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Abstract 

Under normal conditions, cells of almost all tissues types express the same predominant canonical 

transcript isoform at each gene locus. In cancer, however, splicing regulation is often disturbed, 

leading to cancer-specific switches in the most dominant transcripts (MDT). But what is the 

pathogenic impact of these switches and how are they driving oncogenesis? To address these 

questions, we have developed CanIsoNet, a novel isoform-specific protein-protein interaction network 

that identifies binding domain losses and interaction disruptions in known alternatively spliced 

isoforms. We applied CanIsoNet on 1209 cancer samples covering 27 different cancer types from the 

Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International Cancer Genomics 

Consortium (ICGC). Our study revealed large variations in the number of cancer-specific MDTs  

(cMDT) between cancer types. While carcinomas of the head and neck, and brain had none or few 

cMDT switches, cancers of the female reproduction organs showed the highest number of cMDTs. 
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Interestingly, in contrast to the mutational load the cMDT load was tissue-specific, i.e. cancers arising 

from the same primary tissue had a similar number of cMDTs. Some cMDT switches were found in 

100% of all samples in a cancer type, making them candidates for diagnostic biomarkers. cMDTs 

showed a tendency to fall at densely populated network regions where they disrupted protein 

interactions in the proximity of pathogenic cancer genes. A gene ontology enrichment analysis 

showed that these disruptions occurred mostly in enzyme signaling, protein translation, and RNA 

splicing pathways. Interestingly, no significant correlation between the number of cMDT switches and 

the number of coding and non-coding mutations was found. However, for some transcripts, we show 

that their expression correlates with mutations in non-coding splice-site and promoter regions of their 

genes. This work demonstrates for the first time the large extent of cancer-specific alterations in 

alternative splicing for 27 different cancer types, highlights distinct and common patterns of cMDT 

switches and suggests novel pathogenic transcripts and markers that induce large network disruption 

in cancers. 

Keywords: Alternative splicing, Pan-cancer, Most-dominant transcripts, Protein-protein interaction 

network, Whole-genome sequencing, Pathogenicity 

Introduction 

Cells express on average four alternatively spliced transcripts per gene (see Ensembl database v97). 

The expression values follow an extreme value distribution (Hu et al., 2017), where a single or a few 

transcripts show significantly higher expression than the remaining alternative transcripts. In most of 

the cases, the Most Dominant Transcript (MDT) of a gene is shared between different tissue types 

(Gonzàlez-Porta et al., 2013; Ezkurdia et al., 2015). In cancer, however, splicing regulation is often 

disturbed with alternative transcripts being more dominantly expressed than in normal tissues 

(Sebestyén et al., 2015). The resulting MDT switches are known to contribute to tumor progression, 

metastasis, therapy resistance, and other oncogenic processes that are part of cancer hallmarks 

(Oltean and Bates, 2014). Exon skipping events, intron retention, or alternative exon usage can 

produce transcripts and proteins whose transactivation or binding domains, localization signals, active 

sites, stop codons or untranslated regions (UTR) are altered (Sveen et al., 2015; Kelemen et al., 

2013). Other transcripts can even be marked for nonsense-mediated decay (Popp and Maquat, 
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2018). For example, in gliomas, prostate and ovarian cancers a short Epidermal Growth Factor 

Receptor (EGFR) splice variant has been described to lack exon 4. The exclusion of exon 4 removes 

45 amino acids from the extracellular domain of EGFR causing elevated levels of cell proliferation by 

ligand-independent activation and constitutive downstream signaling (H. Wang et al., 2011). 

Alternative splicing of the BCL-X gene generates two isoforms, where the shorter isoform BCL-XS is a 

tumor suppressor and downregulated in prostate cancer, while the longer isoform BCL-XL is an 

oncogene blocking apoptosis (Lapuk et al., 2014). Furthermore, melanoma tumors often develop drug 

resistance to BRAF(V600E) inhibitors by expressing a shorter isoform of mutated BRAF that lacks the 

RAS binding domain and allows BRAF(V600E) proteins to dimerize and signal in a RAS independent 

manner (Poulikakos et al., 2011; Samatar and Poulikakos, 2014). Other splice variants are used as 

prognostic biomarkers in the clinics such as the Variant 7 of the Androgen Receptor (AR)-V7, which 

when overexpressed in hormone-refractory prostate cancer patients, correlates with poor patient 

survival and higher recurrence rate (B.-D. Wang et al., 2017).  

Fundamentally, these phenotypes arise through alterations in interaction networks (Vidal et al., 2011) 

in which alternative splicing changes the interaction capabilities of gene products by disrupting protein 

binding domains or protein availability (Corominas et al., 2014). The interaction landscape of 

alternatively spliced isoforms is often distinct from the canonical isoform, allowing cells to widely 

expand their protein interaction capabilities (Yang et al., 2016). Earlier studies showed that tissue-

specific exons were often found in unstructured protein regions, peptide-binding motifs and 

phosphorylation sites (Buljan et al., 2012). At the same time, such exons were often part of hub genes 

in interaction networks, whose differential expression disrupted and promoted new protein interactions 

(Ellis et al., 2012). The Eyras lab discovered in a recent study in over 4,500  cancer samples from 11 

cancer types from The Cancer Genome Atlas (TCGA) (Network et al., 2013), significant alterations in 

alternative splicing and MDT switches (Climente-González et al., 2017). In their analysis, they were 

able to show an association between recurrent functional switches in MDT and the loss of protein 

functions while those gaining functional capabilities were mostly found in oncogenes. Furthermore, 

they observed that genes often mutated in various cancers were also those frequently altered in their 

alternative splicing patterns but often in a mutually exclusive manner. By mapping the isoform 

switches onto protein-protein interaction modules, they were able to show that disruptions of protein 

interactions mostly occurred in apoptosis-, ubiquitin-, signaling-, splicesome- and ribosome-related 
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pathways. In a similar analysis of over 5,500 TCGA samples from 12 cancer types, Vitting-Seerup et 

al. discovered that 19% of multiple transcript genes were affected by some functional loss due to 

isoform switching (Vitting-Seerup and Sandelin, 2017). They identified 31 switches that had 

prognostic biomarker qualities, predicting patient survival in all cancer types. 

Cancer-specific MDTs are believed to be fundamentally caused by genomic mutations. Splicing 

Quantitative Trait Loci (sQTL) calculations in which exon expression is linearly correlated with 

mutations in nearby cis-regions or distant trans locations are supporting this hypothesis. For example, 

over half a million sQTLs were measured in whole blood samples of which 90% were located in 

intergenic and intronic regions (Xiaoling Zhang et al., 2015). Over 520 sQTLs were associated with 

disease phenotypes from previous Genome-Wide Association Studies (GWAS). Interestingly, 395 

GWAS associated SNPs overlapped with cis-sQTLs whose genes were not differentially expressed, 

giving additional insights into the functional mechanism of GWAS results. An independent Pan-

Cancer Analysis of Whole Genomes (PCAWG) analysis group that focused on cancer transcriptomes 

found over 1800 splicing alterations, which correlated with nearby mutations in intronic regions 

(PCAWG Transcriptome Core Group et al.). They identified over 5,200 mutations mostly located in or 

near splice-sites which had a major impact on the expression of cassette exons. Interestingly, only 

4% of these mutations increased splicing efficiency, while the large majority had negative effects on 

splicing. 

Building further on these studies, we are presenting here the most comprehensive functional 

assessment of alternative spliced transcripts to date, covering the transcriptome and matched whole-

genome sequences of 1209 cancer samples from 27 different cancer types from the PCAWG project 

of the International Cancer Genomics Consortium (ICGC) (Figure 1). Our study extends the 

aforementioned studies by an additional 16 cancer types from 10 primary tissues most notably 

cancers of the brain, blood, female reproductive organs, and melanoma. Brain cancers had 

particularly little deregulation. Similarly, melanoma showed little changes in the alternative splicing 

despite having the highest mutational burden. In contrast uterus, ovary and cervix cancers had the 

highest number of splicing alterations. We based our study on the hypothesis that alternative 

transcripts are pathogenic when they disrupt protein interactions and pathways. To test this, we 

focused on cancer-specific switches in MDTs and assessed the extent to which these rewire protein-
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protein interactions - using a novel isoform-specific protein interaction network that we termed 

CanIsoNet. Our analyses revealed a large diversity in the number of cMDTs between cancer types, 

most of which were tissue specific. Some cMDT were found in all samples of a cancer type but not in 

any sample of a matched normal cohort, which makes them ideal candidates for diagnostic 

biomarkers. We show large scale disruptions of protein-protein interactions that are enriched in 

enzyme signaling, protein translation, and splicing pathways. We provide evidence that some cMDTs 

were likely pathogenic, given their proximity to cancer-related genes and their location in densely 

populated PPI network regions. Finally, we present correlation data between somatic mutations and 

transcript expressions. 

