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Abstract 34 

Introduction: Alzheimer’s disease (AD) disproportionately affects females. We determined 35 

whether physiological biomarkers (neuroplasticity, immune, stress, epigenetic) explain why 36 

females are more susceptible to AD than males using the Alzheimer’s Disease Neuroimaging 37 

Initiative (ADNI) database.  38 

Methods: Using the complete ADNI cohort, we analysed the effect of sex and APOE genotype 39 

(number of ε4 alleles) and sex and diagnosis (cognitively normal (CN), mild cognitive 40 

impairment (MCI), AD) on (1) AD related endpoints: memory scores, executive function scores, 41 

hippocampal volume, cerebrospinal fluid (CSF) amyloid beta, tau and p-tau; (2) markers of the 42 

immune system (interleukins, C-reactive protein, and immunoglobulins), neuroplasticity 43 

(intercellular adhesion molecule, ICAM1), and stress (cortisol); and (3) epigenetic age.  44 

Results: Females had higher levels of tau and p-tau compared to males and increasing alleles of 45 

APOEε4 disproportionately increased tau and p-tau compared to males. Females had larger 46 

hippocampal volume (corrected with intracranial volume) and better memory scores (that include 47 

verbal memory) than males, regardless of APOE genotype and diagnosis. There were also sex 48 

differences in biomarkers with females having higher levels of plasma C-reactive protein and 49 

lower levels of CSF IL-8, IL-16, immunoglobulin A, and ICAM1. We did not observe an 50 

association between sex, diagnosis, or APOE genotype and blood epigenetic age acceleration or 51 

intrinsic epigenetic age acceleration. 52 

Conclusion: In females tau pathology was increased but memory scores were higher and 53 

corrected hippocampal volume were larger compared to males suggesting females have a reserve 54 

against brain damage that delays either the onset of cognitive decline or diagnosis. In this ADNI 55 

cohort more males than females were diagnosed with MCI but with no significant difference in 56 
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AD diagnosis, although more females presented with AD, suggesting the progression from CN, 57 

MCI to AD may be sex-specific. We found sex differences in immune biomarkers indicating that 58 

the underlying physiology may participate in differential aging with and without a diagnosis of 59 

AD or MCI between the sexes. 60 

 61 

Keywords: Sex differences, inflammation, epigenetic age, hippocampus 62 

 63 

Introduction 64 

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by severe 65 

cognitive decline (Alzheimer’s Association, 2017). Modifiable risk factors associated with AD 66 

include stress (Caruso et al., 2018), sociocultural or lifestyle factors (e.g., education, marital 67 

status, exercise), and conditions (diabetes, obesity, and cardiovascular disease; Baumgart et al., 68 

2015; Nebel et al., 2018; Xu et al., 2015). Non-modifiable risk factors include age, biological 69 

sex, and APOE genotype (Riedel et al., 2016). Females are more likely to be diagnosed with AD 70 

in Europe and Asia, although this sex difference may depend in part on geographic location as 71 

the sex difference is not always observed in studies from the United States (reviewed by Ferretti 72 

et al., 2018; Mielke et al., 2014; Nebel et al., 2018). Nevertheless, regardless of prevalence, 73 

females show greater neuropathology (brain atrophy, neurofibrillary tangles) and cognitive 74 

decline with AD than males in both Europe and the United States (Ardekani et al., 2016; Barnes 75 

et al., 2005; Holland et al., 2013; Hua et al., 2010; Irvine et al., 2012; Koran and Hohman, 2017; 76 

Lin et al., 2015).  77 
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The hippocampus is one of the first brain areas to show atrophy with AD (Apostolova et 78 

al., 2006; Jack et al., 2000; Kidron et al., 1997) and hippocampal atrophy correlates with 79 

cognitive decline (Petersen et al., 2000)  and AD pathology (neurofibrillary tangles; Jack et al., 80 

2002). Previous studies using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) indicate 81 

that females have greater atrophy rates and cognitive decline than males with AD (Holland et al., 82 

2013; Hua et al., 2010; Lin et al., 2015). However, there is limited research into the role of sex in 83 

the possible mechanisms underlying AD. In addition, few studies have examined the interaction 84 

of genetic polymorphisms and biological sex in AD. The ε4 allele of the APOE gene is a well-85 

known genetic risk factor of AD (Corder et al., 1993) and is associated with accumulation of 86 

amyloid beta protein (Ossenkoppele et al., 2015). In females between 65 and 75 years, one allele 87 

of ε4 increases the risk of AD by 4-fold relative to males, indicating that the APOE genotype 88 

affects males and females differently (meta-analysis by Neu et al., 2017). Understanding why 89 

females are at a higher risk and have a higher burden of the disease is important for the 90 

development of tailored treatments based on sex and genetics.  91 

Chronic inflammation is a hallmark of AD, as evidenced by increased expression of 92 

proinflammatory cytokines in the brains of AD patients which can exacerbate AD pathology 93 

(Heppner et al., 2015; Kinney et al., 2018; Swardfager et al., 2010). There are sex differences in 94 

immune responses (Klein and Flanagan, 2016) which can affect neuroplasticity (Dantzer, 2018; 95 

de Miranda et al., 2017) and interact with stress (Dantzer, 2018), but it is not known how these 96 

may be related to sex differences in AD. Biomarkers are highly sought after to predict disease 97 

onset and progression and to understand the possible underlying mechanisms of AD to develop 98 

better treatments. Therefore, the first objective of this study was to investigate potential 99 
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physiological biomarkers (neuroplasticity, immune, stress) that may explain sex differences in 100 

AD and in people at risk for AD using the ADNI database.  101 

Aging biomarkers also include epigenetic alterations, and these have been associated with 102 

a variety of pathologies and adverse health conditions, including normal cognitive aging and 103 

neurodegenerative phenotypes such as AD (Hannum et al., 2013; Horvath, 2013; Levine et al., 104 

2015; Yokoyama et al., 2017). Recently, molecular biomarkers of aging known as “epigenetic 105 

clocks” have been developed based on DNA methylation signatures (Hannum et al., 2013; 106 

Horvath, 2013). Epigenetic age or “DNAmAge” is a measure of the biological age of a sample 107 

(cell or tissue), and can be calculated across a range of tissues and time points, providing an 108 

accurate estimation of a sample’s chronological age based on the presence or absence of 109 

methylation at the 5’ carbon of informative CpG dinucleotides throughout the human genome 110 

(Horvath, 2013). Positive deviations of epigenetic age from chronological age (positive 111 

epigenetic age acceleration) reflect more rapid biological aging and have been associated with 112 

numerous factors including smoking, obesity, Parkinson’s disease, Trisomy 21, and cancer (Gale 113 

et al., 2018; Horvath, 2013; Horvath et al., 2015; Horvath and Ritz, 2015), while negative 114 

deviations of epigenetic age from chronological age (negative epigenetic age acceleration) have 115 

been associated with high life-expectancy populations and memory retention (Degerman et al., 116 

2017; McEwen et al., 2017). In AD, epigenetic age acceleration of the frontal cortex was 117 

associated with amyloid load, neuritic plates, and cognitive decline (Levine et al., 2015). Intra-118 

individual DNA methylation profiles in peripheral tissue are correlated with the epigenetic 119 

signature in the brain, likely due both to identical genetic background affecting DNAme, and 120 

common signatures of epigenetic aging (Braun et al., 2019), thus it is reasonable to hypothesize 121 

that epigenetic age acceleration may also be detectable in peripheral tissues such as blood in AD 122 
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participants. In healthy individuals, aging males exhibit more positive epigenetic age 123 

acceleration than females in blood and buccal tissue, and multiple brain regions (Horvath et al., 124 

2016); in AD and other diseases with a sex difference, it is possible that the underlying sex-125 

specific pathological mechanisms may be reflected in epigenetic age acceleration measures – for 126 

example, in AD females could potentially have more positive epigenetic age acceleration than 127 

males.   128 

Our aims were to first examine sex differences in cognitive ability, volume of the 129 

hippocampus, neuropathological markers of AD and the potential underlying physiological 130 

mechanisms (neuroplasticity, immune, stress) and how these may be affected by APOE genotype 131 

(number of ε4 alleles), and secondly by dementia status (cognitively healthy (CN), mild 132 

cognitive impairment (MCI), AD). Our third objective was to investigate epigenetic age in 133 

peripheral tissue of CN, MCI and AD participants, and to study the relationship between sex, 134 

