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Abstract

Cortical activity tracks the rhythms of phrases and sentences during speech
comprehension, which has been taken as strong evidence that the brain groups words
into multi-word chunks. It has prominently been argued, in contrast, that the tracking
phenomenon could be explained as the neural tracking of word properties. Here we
distinguish these two hypotheses based on novel tasks in which we dissociate word
properties from the chunk structure of a sequence. Two tasks separately require
listeners to group semantically similar or semantically dissimilar words into chunks.
We demonstrate that neural activity actively tracks task-related chunks rather than
passively reflecting word properties. Furthermore, without an explicit ‘chunk
processing task,’ neural activity barely tracks chunks defined by semantic similarity -
but continues to robustly track syntactically well-formed meaningful sentences. These
results suggest that cortical activity tracks multi-word chunks constructed by either
long-term syntactic rules or temporary task-related rules. The properties of individual

words are likely to contribute only in a minor way, contrary to recent claims.

Introduction

How the brain processes language is a central question in cognitive science,
neuroscience, and linguistics. In general, speech utterances such as sentences are not
memorized sequences, but instead are proposed to reflect compositional processes
which allow us to understand and produce countless new sentences never heard before
(such as the one you are currently reading). Therefore, to derive the meaning of a
sentence, the brain has to integrate information across words, the meaning of which
are stored in long-term memory. How the brain integrates information across words,
however, remains debated (Hagoort and Indefrey, 2014; Goucha et al., 2017; Romeo
et al., 2018), and a variety of hypotheses have been proposed (Townsend and Bever,
2001; Ferreira et al., 2002; Everaert et al., 2015). At one end of the spectrum, it has
been hypothesized that the brain applies a set of syntactic rules to recursively combine
words into larger chunks, forming a hierarchically organized syntactic structure, and

then derives meaning of a sentence based on its syntactic structure (Chomsky, 1957;
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Frazier and Fodor, 1978; Friederici, 2002). At the other end of the spectrum, it has
been hypothesized that the brain does not construct multi-word chunks at all but
instead directly integrates information across words by statistical and semantic
analysis (Elman, 1990; Frank et al., 2012; Christiansen and Chater, 2016). It is
challenging to adjudicate among these hypotheses, as multi-word chunks are

‘intermediate’ mental representations that can are hard to measure directly.

Recent neurophysiological results have been shown that when presented with speech,
the brain concurrently tracks multiple levels of linguistic units, such as sentences,
phrases, words, and syllables (Fig. 1) (Ding et al., 2016; Makov et al., 2017;
Brodbeck et al., 2018; Broderick et al., 2018; Ding et al., 2018; Keitel et al., 2018).
Critically, neural tracking of phrases and sentences remains when the phrasal and
sentential boundaries are not cued by prosodic features or by the transitional
probability between words. This phenomenon has been taken as strong evidence for
the hypothesis that the brain applies grammatical rules to group words into chunks
(Ding et al., 2016; Martin and Doumas, 2017). This hypothesis is referred to as the
rule-based chunking hypothesis in what follows. Challenging this position, it has been
argued that neural tracking of phrases and sentences can potentially be explained by
neural tracking of properties of individual words alone. In the following, we illustrate
these ideas using sentence-level tracking as an example; the same principle also

applies to phrase-level tracking.

First, it is known that some neural populations are selectively tuned to words from
specific syntactic (Caramazza and Hillis, 1991; Daniele et al., 1994) or semantic
categories (Warrington and Shallice, 1984; Bi et al., 2016). For the experimental
paradigm shown in Fig. 1, all sentential stimuli have the same syntactic structure.
Therefore, neural activity tracking lexical properties, such as part of speech
information or lexical semantic information that distinguishes objects and actions,
may appear to track sentences (dark and light blue curves in Fig. 1). Consistent with

this lexical property model, it has been shown that apparent neural tracking of
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sentences could be observed if the neural response independently represents each
word using multidimensional features learned by statistical analysis of large corpora
(Frank and Yang, 2018). In other words, neural populations that are tuned to lexical
features of individual words may show activity that apparently tracks sentence

structures.

Second, it is well established that the neural response to a word depends on the
context and the response amplitude is smaller if the word is semantically related to
previous words (Lau et al., 2008; Kutas and Federmeier, 2011). In general, words
within the same sentence are more related than words from neighboring sentences.
Therefore, for a context-dependent neural response, its amplitude is expected to be
stronger at the beginning of a sentence, leading to apparent neural tracking of
sentences (red curve, Fig. 1). This model considers semantic relatedness between
words, but it does not consider the sentence structure: Semantic relatedness is
evaluated the same way within and across sentence boundaries. Apparent sentence

tracking behavior is generated since words within a sentence are more closely related.

The lexical property model and semantic relatedness model do not assume linguistic
chunks and therefore provide different explanations for sentence/phrase-tracking
responses than the rule-based chunking model (green curve, Fig. 1). The rule-based
chunking model, however, has additional flexibility, allowing the same sequence of
words to be grouped differently based on different sets of rules. This flexibility is
most clearly demonstrated when processing structurally ambiguous sequences. For
example, “sent her kids story books” can be chunked as “sent [her kids] story books”
or “sent her [kids story books]” (Shultz and Pilon, 1973). For such structurally
ambiguous sentences, the rule-based chunking model, but not the lexical property
model or the semantic relatedness model, would predict different phrase-tracking

responses when the sentence is chunked differently.
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Here, we distinguish the rule-based chunking model from the word-based models by
designing a structurally ambiguous word sequence and two different rules to bias the
chunking of this sequence. The word sequence is a sequence of nouns that describe
either living (L) things or nonliving (N) things (Fig. 2A). The sequence has no
syntactically defined chunks. Nevertheless, the participants are explicitly instructed
about how to chunk the sequence, and the chunks are differently constructed in 2
separate conditions. While participants listen to the word sequences, we recorded
cortical responses using MEG. Both word-level models, i.e., the lexical property
model and the semantic relatedness model, predict the same neural response when
participants listen to the same word sequence regardless of how the sequence is
chunked. The rule-based chunking model, however, predicts chunk-dependent neural
responses. Additionally, we also tested how the brain encodes the word sequence and

sentence sequences without explicit chunking tasks.