Methods 

Scripts, input files and a step-by-step instruction to reproduce the presented analyses can be found at 

https://github.com/abxka/CanIsoNet. 

Accessing pan-cancer analysis of whole genomes data 

Transcript isoform-specific expression levels for 1393 Pan-Cancer Analysis of Whole Genomes 

(PCAWG) samples (syn7536587) and 3249 Genotype-Tissue Expression (GTEx) (Lonsdale et al., 

2013) samples (syn7596599) were provided by the PCAWG project for download from a dedicated 

Synapse database (https://www.synapse.org). Expression levels were given in Transcript Per Million 

(TPM) counts computed for all known transcripts in Ensembl version 75 using Kallisto (v.0.42.1) (Bray 

et al., 2016) with default parameters (see Method section in PCAWG Transcriptome Core Group 

paper (PCAWG Transcriptome Core Group et al.), for more details). 1209 PCAWG samples remained 

after selecting those labeled as whitelisted and as a tumor in the RNAseq metadata file (syn7416381). 

2232 GTEx samples remained after selecting those matching primary tumor tissues from PCAWG 

RNAseq cancer samples using metadata on GTEx samples (syn7596611) (see Table S1). 

Coding and non-coding mutation calls from the independent PCAWG working group “Novel somatic 

mutation calling methods” were downloaded from Synapse (syn7118450). Only mutations located in 

functional regions (i.e. promoter core, promoter domain, 5'UTR, coding sequence, splice site, 3'UTR) 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/742379doi: bioRxiv preprint 

https://doi.org/10.1101/742379
http://creativecommons.org/licenses/by/4.0/


 6

were taken into consideration. Information on the genomic location of functional regions was also 

downloaded from Synapse (syn7345646).  

Constructing an isoform-specific protein-protein interaction network 

The implementation of an isoform-specific protein-protein interaction network is primarily based on the 

integration of functional interaction from the STRING database (Szklarczyk et al., 2015) with physical 

domain-domain interactions from the 3did database (Stein, 2004) and known alternatively spliced 

protein isoforms from the Ensembl database (Hubbard et al., 2002) (see Figure 1). For the integration, 

we downloaded all human functional protein-protein interactions and the FASTA sequences of all 

canonical isoforms from the STRING database (version 10.0)(Szklarczyk et al., 2015). To identify 

physical interactions, we downloaded the 3did database (version 2018_04) (Mosca et al., 2014), 

which lists pairs of PFAM domains (Punta et al., 2012) that are physically interacting with each other 

in the Protein structure Data Bank (PDB) (Berman et al., 2007). For integrating the STRING database 

with 3did, we received PFAM domain annotations for each STRING protein from the STRING 

developer team, which we extended with PFAM information for human from the PFAM database itself 

(version 32.0). To guarantee that no PFAM assignment was missed, we additionally ran the 

pfam_scan.pl script (available on the PFAM FTP server) on all Ensembl protein isoforms. STRING 

proteins whose sequences were not identical to their sequence in Ensembl were discarded. STRING 

interactions with proteins having interacting PFAM domains in 3did were considered to be of physical 

nature. Only high-confidence interactions with a STRING combined score of ≥ 900 were used in this 

study. For the next step of testing the remaining alternative isoforms for the existence of the PFAM 

domain in their protein sequence, the sequence of the PFAM domain in the canonical isoform was 

extracted from the STRING FASTA file. If the same sequence existed in an alternative isoform, the 

interaction was assumed to persist, otherwise, we assumed the interaction to be lost due to 

alternative splicing. A table representing a database of human isoform-specific protein-protein 

interaction with information which interactions are lost, and which persist for alternatively spliced 

isoforms and transcripts, can be found in Table S2. 
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Identifying most dominant transcripts 

For assessing the impact of disrupted alternative splicing in cancer, we chose to focus on the most 

extreme alteration events, namely on those cases in which the identity of the Most Dominant 

Transcript (MDT) in a PCAWG sample is unique and not known to exist in matched cohorts of GTEx 

normal samples. We call these most dominant transcripts cancer-specific MDT (cMDT). Note, that in 

this study the term transcript and protein isoform is interchangeable. We worked only with transcripts 

that had a protein ID (ENSP) in the Ensembl database (see Constructing an isoform-specific protein-

protein interaction network).  

To identify MDTs in any PCAWG and GTEx sample, Kallisto counts in Transcripts per Million (TPM) 

were extracted for each Ensembl transcript from files provided by the PCAWG Transcriptome Core 

group (see Accessing pan-cancer analysis of whole genomes data). For each gene, all transcripts 

were ordered by their TPM counts. The transcript with the highest TPM count was designated as MDT 

if its expression was at least twice as high as the TPM count of the 2nd ranked transcript. Transcripts 

having an NA value were assigned a TPM of 0. MDTs were required to have a minimum TPM value 

≥2, which corresponded to the maximum expression value of 99% of olfactory receptor proteins. As 

the expression of olfactory transcripts is known to be limited to nasal tissue only, we used their 

expression as a threshold for separating background noise in the PCAWG and GTEx RNAseq data 

(Ezkurdia et al., 2014).  

Identifying cancer-specific most dominant transcripts 

Once all MDTs in each PCAWG and GTEx sample were determined, we next checked whether the 

MDTs in the cancer samples were unique and specific to PCAWG, in which case we designated them 

as cancer-specific MDT (cMDT). To qualify as a cMDT, an MDT must 

1.) be found in PCAWG  

2.) not be an MDT in any of the samples of the matched GTEx cohort (see Table S1) 

3.) have an alternative transcript that is an MDT in any of the samples of the matched GTEx 

cohort 

4.) derive from a gene that has an MDT in at least 50% of samples from the matched GTEx 

cohort. 
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5.) have a significantly different relative expression than in GTEx 

Note that for point 5, we used a sign-test to assess the significance. For the sign test, we counted the 

number of times the relative expression of an MDT in a cancer sample was higher or lower to all 

relative expression values in the samples from the matched GTEx cohort. The positive and negative 

counts were subsequently put in a two-sided binomial test and the p-value was calculated. After the p-

values for all MDTs in a cancer type were determined, they were subjected to a Benjamini-Hochberg 

FDR correction. An MDT that fulfilled all the 5 criteria above and had a q-value of < 0.01 qualified as a 

cancer-specific MDT (cMDT). 

Predicting the pathogenic impact of cancer-specific MDT (cMDT)  

To predict the pathogenic impact of cMDTs, we assessed their proximity to 723 genes from the 

COSMIC gene census list (version 89) in the STRING interaction network and checked whether they 

were located in densely populated network regions, following the idea that cMDT might interact with 

known cancer genes or their interaction partners and effect numerous network interactions. For the 

cancer gene proximity calculations, we computed the shortest path in the STRING interaction network 

between a cMDT and all known genes in the COSMIC Cancer Gene Census (CGC) using a breadth-

first-search algorithm (Kahraman et al., 2011). 

For assessing the interaction density at each node A of the STRING network, we computed a 

Network Density Score (NDS) using the following equation: 

 

where a is the protein of interest, b is an interactor being s interaction nodes apart, int() is the number 

of interactors of b and score() is the STRING combined interaction score between b and its interaction 

partners. B is the maximum number of interactors of a. To put a meaning to raw NDS values, we 

ordered all STRING proteins by their NDS value and assigned each value a relative rank position (0 - 

1.0) within the ordered list. The highest density had the guanine nucleotide binding protein GNB1 

while the lowest density was observed amongst other for the ankyrin repeat protein ANKS6. 
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STRING gene ontology enrichment analysis  

A hypergeometric test was used to determine the enrichment of disrupted interactions in biological 

processes from Gene Ontology (GO) (Ashburner et al., 2000). The statistical test was performed 

using the STRINGdb R package (version 1.22), with a score threshold of 0, STRING database 

version 10.0, species identifier 9606, the category GO biological processes, FDR multiple testing 

correction and the parameter Inferred from Electronic Annotations set to true. The test was performed 

for each subnetwork of disrupted interactions of a PCAWG cancer sample. A subnetwork contained 

proteins of disrupted interactions that were overlapping with one or both interaction partners. Only the 

most significant biological process was selected for each subnetwork. The remaining processes were 

ignored.  