APOE genotype, dementia status, and epigenetic age acceleration. 135 

 136 

Methods 137 

ADNI database 138 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 139 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 140 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 141 

MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging 142 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 143 

neuropsychological assessment can be combined to measure the progression of mild cognitive 144 
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impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see 145 

www.adni-info.org. Data used in this article were downloaded on or before Jan 16, 2019.  146 

 147 

Statistical Methods: Sex and APOE genotype and sex and diagnosis 148 

We included all participants that had a baseline diagnosis in the ADNI database (total n = 149 

1,460, n= 630 females, n=830 males). Data included in our analyses were: demographics (age, 150 

years of education, and ethnicity), baseline diagnosis (cognitively normal, CN; early MCI, 151 

EMCI; late MCI, LMCI; or AD), number of APOE ε4 alleles (0, 1 or 2), ADNI executive 152 

function Z-scores, ADNI memory Z-scores (using data from the ADNI neuropsychological 153 

battery and validated in Crane et al., 2012; Gibbons et al., 2012), hippocampal volume (mm
3
), 154 

cerebrospinal fluid (CSF) amyloid beta (pg/ml), CSF tau (pg/ml), and CSF p-tau (pg/ml). The 155 

executive function score included WAIS-R Digit Symbol Substitution, Digit Span Backwards, 156 

Trails A and B, Category Fluency, and Clock Drawing (Gibbons et al., 2012). The composite 157 

memory score included Rey Auditory Verbal Learning Test, AD Assessment Schedule - 158 

Cognition, Mini-Mental State Examination, and Logical Memory data (Crane et al., 2012). A 159 

small subset of participants also had inflammatory markers measured in CSF (N = 279), and 160 

plasma (N = 527) listed in Table 2A. Hippocampal volume was divided by intracranial volume to 161 

correct for differences in brain size, as sex differences in hippocampal volume are influence by 162 

intracranial volume (Lotze et al., 2019; Tan et al., 2016) and is presented as a ratio. 163 

We compared all available data for each study variable between the sexes using the 164 

Wilcoxon rank sum test for continuous variables and Fisher’s exact test for categorical variables. 165 

We used general linear models to determine the relationships between (1) sex and APOE 166 

genotype or (2) sex and dementia diagnosis and cognitive ability, corrected hippocampal volume, 167 
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and biomarkers. All models included age as a covariate. To test the main question, all models 168 

initially included an interaction between sex and APOE genotype or sex and dementia diagnosis; 169 

if this interaction was not significant, it was removed from the model to estimate the main effects 170 

of sex and APOE genotype or diagnosis. Significance was based on the likelihood ratio test, and 171 

all p-values for comparisons of sex and either APOE or diagnosis for all outcomes combined 172 

were corrected for multiple testing using the Benjamini-Hochberg false discovery rate method 173 

(Benjamini and Hochberg, 1995). All regression analyses were carried out in R v3.5.1 (R Core 174 

Team 2018). 175 

 176 

Statistical Methods: Epigenetic Age  177 

We used DNAme data quantified with the Illumina Infinium HumanMethylationEPIC 178 

BeadChip array (“EPIC” array) for 1905 blood samples from 640 unique ADNI participants 179 

(n=284 females, n= 356 males; Vasanthakumar et al., 2017) with CN, MCI and AD diagnosis. 180 

DNAme IDAT files were read into R v3.5.1 (R Core Team, 2018) using the ‘minfi’ package, and 181 

annotated with the most recent version of the EPIC manifest, the Infinium MethylationEPIC v1.0 182 

B4 Manifest File, (available from https://support.illumina.com/downloads.html) (Aryee et al., 183 

2014; Fortin et al., 2017). We excluded 11 low quality samples from 9 unique participants from 184 

further analyses on the basis of having a median methylated or unmethylated probe intensity 185 

<10.5 (Aryee et al., 2014; Fortin et al., 2017), the remaining samples were background 186 

normalized and dye-bias adjusted with normal exponential out-of-band (“noob”) normalization 187 

(Triche et al., 2013). DNAme data were converted to beta values and biological sex for all 188 

samples was confirmed by clustering samples on all DNAme probes mapping to the X and Y 189 

chromosomes. Beta values were calibrated to Horvath’s 21,368-probe training dataset, and 190 
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epigenetic age was calculated using R code modified for compatibility with the EPIC array using 191 

the 334/353 epigenetic clock probes present on the array from https://horvath.genetics.ucla.edu/ 192 

(Horvath, 2013; Teschendorff et al., 2013). The missing DNAme values at these CpG sites can 193 

also be imputed based on the k-nearest neighbors method. We observed a very high correlation 194 

between epigenetic age values calculated with the missing probes removed versus imputed with 195 

k=10 (R=0.99, p<2.2e-16), in agreement with previous reports; we therefore chose to remove 196 

missing probes (Fiorito et al., 2017; McEwen et al., 2018).  197 

Prior to statistical analyses we removed all technical replicates. Epigenetic age 198 

acceleration was calculated as the residual of epigenetic age regressed on chronological age and 199 

technical/batch covariates, including the laboratory collection site at which blood samples were 200 

drawn, and EPIC microarray chip and row. Intrinsic epigenetic age acceleration, a measure 201 

designed to be independent of age-related changes in whole blood cell-type proportions, was 202 

calculated as described in Chen et al. (Chen et al., 2016) as the residual of epigenetic age 203 

regressed on chronological age, technical covariates of collection site, row, and chip, and the 204 

proportions of six blood cell types (CD8T, CD4T, NK, B cells, monocytes, and granulocytes) 205 

estimated from noob-normalized methylation data with the Houseman algorithm (Houseman et 206 

al., 2012). For participants who contributed more than one blood DNAme sample within the 2-207 

year collection period, we determined that longitudinal data collected within the median 3.6-year 208 

error of the epigenetic clock could not be meaningfully evaluated, and therefore calculated mean 209 

epigenetic age acceleration measures per participant from all available time points and performed 210 

all statistical analyses on these mean values. 211 

Statistical analyses of epigenetic age acceleration were conducted using data from the 212 

remaining 640 participants (see Table 2B). To determine if epigenetic age acceleration or 213 
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intrinsic epigenetic age acceleration differed by sex, dementia diagnosis, or APOE genotype, we 214 

used unbalanced two-way ANOVA designs. With CSF biomarker (amyloid beta, tau and p-tau) 215 

data available from the ADNI repository for a smaller subset of participants with matched EPIC 216 

DNAme data, (n=533, see Table 2C) we used linear regression to test whether APOEε4 217 

genotype, amyloid beta, tau, p-tau, dementia diagnosis, or sex were significantly associated with 218 

epigenetic age acceleration.  219 

 220 

Results: 221 

Demographic and biomarker information  222 

Table 1 gives a summary of the variables for the overall data set (N=1460). Overall, 223 

females were significantly younger and had fewer years of education than males (P<0.0001 for 224 

both). There were more white males than white females in our sample and there were more non-225 

white females compared to non-white males (P<0.05). In terms of APOE genotype, there were 226 

no sex differences in distribution of APOE genotype with 11% females and 12 % of males 227 

possessing two alleles of APOEε4. In the overall data set, the proportion of participants in each 228 

of the diagnosis categories was significantly different for females and males (P<0.05). There 229 

were more females with a baseline diagnosis of AD compared to males (23.7% compared to 230 

21.7%, unadjusted P = 0.41), although not significantly, and more females were cognitively 231 

normal than males (26.7% compared to 20.8%, unadjusted P = 0.01). However, there were more 232 

males with a diagnosis of late MCI (39.5% versus 32.5%, unadjusted P=0.007) and early MCI 233 

(18.0% versus 17.1%, unadjusted P=0.74) compared to females, although not significantly.  234 

Because not all data were available for each subject we created a summary table for the 235 

participants: with CSF biomarkers (Table 2A; N=279), with whole blood EPIC DNAme data 236 
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(Table 2B; N=640) and with matched EPIC data and measured CSF biomarkers (Table 2C; 237 