Results

Word Sequences and Model Predictions

In Experiment 1, participants were instructed to parse a sequence of words into
chunks and each chunk consisted of 2 words. The words were drawn from 2
categories, i.€., living and nonliving things. The experiment contrasted 2 conditions in
which the chunks were constructed based on different rules. In one condition, referred
to as the same-category condition, the 2 words in a chunk belonged to the same
semantic category (Fig. 2A, upper panel). In the other condition, referred to as the
different-category condition, the 2 words in a chunk were drawn from different
categories (Fig. 2A, lower panel). Based on these rules, there were 2 valid chunks in
the same-category condition, i.e., LL and NN, and also 2 valid chunks in the different-

category condition, i.e. NL and LN.

The same- and different-category conditions were presented in separate blocks. In
each condition, participants had to parse the sequences into chunks, i.e., pairs of

words, and detect invalid chunks that were occasionally presented. They had to press


https://doi.org/10.1101/742585
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/742585; this version posted August 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

different keys after trials containing or not containing invalid chunks (Fig. 2B). The
sequences in each condition (N = 60) were further divided into 2 types of sequences,
i.e., the alternating-order sequence (N = 30) and the random-order sequence (N = 30).
In the alternating-order sequence, the 2 valid chunks in each condition were
interleaved while in the random-order sequence the 2 valid chunks were presented in
random order. The alternating-order sequences and the random-order sequences were
intermixed and presented randomly in each block. The neural responses to these 2
types of sequences were separately analyzed. The alternating-order sequences allowed
an intuitive comparison between the same- and different-category conditions, which
would be detailed in the following. The random-order sequences were designed as
fillers to increase variability, but model simulations in the following show that they

can also distinguish the 3 hypotheses in Fig. 1.

Simulations of the neural responses to the alternating- and random-order sequences by
the 3 models are shown in Fig. 2 for both the same- and different-category conditions.
The lexical property model considers 2 neural populations that selectively respond to
living and nonliving word meanings, respectively. The simulated neural response
analyzed in the frequency domain demonstrates that none of the population shows a
chunk-rate response peak in the spectrum (dark and light blue curves in Fig. 2CD). In
contrast to the lexical property model, the semantic relatedness model and the rule-
based chunking model predict a chunk-rate response peak (red and green curves
respectively in Fig. 2CD). The semantic relatedness model further predicts that the
chunk-rate response is stronger for the alternating-order sequence than the random-
order sequence (Fig. 2E). The rule-based chunking model, however, predicts similar

response amplitude for the 2 kinds of sequences (Fig. 2E).

A more fundamental difference between the semantic-relatedness model and rule-
based chunking model lies in their predictions about the chunk-rate response phase.
The semantic-relatedness model predicts a 180° phase difference between same- and

different-category conditions, while the rule-based chunking model predicts a 0°
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phase difference between conditions. For the alternating-order sequence, these
predictions are straightforward: These sequences are offset by 1 word between the
same- and different-category conditions. Consequently, neural activity tracking
semantic relatedness between words is offset by the duration of a word between
conditions. For neural activity oscillating at the chunk rate, this time lag leads to a
180° phase difference (Fig. 2F). For the random-order sequence, although less
straightforward, model simulation shows that the chunk-rate response has a 180°
phase difference between conditions (Fig. 2F). For the rule-based model, however, the
response is aligned with the chunk boundaries, which are not affected by the
conditions and sequence types. Therefore, the rule-based model predicts the same
response phase, i.e. a 0° phase difference, for the same- and different-category

conditions (Fig. 2F).

In summary, the 3 models considered in this study lead to different predictions about
the neural response properties (Fig. 2). Details about the model simulations are given
in Supplementary Fig. 1. The lexical property model and the semantic relatedness
model are simulated based on neurons that have ideal tuning to living/nonliving
things, but similar results can be obtained using realistic semantic models of words,
1.e., the word2vec model learned by statistical analysis of natural language
(Supplementary Fig. 2). The word2vec model, a connectionism model that does not
explicitly model phrasal structures, can successfully capture semantic relationship
between words (Bengio et al., 2003). In the following, we turn to the actual neural
responses obtained using MEG and evaluate their consistency with the simulations

made for the 3 different models.

Task-dependent Neural Tracking of Alternating-order Sequences

First, we analyzed the MEG responses to the alternating-sequences. The MEG
responses were separately averaged for the same- and different-category conditions
and the mean response was transformed to the frequency domain. The response

spectrum averaged over all MEG gradiometers showed clear peaks at the chunk and
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word rates (Fig. 3A, left 2 plots). The chunk-rate response power was significantly
stronger than the power in neighboring frequency bins in both conditions (P =0.0001
for both the same- and different-category conditions; bootstrap, Methods, FDR
corrected). The chunk-rate spectral peak was consistent with the semantic relatedness
model and the rule-based chunking model, but not with the lexical property model
(Fig. 2C). More importantly, the phase difference between conditions is closer to 0°
than 180° in all MEG sensors (Fig. 4AB), consistent with the rule-based chunking
model (Fig. 2F). Specifically, the response phase difference was significantly different
from 180° in 99% of the sensors (303 out of 306, P < 0.01, bootstrap, Methods, not
corrected for multiple comparisons). For the response phase difference averaged over
all MEG sensors, the 99% confidence interval over participants ranged from -50° to

15°, which is centered around 0° and does not include 180°.

In the response topography, the chunk- and word-rate responses both show bilateral
activation over the temporal lobes (Fig. 3CD). The chunk-rate response was stronger
in the left hemisphere: The response averaged over left hemisphere sensors was
significantly stronger than the response averaged over the right hemisphere sensors (P
=0.014 and 0.017 for the same- and different-category conditions respectively;
bootstrap, Methods). The word-rate response was significantly stronger in the right
hemisphere for the same-category condition (P = 0.019; bootstrap, Methods) but did
not differ across the different-category condition (P = 0.157; bootstrap, Methods).
Neural source localization showed that both the chunk- and the word-rate responses

were mainly generated from bilateral temporal lobes (Fig. 3CD).