Correlation between somatic mutations and transcript expression 

Similar to expressed quantitative trait loci calculations, in which the expression of a gene is correlated 

with mutations in the proximity or distance, we performed a correlation analysis between transcript 

expression and mutations located within the associated gene. The correlation analysis was performed 

only within a cancer-type, to reduce biases from confounders. The expression of a transcript was 

assigned to the group Mutated if its gene was found to carry a mutation in the promoter, 5’UTR, 

coding sequence, 3’UTR and splice sites. Otherwise, the expression of the transcript was added to 

the group Wildtype. A non-parametric Wilcox-rank sum test was performed to test the difference in the 

expression values between both groups. Once the difference was tested for all transcripts with 

expression values in both groups, the p-values were corrected using the Benjamini-Hochberg FDR 

method. 

Results 

The goal of this study was to identify common patterns in the choices of “Most Dominant Transcripts 

(MDT)” of 27 different cancer types while testing for their pathogenicity and disruptive nature in 

protein-protein interaction networks (Figure 1). On a median average, 37 samples per cancer type 

were available with Kidney Renal Cell Carcinomas (Kidney-RCC) having most samples (117x) and 

Cervix adenocarcinoma (Cervix-AdenoCA) and undifferentiable Lymphoma (Lymph-NOS) having only 
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2 samples (see Figure 2). The latter two cancer types were discarded for in-depth analysis due to 

their small cohort size. A detailed data file listing all detected cancer-specific MDTs, the disrupted 

interactions and a rich set of annotations is available in Table S3. 

PCAWG samples with cancer-specific most dominant transcript switches 

In each of the 1209 samples, the MDT of each gene was determined and subsequently its expression 

compared to the expression of the transcript in related GTEx samples (GTEx samples originating from 

the same primary organ as the PCAWG sample) (see Figure 2A and Table S1). An MDT switch was 

called when the MDT was unique to PCAWG and its expression significantly different (higher) than 

the median expressions in related GTEx samples. We called these MDT switches cancer-specific 

MDTs (cMDT). Following these rules, we detected 11,040 unique cMDTs from 7,143 genes that 

underwent a total of 122,051 cMDT switches in all 1209 PCAWG samples, with a median average of 

58 cMDTs per sample. The highest number of cMDTs was detected in cancers of female reproductive 

organs. The mean average number of cMDTs per sample was 322 for uterus adenocarcinoma 

(Uterus-AdenoCA), 101 cMDTs for cervix squamous-cell carcinoma (Cervix-SCC) and 129 cMDTs for 

ovarian adenocarcinoma (Ovary-AdenoCA) (see Figure 2B). On the other side, none of the 42 Head 

and Neck Squamous Cell Carcinoma samples (Head-SCC) showed any cMDTs, while B-cell Non-

Hodgkin Lymphomas (Lymph-BNHL) had only 6 cMDT switches per case. Interestingly, melanoma 

samples had only a few more cMDTs with a median of 10, despite having the highest median 

mutational burden (see C). In contrast, Pancreas-AdenoCA had only a few mutations, while having 

the second highest number of cMDTs in the dataset. Another observation we made is that the cMDT 

load, i.e. the number of cMDTs in a cancer sample, was tissue specific. Cancer types originating from 

the same primary tissue, e.g. CNS-GBM and CNS-Oligo, Lymph-BNHL and Lymph-CLL, Liver-HCC 

and Biliary-AdenoCA, tended to have the same cMDT load. Interestingly, the tissue specificity existed 

only for cMDTs and not for the mutational load (compare Figure 2B and 2C). This is not surprising as 

gene expression programs especially those defining tissue-identity persist through neoplastic 

progressions in cancer cells (Bradner et al., 2017). Furthermore, in about 50% of cases, it is the same 

cMDT that is overexpressed in different cancer types (data not shown). For those cMDTs affecting 

known cancer genes, most were found in tumor suppressor genes followed by fusion and oncogenes, 
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which follows the expectation as tumor suppressor genes are also the most frequent genes in the 

COSMIC Cancer Gene Census. 

In summary, these results highlight the large variation in the cMDT load in different cancer types, 

which is tissue-specific and difficult to predict using genomics data only. 

Most dominant transcript switches as diagnostic biomarkers 

22 transcripts from 19 genes were found to have an cMDT switch in 100% of the samples of a cancer 

type, while the large majority with over 75% showed an cMDT switch in up to 10% of samples of a 

cancer type (see Table S4). Due to the omnipresence of the 22 transcripts, they are likely playing an 

important role in the seven cancer types in which they occurred and could serve as a diagnostic 

biomarker (Danan-Gotthold et al., 2015; Vitting-Seerup and Sandelin, 2017).  Among the 22 

transcripts, the one with the highest number of cMDTs was the kinetochore protein named Nuclear 

Division Cycle (NDC)80 or HEC1 (Highly Expressed in Cancer). 100% of Bone-Leiomyo and Breast-

LobularCA cases, 98% of Breast-AdenoCA, 96% of CNS-GBM and Bladder-TCC cases, and 95% of 

Ovary-AdenoCA expressed mostly the long transcript ENST00000261597 of the NDC80/HEC1 gene 

(see Figure 3A). In the associated normal tissues from the GTEx project, the short transcript 

ENST00000576274 that lacks the coiled-coiled protein domains for protein complex and mitotic 

spindle formation (Valverde et al., 2016), was found to be mostly expressed. In hepatocellular and 

colorectal carcinomas, NDC80/HEC1 was recently shown to be highly overexpressed while its 

knockdown in cancer cell lines led to apoptosis and cell cycle arrest (Ju et al., 2017; Yan et al., 2018). 

Our results indicate that the function of the NDC80 gene is not only regulated by its total gene 

expression but also by the distinct distribution of its alternative transcripts, with non-functional 

transcripts expressed primarily in normal cells while fully functional transcripts mostly expressed in 

cancer cells. The overexpression of the long transcript could serve as a biomarker for the 

aforementioned cancer types.  

Similarly, the full-length transcript of chromosome-associated kinesin KIF4A was expressed in 100% 

of both Breast cancers, 96 % in Bladder cancers and in 93% Ovarian-AdenoCA cases where its 

expression indicated mitotic activity. In the associated GTEx normal tissues a shorter transcript that 

lacked the last three exons encoding a C-terminal cysteine-rich motif was mostly expressed. The 
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cysteine-rich motif is critical for chromatin binding and functioning of KIF4A in mitosis (G. Wu and 

Chen, 2008; Almeida and Maiato, 2018).  

Also, the shorter transcript ENST00000300403 (747 Amino Acids (AA) long) of the microtubule-

associated TPX2 gene was found to be the cMDT in 100% of samples in Breast-AdenoCA and 

Breast-LobularCA, while its longer sister transcript ENST00000340513 (783 AA) was the primary 

isoform in 67% of GTEx samples of the breast. Similar ratios were found for Uterus-AdenoCA (98%) 

and Bladder-TCC where the shorter transcript was the cMDT in at least 91% of the cancer samples 

(see Figure 3B). The longer isoform in GTEx samples has an additional 36 AA after position 351, 

which due to its proximity to the N-terminus of the TPX2_importin domain (361-489 AA) might 

interfere with its function of binding its inhibitor importin-alpha (see Figure 3B). In complex with 

importing-alpha, TPX2 moves from the nucleus to the cytoplasm to regulates mitotic spindle formation 

(Pérez de Castro and Malumbres, 2012). Thus, besides the expression of TPX2, the transcription of 

the longer isoform might be another regulatory principle to inhibit TPX2 functionality in the cell.  

Another candidate cMDT biomarker which was also one of the most frequent cMDTs in our study, 

was the transcript ENST00000366999 of the gene Never in mitosis A-related kinase 2 (NEK2). The 

transcript also known as NEK2A was detected as the cMDT in 100% of Cervix-SCC samples, 91% of 

Bladder-TCC samples and in 90% of Ovary-AdenoCA samples (see Figure 3C). In GTEx normal 

samples the MDT was mostly the shorter transcript ENST00000366998 (NEK2B). Both isoforms differ 

in their C-terminal domain, with NEK2A having an additional coiled-coil region to bind the E3-ubiquitin 

ligase Anaphase Promoting Complex (APC/C), which induces its degradation in the M-phase of 

mitosis (Xia et al., 2015). Reassuringly, NEK2A was shown to be overexpressed in many cancer 

types including breast, lung, colon, and as here, in ovarian cancers (Fang and Xiongwen Zhang, 

2016). 