N=533). Among those with measured CSF biomarkers, demographics were very similar as per 238 

results from overall data set in Table 1(see legend of Table 2). For the data applicable to the 239 

participants with available EPIC DNAme data (Table 2B) and participants with EPIC DNAme 240 

data and CSF biomarkers (Table 2C), most of the demographics were similar to the entire data 241 

set except the proportion of participants in each of the diagnosis categories was not significantly 242 

different between females and males. 243 

In the overall data set, females had a smaller uncorrected hippocampal volume but larger 244 

corrected hippocampal volume, greater CSF amyloid beta, tau and p-tau, and higher memory 245 

function z-scores than males (Table 1). Biomarkers in the CSF were measured in a subset of 246 

participants (Table 2A). In this smaller cohort, females and males had similar levels of CSF 247 

CRP, CD 40 antigen and IL-6 receptor. However, females had lower CSF cortisol, interleukin-3, 248 

interleukin 8, interleukin-16, immunoglobulin A, and intercellular adhesion molecule compared 249 

to males (Table 2A). 250 

 251 

Sex and APOE genotype are associated with changes in memory, hippocampus volume, AD and 252 

CSF inflammatory markers 253 

Our first aim was to investigate whether sex and APOE genotype interact to influence 254 

cognitive ability, volume of the hippocampus, and biomarkers of AD and inflammation. There 255 

were significant interactions between sex and APOEε4 genotype for CSF tau, p-tau, and IL-16 256 

(Table 3). Tau and p-tau levels were significantly higher in females with one or two alleles of 257 

APOEε4 compared to males (Fig 1 A and B). Although CSF p-tau and tau levels also increase in 258 

males with APOEε4 genotype, they do not rise to the same extent as in females. IL-16 levels 259 
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were significantly lower in females with no APOEε4 alleles compared to males, whereas levels 260 

were similar between the sexes with one or two APOEε4 alleles (Fig 1 C and D).  261 

Both sex and APOE genotype were independently (main effects of sex or APOE 262 

genotype) associated with memory z-scores and corrected hippocampal volume (Table 3). 263 

Females had higher memory z-scores and larger corrected hippocampal volume across all APOE 264 

genotypes (Fig 1 E and F).  Lower memory z-scores were associated with increasing number of 265 

APOEε4 alleles in both sexes. Similarly, corrected hippocampus volume was significantly lower 266 

with increasing number of APOEε4 alleles in both sexes. Increasing APOEε4 alleles was also 267 

associated with lower executive function z-scores, lower amyloid beta, and lower C-reactive 268 

protein (Table 3; Fig 1 G-I), however there was no additional association of these variables with 269 

sex. Finally, results were similar for biomarkers in plasma (Supplementary Table S3). 270 

 271 

Sex and diagnosis are associated with changes in memory, hippocampus volume, AD and CSF 272 

inflammatory markers 273 

We next tested whether sex and dementia status (CN, MCI, and AD) influenced cognitive 274 

ability, corrected hippocampal volume, and CSF biomarkers of AD and inflammation. There 275 

were no significant interactions between sex and diagnosis for any of the tested variables 276 

(memory, executive function, corrected hippocampal volume, CSF tau, p-tau, amyloid beta, and 277 

CSF and plasma inflammatory markers). However, overall both sex and diagnosis were 278 

independently associated with memory z-scores, corrected hippocampal volume and CSF tau and 279 

p-tau (Table 4). Females had higher memory scores, larger corrected hippocampus volume, and 280 

higher tau and p-tau compared to males, irrespective of diagnosis. As expected, increasing 281 
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severity of diagnosis was associated with lower memory and executive function scores, smaller 282 

corrected hippocampus volume, and higher CSF tau and p-tau irrespective of sex (Fig 2 A-D). 283 

We found that although females had higher CSF levels of interleukin 16 (IL-16), and 284 

lower levels of interleukin 8 (IL-8), immunoglobulin A (IgA), and intercellular adhesion 285 

molecule 1 (ICAM1), controlling for age, compared to males, there was no association between 286 

these variables and diagnosis (Fig 2 E-H). Finally, there were associations between diagnosis and 287 

executive function z-scores, and amyloid beta, controlling for age, but not between these 288 

variables and sex (Fig 2 I and J). 289 

The results for biomarkers and inflammatory markers in plasma were similar 290 

(Supplementary Table S4), with the exception of a significant relationship between plasma C-291 

reactive protein (CRP) and sex (adjusted p=0.03), and also between plasma cortisol and baseline 292 

diagnosis (adjusted P=0.01; Fig 2 K and L). Males have lower levels of CRP compared to 293 

females and we observed a trend between diagnosis and CRP levels in plasma with lower CRP 294 

levels in late MCI and AD (adjusted P=0.08). Plasma cortisol was lower in late MCI compared 295 

to CN but higher in AD compared to CN. In summary, although we detected associations 296 

between sex and diagnosis and various parameters, we did not find evidence for a clear sex and 297 

diagnosis interaction. 298 

 299 

Epigenetic age, sex, dementia diagnosis, and AD biomarkers 300 

We investigated the hypothesis that sex and dementia diagnosis affect epigenetic age 301 

acceleration in blood samples of ADNI participants (see Table 5).  302 

Epigenetic age acceleration was not associated with sex, dementia diagnosis (CN, EMCI, 303 

LMCI, and AD), or the interaction of sex and diagnosis after multiple test correction (Figure 3). 304 
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Intrinsic epigenetic age acceleration was also not significantly associated with participant sex, 305 

diagnosis, or their interaction term. 306 

To assess the effect of sex and more broadly defined dementia-associated cognitive 307 

impairment on epigenetic age acceleration, we compared epigenetic age acceleration between 308 

participants with any form of clinically ascertained cognitive impairment (AD + LMCI + EMCI, 309 

n=423, proportion female 41%) and those without (CN, n=217, proportion female 50%). By two-310 

way unbalanced ANOVA neither sex, dementia status, nor their interaction were significantly 311 

associated with epigenetic age acceleration after correction for multiple comparisons. 312 

Matched biochemical data including APOEε4 genotype and CSF concentrations of 313 

amyloid beta, tau, and phosphorylated tau was available for a subset of participants with EPIC 314 

DNAme data (n=533). Based on the hypothesis that epigenetic age acceleration may be more 315 

strongly associated with concentrations of pathologically relevant compounds than with 316 

diagnosis, we assessed the impact of sex, APOEε4 genotype, amyloid beta concentration, tau and 317 

p-tau concentration on epigenetic age acceleration and intrinsic epigenetic age acceleration with 318 

linear regression. None of these variables was significantly associated with epigenetic age 319 

acceleration (Table 6, results for intrinsic epigenetic age acceleration not shown). 320 

In addition to dementia diagnosis for all participants, we also had access to two 321 

composite scores designed by ADNI collaborators to reflect executive function and memory; 322 

these scores have been demonstrated to be independently predictive of the transition from mild 323 

cognitive impairment to a formal diagnosis of Alzheimer’s disease (Gibbons et al. 2012, Gale et 324 

al. 2013). By a two-way unbalanced ANOVA models investigating the effect of sex and memory 325 

score on epigenetic age acceleration, neither sex (p=0.248), memory score (p=0.486), nor their 326 

interaction (p=0.227) were associated with epigenetic age acceleration. In a similar model, 327 
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neither sex (p=0.260), executive function (p=0.105), or the interaction term of sex and executive 328 

function (p=0.153) were associated with epigenetic age acceleration.  329 

 330 

Discussion 331 

In the present study, we found that tau related pathology in the CSF was 332 

disproportionately elevated by APOEε4 genotype in females compared to males. However, 333 

diagnosis and APOE genotype were independently associated with reduced memory scores, 334 

hippocampal volume (corrected by intracranial volume) and reduced CSF amyloid beta which 335 

was similar in males and females. Furthermore, there were main effects of sex as females had 336 

lower CSF cytokines (IL-8, IL-16, IL-18) and CSF and plasma immunoglobulins (IgA, IgE, 337 

respectively) but higher plasma CRP and tau related pathology compared to males, regardless of 338 

diagnosis and APOE genotype. Interestingly, females had larger corrected hippocampal volume 339 

and better memory scores which may contribute to their delayed diagnosis (Sundermann et al., 340 

2017). Finally, we found no differences in epigenetic age acceleration by dementia diagnosis or 341 

sex in this cohort of samples with available whole blood EPIC DNAme data. In this ADNI 342 

cohort, slightly more females presented with a diagnosis of AD compared to males, whereas 343 

significantly more males presented with a diagnosis of MCI supporting the prevalence observed 344 

in bigger populations (Winblad et al., 2016; Mielke et al., 2014). Previous work has 345 

demonstrated sex differences in rates of AD and symptoms of AD (reviewed in Ferretti et al., 346 