Task-dependent Neural Tracking of Random-order Sequences

The MEG responses to random-order sequences was analyzed the same way as the
responses to alternating-order sequences. In the response spectrum, clear peaks were
observed both for the chunk and word rates (Fig. 3A, right 2 plots). The chunk-rate
response power was significantly stronger than the power in neighboring frequency

bins in both conditions (P = 0.0001 for both the same- and different-category
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conditions; bootstrap, Methods, FDR corrected). The chunk-rate response power was
not significantly different between random- and alternating-order sequences (P =
0.879 and 0.320 for same- and different-category conditions respectively; bootstrap,
Methods, FDR corrected; Fig. 3B). The word-rate response power was significantly
stronger for random-order sequence than alternating-order sequence in different-
category condition (P = 0.022; bootstrap, Methods) but not for the same-category
condition. Furthermore, for the chunk-rate response, the phase difference between
conditions was closer to 0° than 180° in all MEG sensors (Fig. 4DE). The phase
difference was significantly different from 180° in 99% of the sensors (303 out of 306
sensors, P < 0.01, bootstrap, Methods, not corrected for multiple comparisons). For
the phase difference averaged over MEG sensors, the 99% confidence interval over
participants ranged from -45° to 71°, which was centered around 0° and did not
include 180°. Altogether, both the power and phase results are consistent with the
prediction of the rule-based chunking model. The response waveform is shown for a
representative MEG sensor, which oscillates in phase in the 2 conditions (Fig. 4CF).
The representative sensor has the highest normalized power at the chunk rate, when

averaged over the 2 conditions.

In the response topography, the chunk- and word-rate responses both showed bilateral
activation over the temporal lobes (Fig. 3CD). The chunk-rate response was
significantly stronger in the left hemisphere for the different-category condition (P =
0.0002; bootstrap, Methods) but not for the same-category condition (P = 0.353;
bootstrap, Methods). The word-rate response showed no significant lateralization (P =
0.103 and P = 0.089 for same- and different-category conditions respectively;
bootstrap, Methods). Neural source localization results showed that both the chunk-
and the word-rate responses were mainly generated from bilateral temporal lobes (Fig.

3CD).

Task Modulation of Neural Tracking of Semantic Chunks

In Experiment 1, we designed 2 sets of chunks and explicitly asked participants to
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parse sequences into 2-word chunks. In Experiment 2, we further investigate whether
semantic similarity can automatically drive chunk-tracking neural responses without
an explicit chunking task. For this purpose, we presented sequences that had the same
structure as the alternating-order sequences in the same-category condition of
Experiment 1. Participants, however, perform 3 different tasks in separate blocks. The
first task consisted of a chunk-level task, similar to the task in Experiment 1, i.e.
detecting invalid chunks. The second task consisted of a word-level task, detecting if
a concrete noun, i.e., living or nonliving things, was replaced by an abstract noun. The

third task was an auditory task, detecting a change in the speaker’s voice.

Fig. 5A, B, and C show the MEG response spectrum for the chunk-level, word-level,
and auditory tasks, respectively. When participants perform the chunk-level task, a
strong chunk-rate response was observed in the spectrum, replicating results of
Experiment 1. When performing the auditory and word-level tasks, however, the
chunk-rate responses were weaker. The chunk-rate response power was significantly
stronger than the power in neighboring frequency bins during all 3 tasks (P = 0.0001,
0.001, and 0.0001 for chunk-level, word-level and auditory tasks respectively;
bootstrap, Methods, FDR corrected). While the chunk-rate response was statistically
significant for all 3 tasks, the response was significantly stronger in the chunk-rate
task than the word-level task (7.6 dB difference; P = 0.0006; bootstrap, Methods) and
the auditory task (8.2 dB difference; P = 0.0004; bootstrap, Methods). These results
indicate that semantic similarity between words can drive a chunk-tracking response
without an explicit chunking task but the chunk-tracking response is greatly enhanced

during an explicit chunking task.

In the response topography, the chunk- and word-rate responses both showed bilateral
activation over temporal lobes (Fig. 5). The chunk-rate responses were stronger in the
left hemisphere during the chunk-level task (P = 0.0002; bootstrap, Methods) but not

during the word-level and auditory tasks (P = 0.209 and 0.158 respectively; bootstrap,

Methods). The word-rate response showed left lateralization during the auditory task
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(P =0.042; bootstrap, Methods) but not during the chunk-level and word-level tasks
(P=0.058 and 0.065 respectively; bootstrap, Methods). Source localization showed
that both the chunk- and the word-rate responses were mainly originated in bilateral

temporal lobes (Fig. 5).

Task-irrelevant Neural Tracking of Sentences and Word Sequences

The data above show that neural activity can spontaneously track word chunks
defined by semantic similarity. However, without an explicit chunking task, the
chunk-rate response is rather weak. Here, a control condition is used to further
validate whether the weak chunk-rate response is driven by semantic similarity, rather
than, e.g., the tendency to segment any word sequence into 2-word chunks. In the
control condition, living and nonliving things were presented in a random order, not

consistently forming pairs belonging to the same semantic category.

Additionally, chunking of natural languages relies on both semantic and syntactic
cues. Therefore, in the final condition, we investigate whether word chunks defined
by syntactic rules can drive chunk-rate responses even in the absence of an explicit
chunking task. In the sentence condition, each sentence started with a 2-syllable noun,
followed by a 2-syllable verb. In both the control condition and the sentence
condition, participants performed a word-level task, detecting occasionally occurring

abstract nouns.

The responses to sentences and random words are shown in Fig. SDE. During the
word-level task, a strong chunk-rate response was observed for the sentence condition
but not for the control condition. Only for the sentence condition, the chunk-rate
response power was significantly stronger than the power in neighboring frequency
bins (P =0.0002; bootstrap, Methods). The chunk-rate response was also stronger in
the sentence condition than the control condition (P = 0.0004; bootstrap, Methods).
Furthermore, the chunk-rate response was also stronger for sentences than chunks

grouped by semantic similarity (P =0.001, 0.0004, and 0.0004 for the chunk-level,
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word-level, and auditory tasks respectively; bootstrap, Methods; FDR corrected).

Therefore, rules drive a chunk-rate response more strongly than semantic similarity.

As for the response topography, in the sentence condition, the chunk-rate response
topography showed activation over bilateral temporal lobes (Fig. SDE) and the
activation was stronger in the left hemisphere (P = 0.0002; bootstrap, Methods). In the
control condition, the chunk-rate response was not statistically significant, without
clear activation in the sensor and source space. The word-rate response also showed
activation over bilateral temporal lobes and the activation was stronger in the left
hemisphere for both the sentence and control condition (P =0.049 and 0.027
respectively; bootstrap, Methods). Neural source localization confirmed that the
chunk-rate response in the sentence condition and the word-rate responses were

mainly generated from bilateral temporal lobes (Fig. SDE).