In summary, our analysis highlights the existence of cancer-specific transcripts whose dominant 

expression could serve as a diagnostic biomarker for clinical applications.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/742379doi: bioRxiv preprint 

https://doi.org/10.1101/742379
http://creativecommons.org/licenses/by/4.0/


 13

Cancer-specific most dominant transcripts disrupting protein-protein 

interactions 

Of the aforementioned 7,143 genes, 2,638 genes had not a single high-quality Protein-Protein 

Interaction (PPI, STRING combined score ≥ 0.9). But for the remaining genes with 122,051 cMDT 

switches, we found 461,437 high-quality PPI of which 28% (129,496) were found to be disrupted due 

to cancer-specific MDT switches. The 129,496 interactions corresponded to 12,885 unique PPIs 

originating from 1410 different proteins in 990 different samples. Among the unique PPI interactions, 

only 14% of cMDTs disrupted one or more PPI of the canonical isoform. However, in 88% of these 

cases the cMDTs were predicted to disrupt all known PPIs of their associated genes (see Table 1). 

The high percentage of total PPI losses can be explained by the fact that proteins often interact via 

the same binding domain (Keskin et al., 2016).  

The most frequent cMDTs disrupting interactions in over 90% of samples of a cancer type were those 

from the genes USP46, WDR74, RPS19, BOLA2B, NDUFA9, and LAMA3 (see Table S5). Three of 

the genes whose protein products have a PDB structure available with their interaction partner are 

shown in Figure 4. Most of the disrupted interactions were found in Uterus-AdenoCA, which had on 

average 86.2 disrupted interactions per sample, followed by Eso-AdenoCa and Cervix-SCC with 45.1 

and 44.1 disrupted interaction, respectively. In contrast, cancers of the central nervous system and 

Lymph-BNHL had on average less than a single disrupted interaction per sample (see Table 2).  

For the Ubiquitin carboxyl-terminal hydrolase 46 (USP46) that plays a role in neurotransmission, 

histone deubiquitination and tumor suppression (Li et al., 2013), the most frequent transcript in cancer 

cells was ENST00000451218, which lacked the second exon of the GTEx transcript 

ENST00000441222. The exon skipping event removes a beta-strand from an N-terminal two-strand 

beta-sheet in the palm motif of USP46 (see Figure 4A), which has dramatic effects on the protein 

conformation (Birzele et al., 2008). Besides, the spliced-out beta-strand is part of the interaction 

interface with the Polyubiquitin-B (UBB) protein. UBB stabilizes the finger motif of USP46, which is 

used by USP46 to interact with its allosteric activator WD repeat-containing protein 48 (WDR48) (Yin 

et al., 2015) and other proteins (see Figure 4A). Thus, the cancer-specific expression of the transcript 

ENST00000451218 is disabling the tumor suppressor function of USP46.  
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In another example, an alternative promotor region in the ribosomal protein S19 (RPS19) gene 

induced the expression of the cancer-specific 71 AA short MDT ENST00000221975 in 100% of Panc-

AdenoCA, 98% of Uterus-AdenoCA and 93% of Stomach-AdenoCA (see Figure 4B). A longer 145 AA 

transcript ENST00000593863 was mainly expressed in the matched GTEx tissues. The alternative 

promoter caused an elongation of the 5’UTR region, which led to the removal of the first 74 N-terminal 

AAs in the cancer-specific isoforms. The N-terminal region of RPS19 holds the entirety of the 

interaction interface with RPS16. Thus, the interaction between RPS19 and RPS16 as well as to 

RPS5, RPS18, MRPS7, and MRPS9 was lost in the effected 240 cancer samples in PCAWG. A fully 

functioning RPS19, however, is required for the E-site release of tRNA and the maturation of 40S 

ribosomal subunits (Flygare et al., 2007). Truncating mutations in ribosomal proteins are known to 

cause cancer (Goudarzi and LIindström, 2016) or syndromes like the autosomal inherited Diamond-

Blackfan anemia (Flygare et al., 2007). 

The mitochondrial NADH dehydrogenase (ubiquinone) alpha subcomplex 9 (NDUFA9) was also 

mainly expressed via an alternative promoter in 93% Uterus-AdenoCA samples and 35% of 

ColoRect-AdenoCA samples. As a result, the cancer-specific transcript ENST00000540688 had a 

length of only 136 AA and lacked the first 235 AA of the longer GTEx-specific transcript 

ENST00000266544. But not only was ENST00000540688 shorter, the first 57 AA were also encoded 

by an alternative exon, making the N-terminus of the cancer-specific transcript distinct from the MDT 

in GTEx. As a result, most of the canonical protein sequence including the binding site sequence for 

NDUFS7 was missing in the cancer-specific transcript of NDUFA9 (see Figure 4C). Thus, in the 66 

PCAWG cancer samples, NDUFA9 is not able to interact with NDUFS7, which will destabilize the 

structure and function of the Respiratory complex I, impacting the electron transfer from NADH to 

ubiquinone. Various germline mutations in NDUFA9 are known to cause severe neurological 

disorders (Baertling et al., 2018). In breast cancer cell-lines, dysregulation of the NAD+/NADH 

balance was found to correlate with enhanced cancer progression (Santidrian et al., 2013). Thus, we 

postulate that the short cancer-specific NDUFA9 transcript causes mitochondrial respiratory defects, 

which could promote aerobic glycolysis in the effected cancer cells leading to cancer progression 

(Srinivasan et al., 2016).  
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An enrichment analysis on the disrupted interactions using Gene Ontology biological processes 

revealed that 9% of disrupted interactions were mostly impacting “Enzyme linked receptor protein 

signaling” pathways, followed by “Translational termination” with 5%, “Transmembrane receptor 

protein tyrosine kinase signaling” pathways with 4% and “RNA splicing” with 2%. Most of the 

disruptions were due to losses of Protein-kinase domains, WD40 repeat domains and Pleckstrin 

homology domains, which were also the most frequent domains in our STRING-3did interaction 

network.  Translational initiation, but in particular also translational termination, were impacted in most 

cancer types, while Enzyme linked receptor protein signaling pathways were disrupted mainly in 

Uterus-AdenoCA, Ovary-AdenoCA and Kidney-RCC, which set them apart from the rest (see Figure 

4D). In contrast, Prost-AdenoCA, Skin-Melanoma, Lymph-BNHL, Breast-LobularCA, and CNS-Oligo 

had a disruption in less than 4 pathways within the top 50 disrupted pathways in the PCAWG dataset 

(see Figure 4D). The ribosomal proteins RPS19, RPLP0, and RPL13 were among the topmost 

frequent proteins whose cMDT switch disrupted interaction in 181 to 240 different samples, most 

often in Uterus-AdenoCA (82x), Panc-AdenoCA (75x), Kidney-RCC (69x), and ColoRect-AdenoCA 

(58x) (see Table S6). The high frequency was also evident from the relatively high number of the 

disrupted ribosomal protein domains Ribosomal_S19e and Ribosomal_60s (top 8 disrupted domains), 

which are usually found beyond the top 470 domains in the STRING-3did database. 

In summary, our results highlight extensive PPI network disruptions by cMDTs mainly impacting 

signaling, translational and RNA splicing pathways. 

Pathogenic disruptions of protein interactions due to alternative splicing 

An indication that the cMDTs in the PCAWG dataset were pathogenic to various degrees, came from 

an analysis where we assessed the edgetic distances of cMDTs to the closest COSMIC Cancer Gene 

Census (CGC) gene in the STRING interaction network. As the STRING interaction network is built 

on canonical isoforms, we used the associated canonical isoform of cMDTs gene in the PCAWG 

dataset. The distance distribution was compared to a random distribution that was generated by 

selecting a random protein from all expressed proteins in a cancer type. Figure 5A shows a clear 

preference of cMDTs to be located close to CGC genes. 58% of cMDTs were CGC gene themselves 

or direct interaction partners. The preference even increased for cMDTs that disrupted protein 

interactions and found its maximum with cMDTs that are located at densely populated regions of the 
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STRING interaction network. The last observation is expected as PPI networks are biased towards 

disease-associated genes that are generally more studied than non-disease causing genes (Schaefer 

et al., 2015).  