2018; Mielke et al., 2014; Nebel et al., 2018), and the current study also suggests that biomarkers 347 

of AD may be different between males and females between genotypes, and this should be 348 

considered in future studies and researchers should be cautioned to use sex as a biological 349 

variable in all analyses. 350 
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 351 

Females show greater tau neuropathology disproportionately affected by APOE genotype 352 

In the present study, we found that females have significantly higher baseline tau and p-353 

tau levels in CSF than males and these are indicative of the formation of neurofibrillary tangles 354 

and AD pathology (Blennow et al., 2015; Henriques et al., 2018). This is in agreement with a 355 

recent ADNI study (Sundermann et al., 2018;  but see an earlier ADNI study Holland et al., 356 

2013) and with animal models (Lewis et al., 2001). Intriguingly, we also found that levels of tau 357 

and p-tau were disproportionately elevated with APOEε4 allele expression in females compared 358 

to males. Previous studies indicate that females with the APOEε4 allele are at a greater risk for 359 

developing AD than are males with this allele (Altmann et al., 2014), and sex differences in tau 360 

and p-tau may be one underlying mechanism by which this occurs. In females (65-75 years of 361 

age) one allele of ε4 increases the risk of AD by 4-fold relative to males, indicating that genotype 362 

may affect females differently (Neu et al., 2017). Levels of CSF tau are hypothesized to increase 363 

after CSF amyloid beta declines and amyloid beta aggregates and deposits in the brain (Blennow 364 

et al., 2015). However, in this study although we found sex differences in CSF tau and p-tau 365 

levels, no significant differences were seen in CSF amyloid beta after controlling for age (see 366 

below) indicating that the pathway may be different in females compared to males or that the 367 

timeline of tau and amyloid beta deposition may not be consistent.  368 

In this ADNI cohort, more females presented with a diagnosis of AD compared to males. 369 

Although the ADNI cohort is relatively small, this result supports the prevalence observed in 370 

bigger populations (Winblad et al., 2016). Together with the disproportionate effect of APOE 371 

genotype on tau-related pathology it supports the idea that females have a higher burden of the 372 

disease. On the other hand, more males presented with a diagnosis of MCI and this is in line with 373 
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the research that males are more likely to be diagnosed with MCI compared to females (Mielke 374 

et al., 2014). Females progress faster from MCI to AD (Lin et al., 2015) and sex differences in 375 

tau related pathology found in the current study may be the underlying mechanism for this 376 

accelerated transition. 377 

 378 

Sex differences in hippocampal volume depend on correction for intracranial volume. Females 379 

have better memory scores than males that may have been driven by verbal memory 380 

In the present study, we found that increasing APOEε4 alleles and AD diagnosis was 381 

associated with reduced corrected hippocampal volume, memory and executive function scores 382 

consistent with past literature (Apostolova et al., 2006; Buckner, 2004; Ewers et al., 2012; Jack 383 

et al., 2000; Li et al., 2016; Mungas et al., 2010; Petersen et al., 2000; Pievani et al., 2011; Shi et 384 

al., 2014). Surprisingly, although females have higher levels of tau and p-tau, they presented 385 

with larger corrected hippocampal volume and better memory and executive function scores than 386 

males, regardless of diagnosis and APOE genotype. Previous studies have suggested that there 387 

are sex differences in hippocampal volume, favoring males, but the sex differences depend on 388 

whether hippocampal volume is corrected for by intracranial volume (Tan et al., 2016), a finding 389 

that is supported by the current study. In a number of studies, including the present study, males 390 

have a larger hippocampus without correcting for intracranial volume (Cavedo et al., 2018; Jack 391 

et al., 2015; Murphy et al., 1996; Ritchie et al., 2018; Sohn et al., 2018; Sundermann et al., 2018; 392 

Tan et al., 2016). However after correcting for intracranial volume, either the sex difference 393 

disappears (Cavedo et al., 2018; Ritchie et al., 2018; Tan et al., 2016) or females have larger 394 

corrected hippocampal volume (this study; Jack et al., 2015; Murphy et al., 1996; Sohn et al., 395 

2018; Sundermann et al., 2018). Regardless of hippocampal volume, volume loss is greater in 396 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/741777doi: bioRxiv preprint 

https://doi.org/10.1101/741777
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

aging females (Ardekani et al., 2016; Koran et al., 2017; Murphy et al., 1996) and in females 397 

with one or two APOEε4 alleles (Fleisher et al., 2005). Although in the present study we did not 398 

examine longitudinal data, we found that increasing APOEε4 alleles reduced corrected 399 

hippocampal volume similarly in males and females. In contrast, when CN, MCI and AD 400 

individuals were analysed separately in the ADNI database, APOEε4 was associated with a 401 

smaller corrected hippocampal volume in CN males only, controlling for age and education 402 

(Sundermann et al., 2018). In addition, also using the ADNI database, Koran et al. (2017) found 403 

that females with low CSF amyloid beta had more hippocampal atrophy and faster decline in 404 

memory and executive function than males and this sex difference was more pronounced in 405 

APOEε4 carriers. Therefore, sex and APOE genotype can interact to affect corrected 406 

hippocampal volume reduction with age in certain subgroups and across time (e.g., in CN or 407 

individuals with low CSF amyloid beta). Differences in results between studies are likely due to 408 

differences in statistical analyses (e.g., analysing diagnosis groups separately, partitioning the 409 

data based on amyloid beta levels, and differences in covariates included) and/or whether 410 

longitudinal data analyses are included. 411 

We found that in addition to larger corrected hippocampal volume, females also had 412 

better composite memory scores (but not executive function scores) than males, regardless of 413 

diagnosis and APOE genotype. Previous studies have found that females have better verbal 414 

memory in cognitively normal individuals (Jack et al., 2015), and in MCI and AD ADNI cohorts 415 

compared to males (Sundermann et al., 2018, 2016). Here we used the ADNI memory score 416 

developed by Crane et al. (2012) to detect abnormal memory including language, attention, and 417 

logical memory so it is possible that verbal memory may be driving the sex difference favouring 418 

females in the present study. In contrast, Buckley et al.(2018) found no sex differences using a 419 
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composite cognitive score that includes memory and executive function (Preclinical Alzheimer’s 420 

Cognitive Composite score with semantic processing, PACC5) using ADNI and two other 421 

cohorts. In this study using the current ADNI cohort, males were slightly more educated than 422 

females, and although we did not use education as a covariate, one would expect education levels 423 

would have positive effects on memory, suggesting that education is not a factor for the observed 424 

sex difference in memory. Altogether, we found that in females tau pathology was increased but 425 

memory scores, which included verbal memory, were higher and corrected hippocampal volume 426 

were larger compared to males suggesting females have a reserve against brain damage that 427 

delays either the onset of cognitive decline (Stern, 2002) or diagnosis (Sundermann et al., 2017). 428 

However, once cognitive decline begins, females show higher rates of declines compared to 429 

males (this was observed by Buckley et al., 2018; Holland et al., 2013; Hua et al., 2010 using the 430 

ADNI database) perhaps because the underlying pathology is elevated in females. 431 

 432 

AD affects amyloid beta similarly in both sexes 433 

We found that AD diagnosis was associated with lower CSF amyloid beta, as expected, 434 

and this was irrespective of sex, which indicates greater amyloid deposition with AD (Henriques 435 

et al., 2018). These findings are consistent with data from studies in AD patients (Buckley et al., 436 

2018) and in cognitively normal individuals (Jack et al., 2015). Other studies have found using 437 

PET that males have higher amyloid beta levels or lower amyloid beta burden compared to 438 

females dependent on APOE genotype (Sundermann et al., 2018) or in cognitively normal adults 439 

in the anterior cingulate (Cavedo et al., 2018). In this study, we used CSF amyloid beta data 440 

which detects abnormal amyloid deposition earlier than amyloid beta by PET (reviewed in 441 