Discussion

How words are grouped into multi-word chunks such as phrases and sentences during
speech comprehension is a prominent question in psychology and cognitive
neuroscience. Here we demonstrate that low-frequency neural activity can track
multi-word chunks that are mentally constructed based on artificial chunking rules
instead of word properties (Figs. 3 and 4). These results contradict models that
assume word-level neural representations only and support a rule-based chunking
model. The 3 models considered here, however, are all built on well-motivated
psychological and neuroscientific evidence, and in the following we briefly review
each model and discuss why the rule-based chunking model is the only one able to

generate correct predictions about the neural responses.

Lexical Representation Hypothesis
The lexical representation hypothesis posits that the neural tracking of multi-word
linguistic chunks is driven by neural tracking of lexical properties of individual words

(Fig. 1) (Frank and Yang, 2018). This hypothesis builds on the findings that different
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categories of words have distinct representations in the brain. Both neurological
studies and functional imaging studies have shown that words from different
grammatical categories, e.g., verbs and nouns, are separately represented in the brain
(Vigliocco et al., 2011; Yang et al., 2017) and can be selectively impaired (Caramazza
and Hillis, 1991; Daniele et al., 1994). Similarly, objects from distinct semantic
categories, e.g., living and nonliving things, are separately represented in the brain

and can be selectively impaired (Warrington and Shallice, 1984; Bi et al., 2016).

Neural sensitivity to semantic categories has been mostly reported using fMRI, PET,
and lesion studies, but few studies have suggested that it can be detected with the
spatial resolution of MEG. For example, using a multi-channel MEG decoding
technique, it has been shown that the neural responses to living and nonliving things,
presented by auditory words, can be distinguished at about 70% accuracy (Chan et al.,
2011). Using similar decoding approaches, the semantic categories of visually
presented objects have been successfully decoded (Carlson et al., 2011; Sudre et al.,
2012). Although these studies have shown that the spatial pattern of cortical activity
carries semantic information using sophisticated multivariate neural decoding
approaches, to our knowledge no study has shown that univariate MEG/EEG
responses (e.g., single-channel responses or global field power) could clearly
distinguish the semantic content of words. The neural responses to word chunks (both
task-defined chunks and syntactically defined sentences), however, can be observed in
single MEG/EEG sensors and in the global field power (Ding et al., 2016; Jin et al.,
2018), and therefore is not easily explained by the category-dependent spatial

representations in the brain.

In terms of neural sensitivity to grammatical categories of words, it is shown that the
event-related potentials (ERP) evoked by verbs and nouns have statistically
significant differences (Pulvermiiller et al., 1999; Barber et al., 2010). This
phenomenon cannot explain neural tracking of chunks of nouns but can potentially

explain neural tracking of sentences. Nevertheless, the category-dependent ERP
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component, i.e., the difference between the ERP to different word categories, is much
weaker than the ERP averaged across word categories. In other words, the EEG/MEG
response evoked by an auditory word is dominated by a category-independent
component. The neural response to sentences, however, is of similar amplitude to the
response to words (Fig. 4), and therefore can hardly be explained by differential
neural sensitivity to verbs and nouns. In sum, our study provides compelling evidence
showing that words from different syntactic or semantic categories are represented by
distinguishable distributive spatial patterns in the brain. For MEG/EEG responses that
are summed over large-scale neural networks, however, word category information
does not strongly modulate the response strength or time course and therefore barely

contributes to the chunk-tracking MEG response.

Semantic Relatedness Hypothesis and Semantic Predictions

The semantic relatedness hypothesis posits, in turn, that the neural tracking of multi-
word linguistic chunks is driven by tracking of semantic relatedness between
neighboring words (Fig. 1). Here, semantic relatedness refers to both semantic
similarity (e.g., travel - journey) and semantic associations (e.g., travel - plan). The
semantic-relatedness hypothesis builds on the priming effect in the psychological
literature (Tulving and Schacter, 1990) and the neural adaptation effect in the
neuroscience literature (Grill-Spector et al., 2006). It is well established that if a word
is preceded by a semantically related word, its processed faster (Collins and Loftus,
1988) and its neural response, especially the ERP N400 component and its MEG
counterpart, is reduced (Lau et al., 2009; Kutas and Federmeier, 2011; Broderick et
al., 2018).

In this study, words from the same semantic category are more closely related than
words drawn from different categories. Nevertheless, the categories used here are
broad categories (e.g., animals or plants). In general, words from a broad category,
e.g., animals, are only weakly related compared with words from a narrower category,

e.g., birds (Vigliocco et al., 2002; Quinn and Kinoshita, 2008). A weak relationship
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between words predicts a weak priming effect on the neural response (Federmeier and
Kutas, 1999), which may underlie why semantic relatedness between words does not

explain the chunk-tracking neural activity.

The semantic relatedness model discussed here builds on the priming and neural
adaptation effects. Priming and neural adaptation, however, can be caused by multiple
factors and can be generally observed for any predictable stimulus (Friston, 2005;
Bar, 2007; Tian and Poeppel, 2013). Previous studies have identified 2 kinds of
semantic priming, i.e., automatic and strategic priming (Neely, 1977). Automatic
priming can be caused by, e.g., semantic relatedness between words in long-term
memory. Strategic priming, however, can actively predict upcoming words based on
temporally learned association rules. Behavioral experiments have demonstrated a
cross-category priming effect if the prime word from one category, e.g., tools, is
known to predict target words from a different category, e.g., animals (Neely, 1977).
In other words, participants can make use of association rules learned during an
experiment to actively predict words that have no long-term semantic relationship
with the prime word. Different from automatic priming that can occur with very short
SOA between words, strategic priming occurs when the SOA between the prime and

target words is relatively long, e.g., >400 ms (Hutchison, 2007).

In the current study, the SOA between words is 500 ms, allowing strategic priming to
occur. Furthermore, since the chunking rule remains the same in each block, listeners
can prepare in advance about how to parse the sequences, making strategic
predictions to occur more easily. Based on the knowledge about valid chunks, the
semantic category of the 2" word in each chunk is fully predictable in both the same-
category condition and the different-category condition. The 1% word in each chunk is
also predictable in the alternating-order sequences but not predictable in the random-
order sequences. Since the alternating-order sequences and the random-order
sequences are mixed, predictability is generally lower for the 1% word than for the 2™

word in each chunk. Therefore, for strategic predictions, the predictability of words
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correlates with the chunk structure. This kind of strategic predictions, however, is
based on rule-based chunking instead of semantic relatedness stored in long-term

memory.