Nonetheless, cMDT switches that lead to the disruption of many protein-protein interactions are likely 

more pathogenic than cMDT switches that disrupt few interactions. We have therefore computed a 

network density score (NDS), which estimates the number of interactions of a protein and its 

neighborhood in a protein interaction network. Plotting the ranked NDS values of proteins and their 

interactors from the COSMIC Cancer Gene Census (CGC) versus the remaining non-CGC proteins, 

showed the aforementioned tendency of CGC proteins to be located at denser network regions than 

non-CGC genes (see Figure 5B). Of the 1,276 genes that had the highest 30% NDS, 124 were CGC 

genes, which corresponds to 53% of all CGC genes for which we detected an cMDT switch in the 

PCAWG dataset. The remaining 1152 genes were non-CGC genes, from a pool of a total of 4270 

non-CGC genes with an cMDT switch in the PCAWG dataset. The large majority of the 1152 non-

CGC genes were direct interactors of CGC, with only 79 having a distance > 1 in the STRING 

interaction network.  

For the following analysis, we selected interesting examples from the top 30% NDS. One of the most 

disrupted interactions in the PCAWG dataset was between the regulatory and scaffolding subunit of 

the PP2A complex. This interaction is located within the 16% of densest network regions in the 

STRING interaction network.  In 75% of Uterus-AdenoCA, 39% of Cervix-AdenoCA, 24% in Colon-

AdenoCA and 17% of Ovary-AdenoCA a shorter isoform of regulatory PP2A subunit PPP2R5D 

(ENST00000230402) was expressed that lacked the first N-terminal 80 AA and 18 AA within the B56 

binding domain of the GTEx-specific isoform (ENST00000485511) (see Figure 5C). The B56 binding 

domain, however, is central to the interaction of the regulatory subunit with the scaffolding subunit 

PPP2R1A and the catalytic subunit PPP2CA. The B56 binding domain is build up by ankyrin repeats; 

a common protein-protein binding motif in nature (Jernigan and Bordenstein, 2015). The deletion of 

an ankyrin repeat segment is likely destabilizing the domain (Tripp and Barrick, 2004), which disrupts 

the structure and binding capability of PPP2R5D. The disruption has likely an oncogenic effect given 

that PP2A is known as a tumor suppressor and any disruptions in the function of PP2A can lead to 

cell motility, invasiveness, and loss of cell polarity (Seshacharyulu et al., 2013). 
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The most frequent cMDT switches among the COSMIC cancer genes were observed for the E3 

ubiquitin-protein ligases FBXW7 and MDM2, and the Cyclin Dependent Kinase CDK4. The F-box/WD 

repeat-containing protein 7 (FBXW7) is part of the Skp, Cullin, F-box (SCF) complex and is known to 

be a tumor suppressor. It ranks in the top 25% of the densest STRING network regions. In 37% of 

Panc-AdenoCA, we found a short isoform (ENST00000604872) mostly expressed that only consisted 

of the N-terminal region of the canonical isoform, lacking the F-box and WD40 repeat domains. The 

SCF complex without a functioning FBXW7 protein is unable to degrade cyclin E, which causes 

sustained proliferation and genome instability (Senft et al., 2018). 

The human homolog of Murine Double Minute-2 (MDM2) resides in the top 11% of densest network 

regions in the STRING database and was found to have cMDT switches in 33% of Cervix-SCC, 25% 

of Uterus-AdenoCA and 13% in Bladder-TCC with the transcript ENST00000428863 being mostly 

expressed. Compared to the GTEx normal isoform ENST00000462284, ENST00000428863 lacks the 

N-terminal domain which contains the SWIB domain that is essential for binding tumor suppressors 

like TP53, the ubiquitin proteins like RPS27A, UBA52, UBB, UBC, the ribosomal protein RPL11 and 

MDM4 (J. Zheng et al., 2015) (see Figure 5D). Thus, these cMDTs lose the ability to bind and 

ubiquitinate p53. Interestingly, 11 of the affected 24 samples carry besides the MDM splice variant 

various TP53 mutations. The cMDT of MDM2 could enhance in these cases the gain-of-function effect 

of mutated TP53 genes (Oren and Rotter, 2010). MDM2 isoforms lacking the SWIB domain but 

containing the C-terminal zinc-finger RING domain zf-C3HC4_3 can dimerize and withdraw full-length 

canonical MDM2 from interacting with p53 (T. Zheng et al., 2013). The same domain drives also the 

interaction between MDM2 and the ubiquitin-conjugating enzymes UBE2A, UBE2D1, UBE2D2, 

UBE2D3 and to the SUMO associated enzyme UBE2I (see Figure 5D). Thus, the cancer-specific 

MDM2 likely induces a gain-of-function effect on TP53 by breaking the negative-feedback loop 

between wildtype MDM2 and TP53.  

In the case of CDK4, the 111 amino acid short cMDT (ENST00000312990), which lacks the entire C-

lobe of the kinase domain from the GTEx-specific transcript (ENST00000257904) was expressed in 

36% of Uterus-AdenoCA and 14% in Eso-AdenoCA. The loss of the C-lobe disrupted the kinase 

activity of CDK4. In CDK4 knock-out mice, the loss of CDK4 function has mild effects on cell cycle 

progression, due to CDK6 compensating for CDK4 loss (Berthet and Kaldis, 2007). However, in 11 of 
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24 samples this compensation effect is most likely absent due to mutated CDK6, which hints towards 

a strong functional impact of CDK4 cMDT in these tumors. CDK4 lies in the top 11% of densest 

network regions in STRING. 

In summary, our analysis shows that many cMDTs are located in the direct neighborhood of known 

cancer relevant genes within densely populated PPI network regions. 

Discovering novel pathogenic genes via cancer-specific most dominant 

transcripts 

All genes and cMDTs discussed above were known to have a role in cancer. To discover new cancer-

associated genes driving neoplasm via cancer-specific alternative splicing, we searched for cMDT 

switches in the top 30% of the densest regions in the STRING database that were not interactors of 

COSMIC CGC genes.  

The cMDT switch with the highest number of disrupted interactions located in the top 15% of densest 

network regions was the Natriuretic Peptide receptor 2, NPR2. In 57% of Uterus-AdenoCA, 19% 

Ovary-AdenoCA, 15% Bone-Leiomyo, and 14% ColoRect-AdenoCA cases, NPR2 expressed an 

cMDT switch (ENST00000448821), which undergoes nonsense-mediated decay (see Ensembl entry 

of transcript). The loss of NPR2 disrupts interactions of the canonical transcript ENST00000342694 

with the hormone Natriuretic peptide type A, B and C (NPPA, NPPB and NPPC). Disrupted 

interactions between NPR2 and NPPC have been shown to cause disorganized chromosomes in 

mouse oocytes (Kiyosu et al., 2012). Given that the chromosome structure is often altered in cancer, 

the cMDT switch in NPR2 could hint towards a role of NPR2 in cancer. Interestingly, we find potential 

deleterious mutations along the NPR2 gene in 113 PCAWG samples that supports this hypothesis. 

Furthermore, the Charged multivesicular body protein 7 (CHMP7) was found to have an cMDT switch 

(ENST00000517325) in 50% of Uterus-AdenoCA, 17% of Breast-LobularCA and 13% of Breast-

AdenoCA. It is part of the densest 22% of network regions in STRING. According to the Ensembl 

database also this cMDT is also predicted to undergo nonsense-mediated decay. As a result, the 

interaction between CHMP7 and other CHMP family members (2A, 2B, 3, 4A, 4B, 4C, 5, 6) and the 

Vacuolar protein sorting-associated homolog protein VTA1 is deleted. CHMP7 is known to play an 

important role in repairing envelope raptures after cancer cell migration (Denais et al., 2016). Lacking 
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functional CHMP7 proteins in cancer cells and a fully functional nuclear envelope can induce 

extensive double-strand breaks and damage to nuclear DNA (Willan et al., 2019). Thus, the NMD 

driven loss of CHMP7 could play an important role in the cancer hallmark describing genome 

instability and mutations (Hanahan and Weinberg, 2011).  