Blennow et al., 2015). Thus, taken together, sex differences in amyloid beta may be detected in 442 
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specific brain regions and later in the disease, although more research is needed investigating sex 443 

differences in AD biomarkers.  444 

 445 

Females have higher CRP levels but lower cytokine and immunoglobulin levels compared to 446 

males 447 

In this study, we investigated whether sex interacted with APOE genotype or dementia 448 

diagnosis to influence inflammatory, neurotrophic and neuroplasticity markers. We found that 449 

plasma CRP, a widely used inflammatory and cardiovascular marker (Koenig et al., 1999; Ridker 450 

et al., 1998), was affected by sex and APOE genotype. Females, regardless of diagnosis or 451 

APOE genotype, had significantly higher plasma CRP relative to males, consistent with findings 452 

in healthy individuals (Khera et al., 2005). Higher levels of peripheral CRP may suggest higher 453 

inflammation in females, which is associated with an increased risk in all-cause dementia 454 

(Koyama et al., 2013). In contrast, APOEε4 genotype decreased circulating CRP levels, 455 

consistent with previous research in large population studies (Hubacek et al., 2010; Yun et al., 456 

2015). Recent meta-analyses, without regard to sex, did not find differences in peripheral levels 457 

of CRP in AD compared to control patients (Gong et al., 2016; Ng et al., 2018). However, in 458 

patients with mild and moderate dementia only, CRP levels were lower compared to the healthy 459 

control group (Gong et al., 2016). To our knowledge, no other study has examined sex 460 

differences in CRP in relation to AD.  461 

We also found that CSF IL-16 was affected by sex and APOE genotype. CSF IL-16 462 

levels were lower in females with no APOEε4 alleles compared to males, but with increasing 463 

number of ε4 alleles, no sex differences were detected. IL-16 has been implicated in AD (Rosa et 464 

al., 2006) and IL-16 levels decrease with disease severity (analysis without regard to sex; Motta 465 
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et al., 2007). In this ADNI cohort, IL-16 levels were not affected by diagnosis but our results 466 

suggest that APOE genotype can modulate levels in a sex-dependent way. We also found 467 

biomarkers that were affected by sex but not diagnosis or APOE genotype for example, females 468 

had lower CSF levels of ICAM1 compared to males, but there was no influence of APOE 469 

genotype or diagnosis. Consistent with our findings, ICAM1 serum levels were lower in healthy 470 

females compared to males (Ponthieux et al., 2003). ICAM1 is a type of adhesion molecule 471 

associated with microvascular endothelial activation (Zenaro et al., 2017) and plasma ICAM1 472 

levels (but not CSF levels; Nielsen et al 2007) were higher in patients with AD (Huang et al 473 

2015; Nielsen et al 2007; Rentzos et al 2004). However, it is intriguing that females have lower 474 

CSF levels of cytokines (IL-8, IL-16, IL-18), and immunoglobulins (IgE and IgA) but higher tau 475 

pathology compared to males. Neuroinflammation is associated with AD but it can have both 476 

beneficial and detrimental roles (Walters et al., 2016). Increased expression of pro-inflammatory 477 

cytokines contributes to neuronal loss, while anti-inflammatory effects contribute to amyloid 478 

beta clearance (Heneka et al., 2015). In AD mouse models, some pro-inflammatory mechanisms 479 

reduced plaque pathology, while anti-inflammatory cytokines increased amyloid beta deposition 480 

(Chakrabarty et al., 2012, 2011, 2010a, 2010b; Ghosh et al., 2013; Shaftel et al., 2007). It has 481 

been suggested that there are beneficial pro-inflammatory mechanisms and detrimental anti-482 

inflammatory mechanisms in AD (Heneka et al., 2015). It is possible that males and females 483 

have varying levels of beneficial vs detrimental immune responses which can affect how the 484 

disease progresses in each of the sexes but it is also important to remember that CSF levels may 485 

not match levels in different regions of the brain.  486 

 487 

Sex, AD and biochemical markers do not affect blood epigenetic age acceleration  488 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2019. ; https://doi.org/10.1101/741777doi: bioRxiv preprint 

https://doi.org/10.1101/741777
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

We did not observe an association between either sex or diagnosis and epigenetic age 489 

acceleration or intrinsic epigenetic age acceleration. To our knowledge, no other study has 490 

similarly probed epigenetic age acceleration in peripheral tissue in the presence of AD, or 491 

whether epigenetic age acceleration in AD is associated with sex.  492 

This study was partially undertaken to investigate whether epigenetic age acceleration 493 

that has been associated with the AD brain is reflected in peripheral tissues. Levine et al. have 494 

previously demonstrated increased epigenetic age acceleration in AD, however Levine’s study 495 

was conducted on post-mortem prefrontal cortex tissue, and did not explicitly investigate the role 496 

of sex in epigenetic age acceleration (Levine et al., 2015). While brain-blood methylation 497 

profiles are reasonably correlated (r=0.86) (Braun et al., 2019), DNA methylation profiles of 498 

peripheral tissues are imperfect representatives of the brain, and do not recapitulate all epigenetic 499 

alterations with high fidelity. Thus, our findings do not contradict the finding of increased 500 

epigenetic age acceleration in the presence of AD in the prefrontal cortex, but suggest that 501 

accelerated epigenetic aging in AD is not a pan-tissue phenomenon. Our finding of a lack of 502 

significant association between AD, biological sex, and epigenetic age acceleration in whole 503 

blood DNA methylation profiles could suggest a tissue-specific dysregulation of an epigenetic 504 

maintenance system, in which the brain epigenome is most strongly affected by AD (Levine et 505 

al., 2015). The phenotype of patients affected by AD and global gene expression patterns of the 506 

APOE protein, with high expression in brain, and low expression in whole blood (GTEx Project, 507 

2018) further support this hypothesis.  508 

Intriguingly, epigenetic age was observed to be lower on average than chronological age 509 

(see Table 5). Horvath’s epigenetic clock was trained on DNAme data from older versions of the 510 

Illumina DNAme arrays with more limited genomic coverage; 19 of the CpG probes required to 511 
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calculate epigenetic age via this method do not exist on the EPIC array. Two previous studies 512 

investigated the application of Horvath’s epigenetic clock to EPIC data with conflicting results 513 

(Dhingra et al., 2019; McEwen et al., 2018),  the largest issue being chronic underestimation of 514 

epigenetic age due to the positive linear regression coefficients associated with the missing 515 

probes(Dhingra et al., 2019). Both imputing and removing the missing probes from the array 516 

resulted in a chronic underprediction of epigenetic age with Horvath’s clock, suggesting that this 517 

is likely an artefact of the array platform and probe-set rather than the method chosen to deal 518 

with missing values, although it is possible that an adjustment factor could be devised to more 519 

accurately apply Horvath’s clock to EPIC data. In future explorations of epigenetic age with 520 

EPIC DNAme array data this should be considered, as there are other epigenetic age predictors 521 

available that have been trained on EPIC data such as the PhenoAge and GrimAge clocks, 522 

although these tools have limitations as well; for example, both PhenoAge and GrimAge were 523 

trained only on blood DNAme data, as compared to the original pan-tissue epigenetic clock, and 524 

therefore may have limited applicability and relevance in other tissues (Levine et al., 2018; Lu et 525 

al., 2019). 526 

 527 

Limitations 528 

The ADNI cohort is not ethnically or socioeconomically diverse, being mostly composed 529 

of white (only 12 individuals were not-white) and highly educated individuals (average 15.69 530 

years of education). As incidence, prevalence, and age of onset of AD varies by ethnicity  531 

(Hispanics, Fitten et al., 2014; Mayeda et al., 2016; African-Americans, Steenland et al., 2016) 532 

and education (Sharp and Gatz, 2011), our conclusions may not apply to more ethnically and 533 

socially diverse populations. In addition to sex, it is possible the underlying mechanisms of AD 534 
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are different depending on ethnicity. Finally, the ADNI biomarker data set has a low sample size 535 

(279 total), especially when taking into account diagnosis, sex and APOE genotype. Small 536 

sample size is also a limitation of the epigenetic analyses presented. Even in the larger 640-537 

participant cohort, only 37 participants (5.78%) had an AD diagnosis, so statistical analyses were 538 

underpowered to detect subtle differences by diagnosis group. Additionally other pathologies in 539 

these participants, such as cancer, cardiovascular disease, smoking status, or obesity may have 540 

influenced AD neuropathology, biomarkers and epigenomes and limited our interpretations. 541 