Rule-based Chunking Hypothesis

The rule-based chunking hypothesis posits that low-frequency neural activity reflects
the grouping of words into chunks, e.g., phrases and sentences. The hypothesis is
motivated by linguistic research on syntax (Chomsky, 1957) and psychological
evidence for the mental representations of chunks (Miller, 1956). Psycholinguistic
studies have provided evidence that the mental representation of speech is organized
in the units of clauses and sentences. For example, after listening to a long sentence,
words from the immediate clause can be better recalled than words from previous
clauses (Jarvella, 1971; Caplan, 1972). Furthermore, if a click is presented during
speech, the perceived timing of the click is attracted towards major syntactic
boundaries (Fodor and Bever, 1965; Garrett et al., 1966). In terms of the neural basis,
fMRI studies have demonstrated that distributed brain areas are involved in grouping
words into chunks (Friederici et al., 2000; Lerner et al., 2011; Pallier et al., 2011;
Bulut et al., 2017). MEG and EEG studies have suggested that low-frequency neural
activity tracks linguistic structures (Ding et al., 2016; Meyer et al., 2016; Martin and
Doumas, 2017; Meyer and Gumbert, 2018). Recent work suggests that animals can
also parse motor sequences into hierarchically organized chunks (Geddes et al., 2018;

Jiang et al., 2018).

Neural tracking of linguistic structures strongly depends on the task, demonstrating an
active chunking process. Neural tracking of multisyllabic words and multi-word
chunks is largely abolished during sleep (Makov et al., 2017) or when the listeners are
distracted by competing sensory stimuli (Ding et al., 2018). Here, it is further
demonstrated that neural tracking of a structurally ambiguous sequence relies on the
chunking rule. Similar findings have been obtained when listening to a sequence of

pure tones. When listeners imagine that an isochronous tone sequence is divided into
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groups of 2 or groups of 3, the neural responses to the tone sequence track not only

individual tones but also the imagined groups (Nozaradan et al., 2011).

The chunk-rate response is consistent with the rule-based chunking model. However,
it may reflect the actual chunking process or downstream processes building on the
multi-word chunks. After the chunk structure is parsed, the listener could synchronize
their attention and predictions to the sequence. Previous studies have suggested that
entrained neural oscillations may reflect both sequence parsing (Ding et al., 2016;
Kosem et al., 2016; Meyer et al., 2016; Wang et al., 2017; Meyer and Gumbert, 2018)
and temporal attention/prediction (Morillon and Baillet, 2017; Jin et al., 2018;
Rimmele et al., 2018), and could causally modulate speech perception (Kosem et al.,
2018; Riecke et al., 2018; Zoefel et al., 2018). The current results cannot distinguish
which chunk-related process drives the chunk-rate response. What can, however, be
concluded here is that the chunk-rate response cannot be driven by properties of
individual words, and it can only occur after the brain parses a sequence into chunks.
Thus, the current study and previous studies (Ding et al., 2016) provide strong support
to notion that the brain can construct superordinate linguistic representations based on

either long-term syntactic rules or temporary rules learned in an experiment.

Methods

Participants

Thirty-two participants took part in the study (19-27 years old; mean age, 22 years;
50% female). Sixteen participants took part in Experiment 1 and the other sixteen
participants took part in Experiment 2. All participants were right-handed, with no
self-reported hearing loss or neurological disorders. The experimental procedures
were approved by the Institutional Review Board of the Zhejiang University
Interdisciplinary Center for Social Sciences and the Ethics Committee of Peking

University. The participants provided written consent and were paid.
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Speech Materials

Experiment 1 presented sequences of nouns and Experiment 2 presented both noun
sequences and sentence sequences. All words were disyllabic words in mandarin
Chinese and each syllable was a morpheme. For the noun sequences, each word was
selected from a pool of 240 disyllabic concrete nouns. These concrete nouns equally
divided into 2 categories, i.e., living (L) and nonliving (N) things. Living things
further divided into 2 subcategories, i.e., animals (N = 60; e.g., monkey, panda) and
plants (N = 60; e.g., tulip, strawberry). Nonliving things also further divided into 2
subcategories, i.e., small manipulatable objects (N = 60; e.g., teacup, toothbrush) and
large non-manipulatable objects (N = 60; e.g., playground, hotel). In each noun
sequence, all living nouns were randomly drawn from a subcategory, i.e., all being
animals or plants, and all nonliving nouns were also randomly drawn from a
subcategory, i.e., all being manipulatable or non-manipulatable objects. Details about
how the nouns constructed noun sequences were provided in the Sequence Structure

section.

In some conditions in Experiment 2, additional 30 disyllabic abstract nouns were used
to create outliers (e.g., honor, spirit). For the sentence condition in Experiment 2, 80
sentences were constructed. Each sentence had 4 syllables, with the first 2 syllables
constructing a noun (or a common noun phrase) and last 2 syllables constructing a
verb or (or a common verb phrase). In the following, to simplify the discussion, we

refer to all the 2-syllable units as words.

For both the noun sequences and sentences sequences, each disyllabic word was
independently synthesized by the iFLYTEK synthesizer (http://peiyin.xunfei.cn/;
female voice, Xiaoying). All disyllabic words were adjusted to the same intensity and
the same duration, i.e., 500 ms, following the procedure in Ding et al. 2016. Within a
word, no additional control was applied to the intensity and duration of individual
syllables and coarticulation could exist between these syllables. Compared with
speech materials in which each syllable was independently synthesized, the disyllabic

words synthesized as a whole sounded more natural.

When constructing sequences, the synthesized disyllabic words were directly

concatenated, without any additional pause in between. Therefore, words are
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isochronously presented at 2 Hz. For speech stimuli generated according to this
procedure, each disyllabic word was an acoustically independent unit and larger

chunks consisting of multiple words had no acoustically defined boundaries.

Sequence Structure

In Experiment 1, pairs of nouns constructed chunks and chunks further constructed
sequences. The experiment compared 2 conditions in which the chunks were
constructed based on different rules. For the same-category condition, the 2 nouns in
each chunk belonged to the same category. For the different-category condition,
however, the 2 nouns in each chunk were from different categories. Since the study
only considered 2 categories of words, there were 2 valid chunks in the same-category
condition, i.e., LL and NN, and 2 valid chunks in the different-category, i.e., NL and
LN. Each chunk is 1 s in duration.