In 41% of Uterus-AdenoCA, 17% of Bladder-TCC and one of Eso-AdenoCA PCAWG samples, we 

also identified switches in the cMDT for Tubulin beta-6 chain (TUBB6), where a short transcript 

ENST00000591909 was mainly expressed. The short transcript lacked most of the central and C-

terminal sequence of the canonical isoform (ENST00000317702), which contains both of the tubulin 

domains. The canonical isoform is located in the top 29% of densest STRING network regions. Thus, 

the cMDT switch will disrupt interactions not only to other Tubulin family members (1, 1A, 1B, 1C, 2A, 

2B, 3C, 3E, 4A, 4B) and the dynein 1 and 2 heavy chains but also have far-reaching impact beyond 

the direct interaction partners. The loss of specific Tubulin functions was associated with more 

aggressive forms of cancer tumors and resistance formation upon tubulin-binding chemotherapy 

agents (Parker et al., 2017).  

In summary, through our analysis on cMDTs we provide evidence for previously non-cancer 

associated genes to play an important role in tumor progression.  

Non-coding mutations associated with cMDT switches 

Plotting the sum of all single (SNVs) and multi-nucleotide variants (MNVs; joining of adjacent SNVs), 

and insertion and deletions (indels) against the number of cMDTs in the PCAWG dataset, revealed for 

the entirety of the dataset no correlation, R= -0.03 (Spearman’s rank correlation) (see Figure 6A). 

Interestingly, the points of various cancer types clustered together at different regions in log-space, 

indicating that the number of mutations and the number of cMDTs were more similar within cancer 

types than between different cancer types. Separating the correlation analysis by cancer type showed 

in contrary to the global correlation analysis, a wide range of positive and negative correlations for the 

various cancer types. ColoRect-AdenoCA had the lowest negative correlation with R= -0.23 in the 

PCAWG dataset. In contrast, Breast-AdenoCA, CNS-Oligo, Prost-AdenoCA, and Breast-LobularCA 

samples had the highest positive correlation between their number of mutations and alternative 

splicing disruption with R values between 0.25 and 0.49. Note however that the correlation analysis 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/742379doi: bioRxiv preprint 

https://doi.org/10.1101/742379
http://creativecommons.org/licenses/by/4.0/


 20

was mostly inconclusive due to high p-values (see Table 3). This somewhat contradicts the results of 

Eduardo and co-workers, who found a significant inverse correlation between protein-affecting 

mutations and functional MDTs (Climente-González et al., 2017).  

Next, we compared the mutations in the PCAWG dataset with the expression values of the transcripts 

to identify potential causative mutations for the cMDT switches in this study. To minimize confounder 

effects, we compared the expression values between mutated and wildtype transcripts from the same 

cancer type only. GTEx samples were not taken into account. In total, we were able to identify an 

association between mutations in cis and the expression value of a transcript for 20 cases, of which 

none was an cMDT described in this study. It seems that the dramatic alternations of the cMDT 

switches are not caused by mutations in cis-regions but rather by other alternative mechanisms (see 

Discussion).  

The transcripts whose expression was most significantly correlated with mutations within the gene 

structure were those of the apoptosis regulator Bcl-2 in Lymph-BNHL (see Figure 6C). In total 44 of 

103 samples had mutations either in the promoter region, 5 and 3’UTR, splice-site, intronic or exonic 

region that correlated with transcript expression in the gene. Interestingly, the expression of three out 

of four transcripts (ENST00000333681 (FDR corrected Wilcox test = 2.4e-08), ENST00000589955 

(FDR corrected Wilcox test = 1.6e-07), ENST00000398117 (FDR corrected Wilcox test = 3.6e-05)) of 

Bcl-2 showed a high correlation with the mutations (see Figure 6C and Figure S1), hinting towards a 

general upregulation of the gene due to the detected mutations. Additional transcripts in Lymph-BNHL 

whose over-expression significantly correlated with mutations in cis were those of MYC (see Figure 

6D and Figure S1) with mutations in 5’UTR, promoter, splice-site in particular exonic mutations 

(ENST00000377970 (FDR corrected Wilcox test = 4.0e-05), ENST00000524013 (FDR corrected 

Wilcox test = 5.3e-05)) and those of Serum/glucocorticoid-regulated kinase 1 SGK1 with various 

mutations in the promotor, UTR regions, splice site and coding sequence (ENST00000460769 (FDR 

corrected Wilcox test = 0.005), ENST00000367858 (FDR corrected Wilcox test = 0.008)) (see Figure 

6E and Figure S1). 

Over the 55 Panc-AdenoCA samples, we found a significant correlation between expressions of the 

CDKN2A transcripts ENST00000479692 and ENST00000497750 and 22 mutations covering the 

entire coding sequence and a single splice site mutation in the second last exon (ENST00000479692 
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(FDR corrected Wilcox test = 0.004, ENST00000497750 (FDR corrected Wilcox test = 0.008)) (see 

Figure 6F and Figure S1).  

Additional correlations between expression and mutations were identified for the canonical transcript 

of TERT (ENST00000310581) whose expression significantly correlated with mutations in the 

promoter region of 11/47 Thy-AdenoCA samples (FDR corrected Wilcox test = 5.5e-06) (see Figure 

6B). The expression of the transcripts ENST00000547379 and ENST00000367714 from the 

Monocarboxylate transporter gene SLC16A7 and Sodium/hydrogen exchanger gene SLC9C2, 

respectively, were significantly correlated with various mutations in 10 and 8 ColoRect-AdenoCA 

samples, respectively (ENST00000547379 (FDR corrected Wilcox test = 0.002), ENST00000367714 

(FDR corrected Wilcox test = 0.005)) (see Figure 6G and 6H). However, the median expression of 

these transcripts and the TERT transcript was generally below 2 TPM, which was the threshold for 

transcripts to be included in our study. Thus, these transcripts were not considered for the cMDT 

analysis. 

In summary, these results indicate that mutations in cis change the expression of transcripts but are 

not driving the large-scale changes observed with cMDT switches. 

Discussion 

We have performed (as of today) the most comprehensive analysis on the pathogenic consequences 

of alternative splicing alterations in 27 different cancer-types. To perform the analysis, we introduced 

the concept of cancer-specific most dominant transcripts (cMDT) and have developed a novel 

isoform-specific protein-protein interaction network to assess their functional and pathogenic impact. 

We demonstrated large variations in the number of cMDTs but also showed that the cMDT load is 

tissue-specific, in contrast to the mutational load in the same samples.  We identified some cMDT as 

candidate diagnostic biomarkers which were found in 100% of cancer samples but not in any sample 

of the matched normal cohort. 28% of protein-protein interactions were disrupted due to cMDTs which 

were mostly related to enzyme signaling, protein translation, and RNA splicing. When disruptive, 

cMDTs destroyed all known interactions of a given protein. Most cMDTs were interaction partners of 

cancer-associated genes. Based on the density of local network regions, we predicted CHMP7, 

NPR2, and TUBB6 as novel pathogenic genes whose splice variants impact the interaction network 
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similarly as splice variants of cancer-associated genes. And finally, we didn’t find evidence of genomic 

alterations explaining the large extent of cMDT switches but identified transcripts whose expression 

correlated with various somatic mutations in cis. 

Despite the large extent of functional and pathogenic consequences that were detected and predicted 

for all the different cancer types, two main problems remain with our assessments. Firstly, the 

RNAseq data on which we based our MDT measurements were collected with short-read sequencing 

technologies, which have an intrinsic limitation to detect and quantify long transcripts (Steijger et al., 

2013). But several benchmarks have shown that alignment-free transcript quantification methods like 

Kallisto are among the most accurate quantification tools for known transcripts (D. C. Wu et al., 2018; 

Chi Zhang et al., 2017). Nevertheless, as Kallisto only quantifies known transcripts, we might have 

underestimated the impact of altered alternative splicing by not considering novel transcripts. Long-

read sequencing (Tilgner et al., 2015) in bulk or on single cells (Gupta et al., 2018; X. Liu et al., 2017) 

are ideal methods to overcome these problems. Their application on large cohorts like PCAWG will 

certainly advance our understanding of the true extent of cMDT switches in cancer.  

Secondly, there remains the possibility that the detected cMDTs are not translated into proteins, in 

which case all predicted consequences on the interaction networks would be invalid. However, there 

is currently no technology for measuring protein isoform expression on a proteome wide scale. Mass-

spectrometry (MS) based methods which are most widely used to probe the proteome of cancer cells 

suffer from similar limitations as short-read sequencing technologies. In MS-based methods often only 

a single or a few peptides are identified to quantify proteins. In most cases, however, these peptides 

are shared between different transcripts. In a recent study by the Aebersold lab, only 65 peptides 

which were unique to an isoform were identified from a whole proteome measurement (Y. Liu et al., 

2017). Thus, the small number of MS detectable isoform-specific peptides make current proteome-

wide judgments on the translation of cMDTs unfeasible. 