 542 

Conclusion 543 

As expected, more females presented with a diagnosis of AD whereas more males 544 

presented with MCI diagnosis compared to the opposite sex. AD biomarkers (CSF tau and p-tau 545 

but not amyloid beta) were disproportionately affected by APOE genotype in females compared 546 

to males supporting the idea that females share a higher burden of the disease. Interestingly, 547 

although females in this cohort had elevated AD biomarkers, they also had larger corrected 548 

hippocampal volume and higher memory function scores compared to males, regardless of 549 

APOE genotype and dementia diagnosis. Therefore, it is possible that females may have a 550 

reserve that protects the brain from damage to delay cognitive decline or delay diagnosis. 551 

Finally, we found that females had lower cytokine and immunoglobulin levels but higher CRP 552 

levels compared to males. Together our work suggests that that the underlying physiology of 553 

aging and AD may be sex-specific. 554 

 555 
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 584 

Figure captions 585 

Figure 1. A. CSF tau (pg/ml), B. CSF p-tau (pg/ml), C. CSF IL-16 (pg/ml), D. ADNI memory z-586 

scores, E. corrected hippocampal volume (hippocampal volume/intracranial volume), F. ADNI 587 

executive function z-scores, G. CSF amyloid beta (pg/ml), and H. CSF C-reactive protein (CRP; 588 

µg/ml) in ADNI participants by sex and number of APOEε4 alleles (0, 1, 2 alelles). 589 

 590 

Figure 2.   A. ADNI memory z-scores, B. corrected hippocampal volume (hippocampal volume/ 591 

intracranial volume), C. CSF tau (pg/ml), D. CSF p-tau (pg/ml), E. CSF IL-16 (pg/ml), F. CSF 592 

IL-8 (pg/ml), G. CSF IgA (mg/ml), H. CSF Intercellular adhesion molecule (ICAM1; ng/ml), I. 593 

ADNI executive function z-scores, J. CSF amyloid beta (pg/ml), K. plasma C-reactive protein 594 

(CRP; µg/ml), and L. plasma cortisol (ng/ml) in ADNI participants by sex and diagnosis (CN, 595 

EMCI, LMCI, AD). CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, 596 

late mild cognitive impairment; AD, Alzheimer’s disease.    597 

 598 

Figure 3. Universal epigenetic age acceleration does not differ statistically significantly by 599 

participant sex or diagnosis (CN, EMCI, LMCI, AD) in this ADNI cohort. CN, cognitively 600 

normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD, 601 

Alzheimer’s disease.     602 
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Total Female Male

No. 1,460 No. 630 No. 830

  Mean (SD) 74.13 (±7.25) 73.15 (±7.28) 74.87 (±7.14) < 0.0001

  Mean (SD) 15.83 (±2.88) 15.15 (±2.79) 16.34 (±2.85) < 0.0001

  White 1,352 (92.60%) 573 (90.95%) 779 (93.86%) 0.043

  Not white 108 (7.40%) 57 (9.05%) 51 (6.14%)

  CN 341 (23.4%) 168 (26.7%) 173 (20.8%) 0.013

  EMCI 257 (17.6%) 108 (17.1%) 149 (18.0%)

  LMCI 533 (36.5%) 205 (32.5%) 328 (39.5%)

  AD 329 (22.5%) 149 (23.7%) 180 (21.7%)

  0 702 (48.08%) 300 (47.62%) 402 (48.43%) 0.8

  1 574 (39.32%) 252 (40.00%) 322 (38.80%)

  2 170 (11.64%) 70 (11.11%) 100 (12.05%)

  Missing 14 (0.96%) 8 (1.27%) 6 (0.72%)

  Missing 226 (15.48%) 94 (14.92%) 132 (15.90%)

  Mean (SD) 0.00436 (±0.00080) 0.00454 (±0.00082) 0.00423 (±0.00076) < 0.0001 <0.0001

  Missing 226 (15.48%) 94 (14.92%) 132 (15.90%)

  Mean (SD) 830.97 (±358.04) 856.41 (±346.87) 812.44 (±365.16) 0.016 0.38

  Missing 513 (35.14%) 231 (36.67%) 282 (33.98%)

  Mean (SD) 294.38 (±137.27) 314.56 (±152.70) 279.70 (±122.91) 0.002 <0.0001

  Missing 513 (35.14%) 231 (36.67%) 282 (33.98%)

  Mean (SD) 28.89 (±15.31) 30.87 (±16.95) 27.44 (±13.83) 0.007 <0.0001

  Missing 513 (35.14%) 231 (36.67%) 282 (33.98%)

  Mean (SD) 0.02 (±0.96) 0.06 (±0.97) -0.00 (±0.95) 0.20 <0.0001

  Missing 311 (21.30%) 145 (23.02%) 166 (20.00%)

  Mean (SD) 0.10 (±0.87) 0.21 (±0.94) 0.02 (±0.80) 0.0006 <0.0001

  Missing 310 (21.23%) 145 (23.02%) 165 (19.88%)

P-value   

Age

Table 1. Demographic and clinical information for all participants and subdivided by sex. Biomarkers for 

AD are from cerebrospinal fluid. P-values after adjusting for age are presented here for easier comparison 

and are taken from the linear model of sex and diagnosis (see Table 3 for details).

Sex

P-value   (adjusted 

for age)

6822.86 (±1155.87)

Volume of hippocampus (corrected)

Amyloid Beta

Education (years)

Ethnicity

Baseline diagnosis

APOEε4 allele number

Volume of hippocampus

  Mean (SD) 6659.47 (±1176.42) 6446.71 (±1169.97) < 0.0001

P-values are from Wilcoxon rank sum tests for continuous variables and Fisher's exact tests for categorical variables. Missing 

refers to number of individuals and the percent of the total cohort that had missing data for that variable

Tau

PTau

Executive Function (ADNI_EF)

Memory (ADNI_MEM)
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Total Female Male Total Female Male Total Female Male

No. 279 No. 109 No. 170 No. 640 No. 284 No. 356 No. 533 No. 243 No. 290

  Mean (SD) 75.15 (±6.86) 73.75 (±6.69) 76.04 (±6.83) 0.007 75.63 (±7.68) 74.78 (±8.03) 76.31 (±7.32) <0.0001 75.01 (±7.61) 74.31 (±8.10) 75.61 (±7.11) 0.0019

  Mean (SD) 15.69 (±2.95) 14.68 (±2.74) 16.34 (±2.90) < 0.0001 16.21 (±2.70) 15.53 (±2.59) 16.75 (±2.68) <0.0001 16.24 (±2.64) 15.57 (±2.49) 16.83 (±2.64) < 0.0001

  White 267 (95.70%) 103 (94.50%) 164 (96.47%) 0.55 627 (97.97%) 279 (98.23 %) 348 (97.75%) 0.78 521 (97.75 %) 238 (97.94 %) 283 (97.94 %) 0.99

  Not White
ⱡ 12 (4.30%) 6 (5.50%) 6 (3.53%) 13 (2.03%) 5 (1.76%) 8 (2.25%) 12 (2.25 %) 5 (2.06 %) 7 (2.41 %)

  CN 74 (26.5%) 35 (32.1%) 39 (22.9%) 0.051 217 (33.9%) 109 (38.38%) 108 (30.34%) 0.11 171 (32.08 %) 88 (36.21 %) 83 (28.62 %) 0.19

  EMCI n/a n/a n/a 186 (29.06%) 83 (29.23%) 103 (28.93%) 173 (32.46 %) 79 (32.51 %) 94 (32.41 %)

  LMCI 138 (49.5%) 44 (40.4%) 94 (55.3%) 200 (31.25%) 78 (27.46%) 122 (34.27%) 155 (29.08 %) 94 (38.68 %) 92 (31.72 %)

  AD 67 (24.0%) 30 (27.5%) 37 (21.8%) 37 (5.78%) 14 (4.23 %) 23 (6.46%) 34 (6.38 %) 13 (5.35 %) 21 (7.24 %)

  0 134 (48.03%) 51 (46.79%) 83 (48.82%) 0.78 369 (57.66 %) 169 (59.51%) 200 (56.18%) 0.37 313 (58.72 %) 146 (60.08 %) 167 (57.59 %) 0.45

  1 109 (39.07%) 42 (38.53%) 67 (39.41%) 220 (34.38%) 97 (34.15%) 123 (34.55%) 173 (32.46%) 80 (32.92 %) 93 (32.07 %)