Each sequence consisted of 12 chunks and therefore was 12 s in duration. In each
sequence, the 2 valid chunks were concatenated in either an alternating order or a
random order (Fig. 2A). The alternating-order sequence in each condition had a fixed
structure, repeating a 4-words unit 6 times, i.e., NNLL for the same-category
condition and NLLN for the different-category condition. In each random-order
sequence, every chunk was randomly and independently chosen from the 2 valid
chunks. After the category of each word was determined and the actual words were
filled in. Each word was randomly drawn from a pool of 60 words (see Speech

Materials), with the additional constraint that no word repeated in a sequence.

Experiment 2 considered 3 kinds of sequences, all of which consisted of 24 disyllabic
words and was 12 s in duration. One kind of sequence was the same as the
alternating-order sequence constructed by same-category chunks in Experiment 1. In
the 2" kind of sequence, each noun was randomly chosen from the living and
nonliving nouns, without any chunk structure. The 3™ kind of sequence was

constructed by the 4-syllable sentences.

Experimental procedures and tasks
Experiment 1: The same-category condition and the different-category were

presented in separate blocks and the order of the 2 blocks was counterbalanced across
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participants. In each condition, 30 alternating-order sequences and 30 random-order
sequences were mixed and presented in a random order. In 8 alternating-order
sequences and 8 random-order sequences, the living noun in one chunk was switched
with the nonliving noun in another chunk so that the 2 chunks were no longer valid
(Fig. 2B). These 16 sequences with invalid chunks were outlier sequences. The outlier
sequences (N = 16) and normal sequences (N = 44) were mixed and presented in a
random order. However, only the normal sequences are involved in the neural

response analysis. The participants had a rest after listening to 30 sequences.

Before each condition, instructions were given about the chunk structures. During the
experiment, participants were asked to mentally segment the sequences into 2-word
chunks and judge whether all the chunks were valid chunks. In other words, they had
to distinguish normal and outlier sequences and indicate their decisions by pressing
different keys at the end of each sequence. After the key press, the next sequence was

presented after a silent interval randomized between 1 and 2 s (uniform distribution).

At the beginning of the experiment, participants were familiarized with all the
synthesized words. In the familiarization session, after hearing a word, the
participants pressed a key to see the word on a screen. Then, the participants could
press one key to hear the word again or press another key to hear the next word. After
this familiarization session, the participants learned the sequence structure and
listened to 2 normal sequences and 2 outlier sequences, which were presented in
random order. They had to tell the experimenter whether they heard outliers and what
the outlier chunks were. Next, a practice session was given which was the same as the
MEG experiment, except that it was ended after the participants made 4 correct
responses in 5 consecutive sequences. In the MEG experiment, the participants made
correct responses in 85 + 2% and 86 + 2% of sequences for the same-category
condition and different-category condition, respectively (mean + SEM across

participants).

Experiment 2: The experiment consisted of 5 conditions that were presented in
separate blocks. In 3 conditions, participants performed different tasks while listening
to the alternating-order sequence of same-category chunks. One task was a chunk-

level task that had to detect weather an invalid chunk appeared at a random position in
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the sequence. The 2™ task was a word-level task, detecting if a concrete noun at a
random position was replaced by an abstract noun. The 3™ task was an auditory task,
detecting if the speaker’s voice was changed for a word at a random position of the
sequence. The voice change was implemented by the change-gender function in Praat
(Boersma, 2006). The participants made correct responses in 80 + 5%, 91 + 2% and
96 + 2% of sequences during the chunk-level task, word-level task and auditory task,

respectively.

The other 2 conditions presented random word sequences and sentence sequences,
respectively. The participants performed a word-level task in these 2 conditions,
detecting whether a word was replaced by an abstract noun. The participants made
correct responses in 95 £ 1% and 88 + 2% of sequences for the random word

sequences and sentence sequences, respectively.

After listening to a sequence, participants pressed different keys to indicate whether
they detected an outlier or not. After the key press, the next sequence was presented
after a silent interval randomized between 1 and 2 s (uniform distribution). Each
condition consisted of 20 normal sequences and 5 outlier sequences, which were
mixed and presented in a random order. Only the normal sequences were involved in
the neural data analysis. All 5 conditions were presented in a random order, with the
constraint that the 3 conditions using alternating-order chunk sequences are next to
each other and the random word and sentence conditions are also next to each other.

Participants were informed of the task before each stimulus condition.

Before the MEG recording section, participants were familiarized with all the
synthesized words using the same procedure in Experiment 1. Participants were also
familiarized with the task before each condition by listening to 1 normal sequence and

1 outlier sequence.

Data Acquisition

Neuromagnetic responses were recorded using a 306-sensor whole-head MEG system
(Elekta-Neuromag, Helsinki, Finland) at Peking University, sampled at 1 kHz. The
system had 102 magnetometer and 204 planar gradiometers. Four MEG-compatible

electrodes were used to record EOG at 1000 Hz. Two electrodes were placed at the
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left and right temples and their difference was the horizontal EOG (right minus left).
Another 2 electrodes were placed above and below the right eye and their difference
was the vertical EOG (upper minus lower). To remove ocular artifacts in MEG, the

horizontal and vertical EOG were regressed out from the MEG recordings using the

least-squares method.

Four head position indicator (HPI) coils were used to measure the head position inside
MEQG. The positions of 3 anatomical landmarks (nasion, left, and right pre-auricular
points), the 4 HPI coils, and at least 200 points on the scalp were also digitized before
experiment. For MEG source localization purposes, structural Magnetic Resonance
Imaging (MRI) data were collected from all participants using a Siemens Magnetom
Prisma 3-T MRI system (Siemens Medical Solutions, Erlangen, Germany) at Peking
University. A 3-D magnetization-prepared rapid gradient echo T1-weighted sequence

was used to obtain 1 x 1 x 1 mm? resolution anatomical images.

Data Processing

Temporal Signal Space Separation (tSSS) was used to remove the external
interference from MEG signals (Taulu and Hari, 2009). Since the current study only
focused on responses at 1 and 2 Hz, the MEG signals were bandpass filtered between
0.5 and 3 Hz using a linear-phase finite impulse response (FIR) filter, and
downsampled at 20 Hz. The response during each sequence was extracted and was
referred to as a trial. The MEG signals were further denoised using a semi-blind
source separation technique, the Denoising Source Separation (DSS). The DSS was a
linear transform that decomposed multi-sensor MEG signals into components (de
Cheveigné and Simon, 2008). The bias function of the DSS was chosen as the
response averaged over trials within each condition. A common DSS for all conditions
was derived based on the response covariance matrices averaged over conditions. The
first 6 DSS components were retained and transformed back to the sensor space for
further analysis. This DSS procedure was commonly used to extract cortical responses

entrained to speech (Ding et al., 2016; Zhang and Ding, 2017).