We also noticed that the identification of cMDTs is somewhat dependent on method parameters, 

which forced us to be conservative with our choices of fold-change thresholds, interaction score 

confidences, p-values and the exclusion of any normal cohort matches. Despite the restrictive 

parameters, we failed to identify any causative mutations in cis that could explain the observed 

overexpression of the cMDTs. There are multiple reasons why this might be the case. Firstly, even 
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though we had over 1209 samples available for our study, on a cancer-type level we had only 37 

cases on a median average. Also, most mutations were unique and found at various locations within a 

gene’s structure. To counteract the data sparsity we had to combine the different mutations which 

further reduces the power of our correlation analysis (PCAWG Transcriptome Core Group et al.). 

Secondly, the causative mutations could lie outside the cMDT genes like in splicing factors. And 

indeed, 100 of the 1209 samples have a mutation in at least one of the splicing factors SF3B1, 

SRSF2, U2AF1, ZRSR2 that are often mutated in cancers (Dvinge et al., 2016). 97 samples have 

mutations in one of the RNA Polymerase II proteins (RBP1-12), which can also lead to aberrantly 

spliced products (Oesterreich et al., 2016; Saldi et al., 2016). Thirdly, epigenetic regulations by 

histone modifications and DNA methylations could have led to some of the observed deregulations in 

alternative splicing (Luco et al., 2011; Zhu et al., 2018). And finally, more recently a connection 

between glucose metabolism and splicing efficacy was demonstrated (Biamonti et al., 2018), which 

could also have contributed to aberrant splicing in our cancer samples. Further in-depth analyses are 

required to fully understand the genomic causes behind the observed cMDT patterns. 

The functional and pathogenic impact that we demonstrated for cMDT switches emphasizes the 

importance of alternative splicing in tumorigenesis and cancer progression. Future work will show 

which of the presented findings can be observed on the proteome level and whether these findings 

can be translated as diagnostic biomarkers for precision oncology into the clinics. 
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Figures 

Figure 1: Overview of methodology to assess the impact of cancer-specific Most Dominant Transcript (cMDT) 

switches using CanIsoNet, an isoform-specific interaction network. Top of the figure with a grey background 

shows the steps and filters for cMDT switch detection based on the relative expression value analysis of 

transcripts in PCAWG and GTEx. Bottom of the figure with a violet background describes the methods and 

databases we used to develop CanIsoNet which combines functional interactions from STRING, with physical 

domain-domain interactions from 3did on all known transcripts from Ensembl. For the assessment of the 

functional and pathogenic impact, CanIsoNet counts the relative number of disrupted interactions, collects 

network density information from the STRING database and proximity information to genes to the COSMIC 

Cancer Gene Census within the STRING database. The middle section with white background depicts the 

combination of cMDT switch information with data from CanIsoNet to assess the functional impact of alternatively 

spliced isoforms. 

Figure 2: Overview of the PCAWG dataset. A) Mapping table between code and cancer type name in PCAWG. 

The upper column plot shows the number of samples with RNAseq and WGS data in PCAWG per cancer type 

colored according to PCAWG specifications. GTEx tissue type names are followed by PCAWG cancer type 

codes. The bottom column plot displays the number of samples per GTEx tissue type. B) Number of cancer-

specific Most Dominant Transcript (cMDT) per sample, grouped by cancer type and ordered according to the 

median number of cMDT per cancer type. The top axis displays the sum of all cMDTs per cancer type. Red lines 

with numbers in each cancer type point towards the median number of cMDT per cancer type. C) Number of 

Short Variances, i.e. single/multi nucleotide variances and indels per cancer type in log-scale. The top axis 

represents the sum of all mutations per cancer type. Red lines show the median number of mutations per cancer 

type. 

Figure 3: Structure and frequency of selected most dominant transcripts in the PCAWG dataset. A) 

NDC80/HEC1 and its Most Dominant Transcripts (MDT) in cancer and matched normal tissues. Note the high 

relative frequency of the expression of the long transcript in Bone-Leiomyo, Breast-LobularCA, Breast-AdenoCA, 

CNS-GBM, Bladder-TCC, and Ovary-AdenoCA. B) TPX2 and its MDT in cancer and matched normal tissues. 

The transcript ENST00000300403 has an extra exon 5’ to the central TPX2_importin domain highlighted with the 

green lines, which inhibit TPX2 translocation to the cytoplasm and hinder its binding to the mitotic spindle. C) 

NEK2 and its MDT in various cancers and matched normal tissues. In various cancers, the MDT contains an 

additional C-terminal coiled-coiled region which allows the NEK2A isoform to form a complex with APC/C and be 

degraded in mitosis.  
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Figure 4: STRING interactions with 3did protein domain information and structural representation of the most 

frequently disrupted Protein-Protein Interactions (PPI) due to cancer-specific Most Dominant Transcript (cMDT) 

switches. Disrupted interactions are highlighted with black-colored lines. A) Ubiquitin carboxyl-terminal hydrolase 

46 (USP46) (shown in lavender color) whose interaction with WD repeat-containing protein 48 (WDR48) (shown 

in green color) and Polyubiquitin-B (UBB)(shown in orange color) is likely disrupted due to the cMDT of USP46 

lacking an N-terminal exon (red-colored segment), which encodes part of a beta-sheet. The loss of the beta-

strand has likely major impact on the structure of USP46, disrupting its interaction with UBB (shown as sphere) 

and the finger motive that interacts directly with WDR48 (Structure from Protein Data Bank (PDB) ID: 5cvn, 

USP46: chain B, WDR48: chain A, UBB: chain D). B) Complex of 40S ribosomal protein S19 (RPS19) and S16 

(RPS16) extracted from the electron microscopy 40S ribosome structure (PDB ID: 5flx, RPS19: chain T, RPS16: 

chain Q). The cMDT of RPS19 lacks a large portion of the N-terminus which usually forms an interface with 

RPS16 (shown as spheres). C) The mitochondrial NADH dehydrogenases NDUFA9 and NDUFS7 are shown in 

complex. The coordinates were extracted from the electron microscopy structure of the human respiratory 

complex PDB ID: 5xtb (NDUFA9: chain J, NDUFS7: chain C). The interface between NDUFA9 and NDUFS7 is 

highlighted with spheres. Spliced exons are shown in red color.  

Figure 5: Predicting the Pathogenicity of cancer-specific Most Dominant Transcript (cMDT). A) cMDTs and their 

shortest distance to a COSMIC CGC gene in the STRING interaction network. Relative frequencies of all cMDTs 

are shown in red, while cMDTs disrupting protein interactions are shown in dark red. Frequencies of randomly 

selected and expressed proteins are shown in grey. The significance of cancer and random frequency 

differences was p-value < 2.2e-16 (Wilcox-Rank sum test). B) A protein Network Density Score (NDS) was 

computed for all genes in the PCAWG dataset based on the number of interactions of a gene and its 

neighborhood. The histogram shows the distribution of NDS for genes from the COSMIC Cancer Gene Census 

(CGC) and their interaction partners vs. remaining genes. C-F) Shown are exemplary structures of protein 

complexes whose integrity is lost due to cMDTs lacking important residues of the binding interface (shown in 

sphere representations). The spliced-out regions in the cMDTs are shown in red color. Next to the protein 

structures, are the STRING interactions shown for the cMDT with all interaction partners that could be identified 

in our STRING-3did database. Interactions that are lost due to an cMDT switch are highlighted with thick black 

lines. C) Trimeric Protein Phosphatase 2A (PP2A) - Shugoshin 1 (SGO1) complex, with an 18 AA long segment 

in the ankyrin repeat domain that is spliced out in various cancer types. This short segment is not directly 

involved in the interaction with the other PP2A subunits. However, its removal by alternative splicing is likely 

distorting the structure of PPP2R5D and its interactions. The 80 AA long N-terminus of PPP2R5D, which is also 

spliced out, has no structural coordinates, why the atoms of the first N-terminal amino acid in the structure 

(Phe92) are shown as spheres to indicate the location of the N-terminus of PPP2R5D. The inset figure shows the 
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same complex rotated horizontally by -90º. The structure of PPP2R5D is a homology model mapped on the 

PP2A complex of the Protein Data Bank entry PDB-ID: 3fga (Herzog et al., 2012). The STRING interaction map 

indicates that all known interactions in the STRING-3did network would be lost due to this cMDT. D) X-ray crystal 

structure (PDB-ID 1ycr) of a small section from the MDM2 – TP53 complex that shows the interface between 

MDM2 and TP53. The entirety of the MDM2 segment was lost due to alternative splicing. Nevertheless, not all 

known interactions in the STRING-3did network were affected. The interactions to the ubiquitin-conjugating 

enzymes likely remain despite the cMDT switch. E) Structure showing the cryo-Electron Microscopy (EM) image 

of a dimeric microtubule element assembled from human TUBA1A and TUBB6. TUBB6 is a homology model 

from SWISS-MODEL (Biasini et al., 2014) mapped on the location of TUBB3, which was the original protein in 

the cryo-EM complex. All known interactions in the STRING-3did database are lost in 23 PCAWG samples 

expressing the TUBB6 cMDT. 

