The phase difference is not shown for the lexical 

property model since it predicts no significant chunk-rate response. * P <0.05, ** P < 

0.01 
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