Source Localization
The MEG responses averaged over trials were mapped into source space using cortex

constrained minimum norm estimate (MNE) (Hdmaéldinen and [lmoniemi, 1994),
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implemented in the Brainstorm software (Tadel et al., 2011). The T1-weighted MRI
images were used to extract the brain volume, cortex surface, and innermost skull
surface using the Freesurfer software (http://surfer.nmr.mgh.harvard.edu/). In the MRI
images, the 3 anatomical landmarks (nasion, left, and right pre-auricular points) were
marked manually. Both three anatomical landmarks and digitized head points were
used to align the MRI images with MEG sensor array. The forward MEG model was
derived based on the overlapping sphere model (Huang et al., 1999). The identity
matrix was used as noise covariance. Source-space activation was measured by the
dynamic statistical parametric map (dSPM) (Dale et al., 2000) and the value was in
arbitrary unit (a.u.). Individual source-space responses, consisting of 15,002
elementary dipoles over the cortex, was rescaled to the ICBM 152 brain template

(Fonov et al., 2011) for further analyses.

Frequency-domain analysis

In the frequency-domain analysis, to avoid the onset response, the response during the
first second of each trial were removed. Consequently, the neural response was 11 s in
duration for each trial. The average of all trials was transformed into the frequency
domain using the Discrete Fourier Transform (DFT) without any additional smoothing
window. The frequency resolution of the DFT analysis was 1/11 Hz. If the complex-
valued DFT coefficient at frequency f'was denoted as X(f), the response power and
phase were |X(f)]* and £X(f) respectively. For the response power analysis, responses
from the 2 collocated gradiometers were always averaged. Additionally, normalized
power was calculated to compensate the baseline response power. The normalized
power at frequency f was the difference between the power at f'and the power
averaged over 4 neighboring frequency bins (2 bins on each side). For the phase
analysis, all magnetometers and gradiometers were separately analyzed. The circular
mean was used to average the neural response phase over participants or sensors. The
circular phase coherence was used to measure the spread of response phase across

participants (Fisher, 1993).

Statistical tests.
All tests were based on bias-corrected and accelerated bootstrap (Efron and
Tibshirani, 1994). In the bootstrap procedure, all participants were resampled with

replacement 10000 times. All comparisons in this study were paired comparisons. For
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one-sided comparison of response power, if the response power in one condition was
greater than the other condition in 4% of the resampled data, the significance level is
(1004 + 1)/10001. For two-sided comparisons, if the response power was greater in
one condition for 4% of the resampled data, the significance level is (2004 +

1)/10001.

Spectral peak: The statistical significance of a spectral peak at frequency f'was tested
by comparing the response power at /' with the power averaged over 4 neighboring

frequency bins (2 bins on each side, one-sided comparison). The significance test was
only applied to the response power at the chunk and word rates. A false discovery rate

(FDR) correction was applied to these two frequencies.

Power difference between conditions or hemispheres: A two-sided test was used to
compare the normalized power between conditions. To characterize response
lateralization in the sensor space, normalized response power was averaged over the

left and right hemispheres respectively (96 gradiometers in each hemisphere).

Response phase: A two-sided test was used to compare the response phase difference
between conditions. The 4% confidence interval of the phase difference was
measured by the smallest angle that could cover 4% of the 10000 resampled phase
difference. If the confidence interval did not include 0° or 180°, the response phase

significantly deviated from 0° or 180° (significance level 1 —A4%).

Model Simulations

The lexical property model and the semantic relatedness model were based on lexical
features. For the simple model illustrated in Fig. 2, only 2 features were considered,
1.e., 1s-living or is-nonliving. Each feature took a binary value, i.e., 1 for yes and 0 for
no. For the realistic model illustrated in Supplementary Fig. 2, 300 feature dimensions
were used and each feature was coded by a real number. The features were derived
based on the word2vec model (Bengio et al., 2003) and the model was trained based
on large copora (the ‘combination’ corpora) (Li et al., 2018). The word2vec model is

built on recurrent neural networks that do not consider phrasal structures.
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In model simulations, each feature dimension was denoted by a pulse sequence. A
pulse was placed at the onset of each word and its amplitude was the feature value
(Supplementary Fig. 1). For the word2vec model, the amplitude could be negative.
For the lexical property model, the neural response was simulated by convolving the
feature pulse sequence with a response function, which was a 500-ms duration
Gaussian window. For the lexical property model, the neural response to each feature
was independently simulated and transformed into frequency domain. For the simple
model in Fig. 2, the 2 feature dimensions were shown separately. For the word2vec
model that used 300 feature dimensions, the power spectrum was averaged over

feature dimensions (Frank and Yang, 2018).

For the semantic similarity model, the similarity between feature vectors was
measured by the Euclidean distance (Supplementary Fig. 1). A pulse sequence
denoting the Euclidean distance between the current word and the previous word was
used to simulate the neural response. Based on this method, if neighboring words
were represented by similar feature vectors, their distance would be small and
consequently the neural response amplitude would be small, consistent with the neural

adaptation effect.

The rule-based chunking model predicted a consistent change of neural activity within
the duration of a chunk, but had no specific assumptions about the waveform of the
neural response. Here, to facilitate the comparison with the semantic relatedness
model, it is further assumed that the response was stronger at the chunk onset. The
rule-based chunking model was also simulated by convolving the response function
with a pulse sequence. In the pulse sequence, a pulse was placed at the word onset.
The pulse amplitude was 1 for the first word in the chunk and was 0.5 for the second

word in the chunk.
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Figure Legend