  2 36 (12.90%) 16 (14.68%) 20 (11.76%) 51 (7.97%) 18 (6.34%) 33 (9.27%) 47 (8.82%) 17 (7.00%) 30 (10.34 %)

  Mean (SD) 16.05 (±6.04) 14.92 (±6.01) 16.78 (±5.96) 0.008

  Mean (SD) -2.83 (±0.56) -2.77 (±0.64) -2.87 (±0.51) 0.23

  Mean (SD) -0.65 (±0.12) -0.66 (±0.10) -0.64 (±0.14) 0.12

  Mean (SD) 0.91 (±0.18) 0.87 (±0.17) 0.94 (±0.19) 0.004

  Mean (SD) -2.22 (±0.32) -2.28 (±0.29) -2.17 (±0.34) 0.001

  Mean (SD) -0.01 (±0.15) -0.02 (±0.14) -0.00 (±0.15) 0.30

  Mean (SD) 1.68 (±0.15) 1.64 (±0.11) 1.70 (±0.16) 0.001

  Mean (SD) 0.96 (±0.44) 0.83 (±0.33) 1.04 (±0.48) 0.0001

  Mean (SD) -2.54 (±0.31) -2.68 (±0.26) -2.45 (±0.31) < 0.0001

  Mean (SD) 0.36 (±0.98) 0.38 (±1.01) 0.34 (±0.95) 0.17

  Mean (SD) 0.40 (±0.92) 0.57 (±1.01) 0.26 (±0.82) <0.0001

  Mean (SD) 1040.98 (±454.72) 1055.50 (±449.23) 1028.35 (±459.36) 0.18

  Mean (SD) 289.80 (±124.68) 300.90 (±139.07) 280.13 (±109.82) 0.072

  Mean (SD) 27.47 (±13.65) 28.25 (±15.08) 26.78 (±12.24) 0.36

Sex

P-value

Age

Interleukin 3 (ng/mL)

Interleukin 6 receptor (ng/mL)

Interleukin 8 (pg/mL)

Education (years)

Ethnicity

Baseline diagnosis

APOEε4 allele number

Sex

P-value

Sex

P-value

A B C

P-values are from Wilcoxon rank sum tests for continuous variables and Fisher's exact tests for categorical variables. ⱡIncludes self-reported Black, Asian, American Indian/Alaskan, and >1 ethnicity.

Table 2. Demographic and clinical information for subset of ADNI data subdivided by sex. A. Participants with measured biomarkers in cerebrospinal fluid (CSF), B. Participants with available whole blood Illumina 

HumanMethylationEPIC DNA methylation data, C. Participants with matched Illumina HumanMethylationEPIC DNA methylation array data and measured CSF biomarkers. In all three subdata sets, females were 

significantly younger and had fewer years of education than males. In data set A (but not B and C), more females (24.0 % compared to 21.8%) were diagnosed with AD, more females were cognitively normal (26.5% 

compared to 22.9%) and fewer females were diagnosed with late MCI compared to males (49.5% compared to 55.3%). In data set A, females had lower CSF cortisol, interleukin-3, interleukin 8, interleukin-16, 

immunoglobulin A, and intercellular adhesion molecule compared to males. Empty cells indicate data not available.

Intercellular adhesion molecule (ng/mL)

Immunoglobulin A (mg/mL)

Memory Score

Amyloid Beta

Tau

PTau

Executive Function Score

Cortisol (ng/mL)

C reactive protein (ug/mL)

CD40 antigen (ng/mL)

Interleukin 16 (pg/mL)
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Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) 1.63 1.12 – 2.14 2.05 1.47 – 2.62 1458.67 1247.77 – 1669.57 0.00752 0.00709 – 0.00795 56.15 -30.03 – 142.34 4.75 -4.89 – 14.38

AGE (years) -0.02 -0.02 – -0.01 -0.02 -0.03 – -0.02 -6.19 -9.01 – -3.36 -0.00004 -0.0004 – -0.0003 2.68 1.54 – 3.81 0.26 0.13 – 0.39

Male (ref = 

Female)
-0.17 -0.26 – -0.07 0.002 -0.03 -0.14 – 0.08 0.68 -29.77 -71.55 – 12.01 0.28 -0.00024 -0.00033 – -0.00016 <0.0001 -7.37 -31.43 – 16.70 -0.34 -3.03 – 2.35

APOE status (ref 

= 0 alleles)
<0.0001 <0.0001 <0.0001 <0.0001

   1 allele -0.45 -0.55 – -0.34 -0.3 -0.42 – -0.19 -240.23 -284.27 – -196.20 -0.00031 --0.0004 – -0.00022 104.14 77.21 – 131.06 11.73 8.72 – 14.74

   2 alleles -0.69 -0.85 – -0.53 -0.46 -0.64 – -0.28 -455.95 -521.02 – -390.88 -0.00057 -0.00071 – --0.00044 178.88 137.45 – 220.31 19.81 15.18 – 24.44

Interaction term 0.0008 0.001

   Male:1 allele -49.76 -85.30 – -14.22 -5.58 -9.55 – -1.60

   Male:2 alleles -101.56 -153.97 – -49.16 -10.78 -16.64 – -4.92

Observations

R
2
 / adjusted R

2

Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) -3.05 -3.79 – -2.32 0.35 0.10 – 0.59 1.38 1.18 – 1.57 -2.82 -3.22 – -2.43 -0.19 -0.75 – 0.36

AGE (years) 0.01 -0.00 – 0.02 0.01 0.00 – 0.01 0 0.00 – 0.01 0 -0.00 – 0.01 0.01 0.01 – 0.02

Male (ref = 

Female)
-0.12 -0.26 – 0.01 0.15 0.12 0.06 – 0.18 0.1 0.05 – 0.15 0.01 0.21 0.14 – 0.29 <0.0001 0.18 0.07 – 0.28 0.002

APOE status (ref 

= 0 alleles)
0.007 0.33 0.27 0.31

   1 allele -0.19 -0.33 – -0.05 0.08 0.01 – 0.16 0.04 -0.02 – 0.10 0.02 -0.05 – 0.10 0.09 -0.01 – 0.20

   2 alleles -0.31 -0.52 – -0.10 0.06 -0.04 – 0.16 0.01 -0.07 – 0.09 -0.09 -0.20 – 0.02 0.02 -0.13 – 0.18

Interaction term 0.02

   Male:1 allele -0.13 -0.22 – -0.03

   Male:2 alleles -0.15 -0.28 – -0.02

Observations 279

R
2
 / adjusted R

2 0.117 / 0.098

947

ADNI MEM ADNI EF ABETA Hippocampus/Intracranial volume TAU PTAU

1145 1144 947 1224 947

0.058 / 0.045 0.092 / 0.072 0.135 / 0.122 0.107 / 0.094

Table 3. Linear regression results for models with sex and APOE status. Only shown are the models with significant associations. All model summaries are available in Supplementary Table S1.

C Reactive Protein ug/ml Interleukin 16 pg/ml Interleukin 8.IL 8.pg m L Intercellular Adhesion Molecule 1 ng/mlImmunoglobulin A mg/ml

0.136 / 0.1300.106 / 0.103 0.058 / 0.055 0.203 / 0.199 0.191/0.189 0.140 / 0.134

Table 3. Continued

279 279 279 279
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Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) 1.79 1.45 – 2.13 2.26 1.80 – 2.73 1161.57 944.04 – 1379.10 0.00747 0.00710 – 0.00785 154.16 70.57 – 237.75 15.72 6.36 – 25.09

AGE (years) -0.01 -0.01 – -0.00 -0.02 -0.03 – -0.01 -1.64 -4.52 – 1.24 -0.00003 -0.00004 – --0.00003 1.25 0.15 – 2.36 0.1 -0.02 – 0.23

Male (ref = 

Female)
-0.16 -0.23 – -0.09 <0.0001 -0.04 -0.13 – 0.05 0.53 -26.62 -69.46 – 16.22 0.38 -0.00022 -0.00029 – -0.00015 <0.0001 -42.59 -59.05 – -26.13 <0.0001 -4.22 -6.06 – -2.38 <0.0001

Diagnosis (ref 

= CN)
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

   EMCI -0.5 -0.61 – -0.39 -0.42 -0.56 – -0.27 -85.2 -148.82 – -21.59 -0.00016 -0.00027 – -0.00005 37.85 13.41 – 62.30 4.22 1.48 – 6.96