Figure 6: Integrating PCAWG Whole Genome Sequencing data with the Most Dominant Transcript (MDT) 

information. A) Comparing for each sample the number of single- and multi-nucleotide mutations including 

insertion and deletions (indels) with the number of cancer-specific MDTs. While globally no correlation can be 

identified, on a single cancer type basis, positive and negative correlations can be observed (see also Table 3). 

Please see  to assess the functional impact of alternatively spliced isoforms. 

Figure 2 for the color code. B-H) Transcripts whose expression most significantly correlates with mutations in the 

gene structure. q-values are FDR corrected p-values from Wilcox-Rank sum tests between PCAWG expression 

values from mutated samples vs. non-mutated samples. All transcripts having any expression were taken into 

consideration. Note, in this context the little expression of the SLC9C2 transcript, which could hint towards a 

false-positive correlation detection for the transcript. Results are shown only for transcripts for which ≥ 6 samples 

exist in cancer types which have a mutation in the associated gene. The significance threshold for q-values was 

< 0.01. Significant correlations were found for additional transcripts of BCL2, MYC, SGK1, and CDKN2A (see 

Figure S1). 
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Tables 

Table 1: Cancer-specific Most Dominant Transcripts (cMDT) can disrupt Protein-Protein Interactions (PPI) in 

cases in which they are not encoding the canonical isoform and are lacking protein domains important for the 

interaction. For each gene in the dataset, we measured the percentage of interactions that were predicted to be 

lost due to the expression of a non-canonical cMDT and counted their frequency in the dataset. The total number 

of interactions in the dataset was 461,437 of which 129,496 PPI were predicted to be lost due to cMDT 

expression. 

Percentage of a Protein’s PPI 
disrupted due to cMDT 

Number of cMDTs disrupting a 
Percentage of a Protein’s PPI 

Relative frequency in 
entire dataset 

0% 104,700 0.858 

1% – 10% 275 0.002 

11% – 20% 213 0.002 

21% – 30% 98 0.001 

31% – 40% 305 0.002 

41% – 50% 257 0.002 

51% – 60% 30 0.000 

61% – 70% 111 0.001 

71% – 80% 200 0.002 

81% – 90% 403 0.003 

91% – 99% 126 0.001 

100% 15,333 0.126 
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Table 2: Number of disrupted Protein-Protein-Interactions (PPI) due to cancer-specific Most Dominant Transcript 

(cMDT) switches per cancer type. 

Cancer type Total number of 
disrupted 
interactions due to 
cMDT switch 

Total number of 
samples in 
cancer type 

Mean number of 
PPI disrupted due 
to cMDT switch per 
sample 

Uterus/Uterus-AdenoCA 3792 44 86% 

Esophagus/Eso-AdenoCA 316 7 45% 

CervixUteri/Cervix-SCC 794 18 44% 

Colon/ColoRect-AdenoCA 1651 51 32% 

Bladder/Bladder-TCC 637 23 28% 

Ovary/Ovary-AdenoCA 2788 110 25% 

Kidney/Kidney-RCC 2328 117 20% 

Pancreas/Panc-AdenoCA 1059 75 14% 

Liver/Biliary-AdenoCA 243 18 14% 

Muscle/Bone-Leiomyo 415 34 12% 

Thyroid/Thy-AdenoCA 482 47 10% 

Liver/Liver-HCC 841 100 8% 

Breast/Breast-AdenoCA 626 85 7% 

Stomach/Stomach-AdenoCA 169 29 6% 

Blood/Lymph-CLL 360 68 5% 

Lung/Lung-AdenoCA 190 37 5% 

Breast/Breast-LobularCA 30 6 5% 

Kidney/Kidney-ChRCC 194 43 5% 

Lung/Lung-SCC 206 47 4% 

Prostate/Prost-AdenoCA 71 19 4% 

Skin/Skin-Melanoma 74 36 2% 

Blood/Lymph-BNHL 74 103 1% 

Brain/CNS-Oligo 5 18 0.3% 

Brain/CNS-GBM 6 28 0.2% 

SalivaryGland/Head-SCC 0 42 0% 
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Table 3: Spearman correlation coefficients R and p-value between number of short variants and number of 

cancer-specific Most Dominant Transcript (cMDT) switches for all cancer types. The scatter plot of all points is 

shown in Figure 5A. A correlation coefficient for SalivaryGland/Head-SCC could not be computed, as it lacked 

any detectable cMDT switches. 

Cancer type R P-value 

Colon/ColoRect-AdenoCA -0.23 0.109 

Liver/Biliary-AdenoCA -0.10 0.683 

Bladder/Bladder-TCC -0.09 0.673 

Kidney/Kidney-RCC -0.07 0.486 

Uterus/Uterus-AdenoCA -0.06 0.716 

Liver/Liver-HCC -0.02 0.861 

Thyroid/Thy-AdenoCA -0.02 0.914 

Esophagus/Eso-AdenoCA 0.00 1.000 

Pancreas/Panc-AdenoCA 0.01 0.933 

Brain/CNS-GBM 0.02 0.923 

Blood/Lymph-BNHL 0.04 0.708 

Muscle/Bone-Leiomyo 0.05 0.784 

Ovary/Ovary-AdenoCA 0.10 0.314 

Stomach/Stomach-AdenoCA 0.10 0.620 

Blood/Lymph-CLL 0.11 0.389 

Kidney/Kidney-ChRCC 0.13 0.422 

CervixUteri/Cervix-SCC 0.15 0.545 

Lung/Lung-AdenoCA 0.16 0.340 

Skin/Skin-Melanoma 0.18 0.295 

Lung/Lung-SCC 0.19 0.212 

Breast/Breast-AdenoCA 0.25 0.019 

Brain/CNS-Oligo 0.28 0.256 

Prostate/Prost-AdenoCA 0.28 0.247 

Breast/Breast-LobularCA 0.49 0.356 

SalivaryGland/Head-SCC NA NA 
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Supplementary material 

Table S1: Mapping table between PCAWG code, PCAWG cancer type name and matched GTEx tissue cohort. 

 

Table S2: Isoform-specific interaction network with information on which interactions are lost and which remain 

for each alternatively spliced isoform/transcript. Please read the comment in the file’s header for more 

information on the file format. 

 

Table S3: List of all detected cancer specific Most Dominant Transcript switches (cMDT) and the protein 

interactions they disrupt with a rich set of various annotations. 

 

Table S4: Most dominant transcripts found in the PCAWG dataset. The Ensembl Gene ID, as well as the gene 

name, are listed. The number of samples in which the cMDT was observed in the cancer type is given in the 

Frequency column. The total number of samples per cancer type is listed 6th column, followed by the percentage 

of samples expressing the transcript as cMDT.   

 

Table S5: Disrupted protein interactions due to cancer-specific Most Dominant Transcript (cMDT) switches in the 

PCAWG dataset. 

 

Table S6: Most significant biological processes from GeneOntology, which were found enriched for cancer-

specific Most Dominant Transcripts (cMDT) that are disrupting protein interactions. Enrichment analysis with FDR 

corrected p-values were computed on the STRING interaction network using STRINGdb R-package 

(Franceschini et al., 2013). 

 

Figure S1: Transcripts whose expression significantly correlated with mutations in their associated gene 

structure. These transcripts are part of multiple transcripts from the same gene that all show a significant 

correlation between expression and gene mutation (compare to Figure 6). 
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