Models for Sentence-tracking Neural Activity

birds fly boys cry rocks fall trees grow
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Figure 1. Three models for sentence-tracking neural activity. The stimuli in this
illustration are all 2-word sentences (noun + verb). Words are isochronously presented
at 2 Hz. Sentence boundaries are marked by black dashed lines while word boundaries
within a sentence are marked by gray dotted lines. The lexical property model
assumes neurons that are selectively tuned to nouns and verbs. The semantic
relatedness model assumes that the neural response to a word is attenuated if the word
is preceded by a semantically related word. Additionally, it is assumed that words
within a sentence are more closely related than words across a sentence boundary. The
rule-based chunking model assumes a consistent change of neural activity within a
mentally constructed chunk. Here, to facilitate the comparison with the semantic
relatedness model, it is further assumed that the neural response is stronger at the

chunk onset. All the 3 models can generate sentence-tracking neural activity.
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Figure 2. Stimuli in Experiment 1 and model simulations. (A) Stimuli consist of
isochronously presented nouns, describing either living (L) or nonliving (N) things.
Two words construct a chunk and the chunks further construct sequences. Different
chunks are used in the same-category condition (upper panel) and different-category
condition (lower panel). Sequences in each condition further divides into alternating-
order (left panel) and random-order (right panel) sequences. In the illustration, chunk
boundaries are marked by black dashed lines while word boundaries within a chunk
are marked by gray dotted lines. (B) The task is to decompose each sequence into 2-
word chunks and detect invalid chunks. Three trials and the correct responses are
shown for each condition (tick and cross for normal and outlier trials respectively).
Red underlines highlight the invalid chunks. (C) Predicted neural responses to the
alternating-order sequences. The lexical model separately considers neurons
selectively tuned to living and nonliving things. The semantic relatedness model and
the rule-based chunking model, but not the lexical property model, generate a chunk-
rate response. The tilted blue regions illustrate that the alternating-order sequences
only differ by a time lag between the same-category and different-category
conditions. Neural responses predicted by the lexical property and semantic
relatedness models also differ by a time lag between conditions. (D) Predicted
responses to the random-order sequences. (E) Predicted chunk-rate response power.
The semantic relatedness model, but not the rule-based chunking model, predicts a
difference in response power between alternating- and random-order sequences. (F)
The semantic relatedness model predicts a 180° phase difference between same- and
different-category conditions, while the rule-based chunking model predicts a 0°

phase difference. * P <0.05, ** P <0.01
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Figure 3. Response power results of Experiment 1. (A) The response power spectrum
averaged over participants and MEG gradiometers. A chunk-rate response peak and a
word-rate response peak are observed. The shaded area covered 1 SEM over
participants on each side. (B) Normalized chunk- and word-rate response power. The
chunk- and word-rate response power does not significantly differ between
conditions. (C, D) Response topography (gradiometers) and source localization
results, averaged over participants. Only statistically significant sensors (shown by
black dots) and vertices are shown (P < 0.05, FDR corrected) are shown in the
topography and localization results. Chunk-rate and word-rate responses are mainly
generated from bilateral temporal areas. The neural source localization results are

shown by the dSPM values. * P <0.05, ** P < (.01
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Experiment 1
Phase Difference between Same- and Different-Category Conditions (f;,,.x )
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Figure 4. Phase difference between the same-category and the different-category
conditions, for the alternating-order sequences (A-C) and random-order sequences (D-
F). (A, D) Phase difference between conditions for each MEG sensor (both
magnetometers and gradiometers). The results are grand averaged over participants.
The phase difference angle of each sensor is indicated by a bar originating from the
location of the sensor (shown by a black dot). The coherence of phase difference over
participants is indicated by length of the bars. The phase difference angle is coded by
both the orientation and the color of the bar. (B, E) Histogram of the phase difference
for all 306 MEG sensors. The phase difference angle is closer to 0° (predicted by the
rule-based chunking model) than 180° (predicted by the semantic relatedness model).
(C, F) Response from a representative sensor (circled position in red in A and D). The
waveform is filtered around 1 Hz, i.e., the chunk rate, which is highly consistent for

the same-category chunk condition and the different-category chunk condition.
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Experiment 2
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Figure 5. Results of Experiment 2. A-E) The response spectrum averaged over
participants and MEG gradiometers are shown on the left. The response topography at
the chunk- and word-rate (gradiometers) are shown in the grayscale plots in the

middle. The source localization results are shown in the right (see the legend of Fig. 3
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for details). For the topography and source localization results, only statistically
significant sensors (shown by black dots) and vertices are shown (P < 0.05, FDR
corrected) are shown. F) The normalized power at chunk and word rates. For the
alternating-order chunk sequence, the chunk-rate response is stronger when
participants attend to the chunks but remain significant when participants attend to
words or auditory features. No significant chunk-rate response is observed for a
random word sequence while a clear sentence-rate response is observed for a sentence
sequence. The word-rate response is comparable across conditions. * P <0.05, ** P <

0.01
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Supplementary Figure 1. Procedures to simulate the lexical property model and the
semantic relatedness model. The left panel illustrates the representation of lexical
features. Each feature dimension is represented by a pulse sequence, with a pulse
being placed at the onset of each word and the amplitude of the pulse being
modulated by the word feature. One feature dimension is illustrated here and it is a
binary feature denoting nonliving things. For the models using word2vec features,
each feature is coded by a real number instead of the binary numbers shown in this
illustration. Neural response predicted by the lexical property model is simply the
feature sequence convolving a response function, which is a 500-ms Gaussian
window. For the semantic relatedness model, the Euclidean distance is used to
measure semantic similarity between feature vectors. Since the neural response does
not completely disappear even the same word repeats, we provide a DC offset to the

Euclidean distance sequence, i.e., the partial adaptation model in the figure.
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Predictions of Models based on word2vec Representations
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Supplementary Figure 2. Model simulations based on word representations learned
from natural language. The 300-dimensional vectorial representation of each word is
learned from large corpus using the word2vec model (Bengio et al., 2003; Li et al.,
2018). Unlike the simulations in Fig. 2, the 300-dimentional features here are purely
data driven, not necessarily corresponding to specific semantic categories, e.g., living
and nonliving things. For lexical property model, the neural responses to all 300
features were averaged in frequency domain. For semantic relatedness model, the
semantic relatedness between neighboring words is measured by the Euclidean
distance between the 300-dimentional representations. The rule-based model does not
depend on word representations and therefore is not plotted here. (A) Response

spectrum. The semantic relatedness model, but not the lexical property model,


https://doi.org/10.1101/742585
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/742585; this version posted August 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

generates a chunk-rate response, consistent with the results in Fig. 2. (B) The
normalized chunk-rate response power. For the lexical property model, the normalized
power has negative values (n.v.) or is close to zero. The semantic relatedness model
predicts a difference in response power between alternating- and random-order
sequences, consistent with the results in Fig. 2. (C) The semantic relatedness model
predicts a 180° phase difference between same- and different-category conditions,
consistent with the results in Fig. 2. The phase difference is not shown for the lexical
property model since it predicts no significant chunk-rate response. * P <0.05, ** P <

0.01
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