   LMCI -1.08 -1.16 – -1.00 -0.79 -0.90 – -0.67 -256.85 -315.81 – -197.89 -0.00073 -0.00083 – -0.00064 93.34 70.69 – 116.00 10.58 8.05 – 13.12

   AD -1.84 -1.94 – -1.75 -1.63 -1.76 – -1.50 -390.48 -453.59 – -327.37 -0.00106 -0.00116 – -0.00096 143.6
119.35 – 167.8

6
15.81 13.10 – 18.53

Observations

R
2
 / adjusted 

R
2

Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) 0.42 0.18 – 0.65 1.4 1.20 – 1.59 -2.9 -3.29 – -2.50 -0.22 -0.77 – 0.33

AGE (years) 0.01 0.00 – 0.01 0 0.00 – 0.01 0 -0.00 – 0.01 0.01 0.01 – 0.02

Male (ref = 

Female)
0.05 0.01 – 0.10 0.06 0.05 0.01 – 0.09 0.02 0.21 0.14 – 0.29 <0.0001 0.17 0.06 – 0.27 0.006

Diagnosis (ref 

= CN)
0.64 0.96 0.98 0.67

   EMCI

   LMCI 0.01 -0.04 – 0.06 0.01 -0.03 – 0.05 0 -0.08 – 0.09 0.06 -0.06 – 0.18

   AD -0.03 -0.08 – 0.03 0.01 -0.04 – 0.06 -0.01 -0.11 – 0.09 0.02 -0.12 – 0.16

Observations

R
2
 / adjusted 

R
2

947

ADNI MEM ADNI EF ABETA Hippocampus/Intracranial volume TAU

1234

0.089 / 0.075 0.059 / 0.045 0.123 / 0.111 0.101 / 0.088

Table 4. Continued

Interleukin 16 pg/ml Interleukin 8 pg/ml Immunoglobulin A mg/ml Intercellular Adhesion Molecule 1 ng/ml

Table 4. Linear regression results for models with sex and baseline diagnosis. Only shown are the models with significant associations. P-values are for overall tests and are FDR-adjusted. All model summaries are available in Supplementary Table S2.

279 279 279 279

0.156 / 0.152

947

0.589 / 0.588 0.380 / 0.377 0.168 / 0.164 0.398 / 0.396 0.164 / 0.160

1150 1149 947

PTAU
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  Mean (SD) 75.63 (±7.68) 74.78 (±8.03) 76.31 (±7.32) <0.0001 75.01 (±7.61) 74.31 (±8.10) 75.61 (±7.11) 0.0019

Epigenetic Ag e (years)

  Mean (SD) 69.92 (±8.06) 67.45 (±8.15) 70.11 (±7.79) <0.0001 68.47 (±8.17) 67.05 (±8.33) 69.72 (±7.82) <0.0001

Epigenetic Age Acceleration (years)

  Mean (SD) 0.025 (±4.22) -0.14 (±4.16) 0.16 (±4.26) 0.1 0.027 (±4.30) -0.18 (±4.23) 0.20 (4.35) 0.057

Intrinsic Age Acceleration (years)

  Mean (SD) 0.026 (±4.11) -0.19 (±4.06) 0.20 (±4.15) 0.019 0.020 (±4.18) -0.25 (±4.14) 0.26 (±4.21) 0.021

P-values are from Wilcoxon rank sum tests for continuous variables and Fisher's exact tests for categorical variables

Table 5. Results of epigenetic age and epigenetic age acceleration calculation for all DNAme analyses, for both the larger DNAme cohort and the subset of samples with 

matched CSF biomarker data.

Age

Total No. 640
Male No. 

356

Male No. 

290

DNAme Cohort DNAme & CSF Biomarker Data Cohort

Sex Sex

Female No. 

284
P-value

Female No. 

243
P-valueTotal No. 533
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Predictors Estimates CI adjusted p

(Intercept) -1.18 -2.80 – 0.45 0.517

Male (ref = Female) 0.65 -0.61 – 1.37 0.448

Diagnosis (ref = CN)

   EMCI 0.77 -0.12 – 1.65 0.09

   LMCI 0.47 -0.51 – 1.45 0.569

   AD 0.54 -1.10 – 2.19 0.738

APOE status (ref = 0 alleles)

  1 allele -0.031 -0.09 –0.84 0.945

  2 alleles -0.3 -1.75 – 1.14 0.813

CSF Amyloid Beta 0.00018 -0.00083 – 0.0011 0.813

CSF Tau 0.0078 -0.0077 – 0.023 0.569

CSF PTau -0.072 -0.22 – 0.072 0.569

Observations

R
2
 / adjusted R

2

Table 6. Linear model for assessment of relationship of biochemical concentrations 

and APOE genotype on universal epigenetic age acceleration. Intrinsic epigenetic age 

acceleration linear model not shown.

0.0143/-0.00262

533

Age Acceleration & CSF Biomarkers
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Figure 3 
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Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) 1.63 1.12 – 2.14 2.05 1.47 – 2.62 1458.67 1247.77 – 1669.57 0.00752 0.00709 – 0.00795 56.15 -30.03 – 142.34 4.75 -4.89 – 14.38 -1.38 -9.15 – 6.39 -3.05 -3.79 – -2.32

AGE (years) -0.02 -0.02 – -0.01 -0.02 -0.03 – -0.02 -6.19 -9.01 – -3.36 -0.00004 -0.0004 – -0.0003 2.68 1.54 – 3.81 0.26 0.13 – 0.39 0.21 0.11 – 0.32 0.01 -0.00 – 0.02

Male (ref = Female) -0.17 -0.26 – -0.07 0.002 -0.03 -0.14 – 0.08 0.68 -29.77 -71.55 – 12.01 0.28 -0.00024 -0.00033 – -0.00016 <0.0001 -7.37 -31.43 – 16.70 -0.34 -3.03 – 2.35 1.37 -0.05 – 2.78 0.12 -0.12 -0.26 – 0.01 0.15

APOE status (ref = 0 

alleles)
<0.0001 <0.0001 <0.0001 <0.0001 0.52 0.007

   1 allele -0.45 -0.55 – -0.34 -0.3 -0.42 – -0.19 -240.23 -284.27 – -196.20 -0.00031 --0.0004 – -0.00022 104.14 77.21 – 131.06 11.73 8.72 – 14.74 1.03 -0.44 – 2.50 -0.19 -0.33 – -0.05

   2 alleles -0.69 -0.85 – -0.53 -0.46 -0.64 – -0.28 -455.95 -521.02 – -390.88 -0.00057 -0.00071 – --0.00044 178.88 137.45 – 220.31 19.81 15.18 – 24.44 0.5 -1.68 – 2.68 -0.31 -0.52 – -0.10

Interaction term 0.0008 0.001

   Male:1 allele -49.76 -85.30 – -14.22 -5.58 -9.55 – -1.60

   Male:2 alleles -101.56 -153.97 – -49.16 -10.78 -16.64 – -4.92

Observations

R
2
 / adjusted R

2

Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) -1.13 -1.29 – -0.98 0.35 0.10 – 0.59 -2.96 -3.38 – -2.54 -0.29 -0.48 – -0.10 1.38 1.18 – 1.57 -2.82 -3.22 – -2.43 -0.19 -0.75 – 0.36

AGE (years) 0.01 0.00 – 0.01 0.01 0.00 – 0.01 0.01 0.00 – 0.02 0 0.00 – 0.01 0 0.00 – 0.01 0 -0.00 – 0.01 0.01 0.01 – 0.02

Male (ref = Female) 0.01 -0.02 – 0.04 0.64 0.12 0.06 – 0.18 0.08 0.00 – 0.16 0.09 0.01 -0.02 – 0.05 0.57 0.1 0.05 – 0.15 0.01 0.21 0.14 – 0.29 <0.0001 0.18 0.07 – 0.28 0.002

APOE status (ref = 0 

alleles)
0.76 0.34 0.13 0.33 0.27 0.31

   1 allele 0.01 -0.02 – 0.03 0.08 0.01 – 0.16 -0.03 -0.10 – 0.05 0.04 0.00 – 0.08 0.04 -0.02 – 0.10 0.02 -0.05 – 0.10 0.09 -0.01 – 0.20

   2 alleles 0.02 -0.03 – 0.06 0.06 -0.04 – 0.16 -0.1 -0.22 – 0.02 0.04 -0.02 – 0.09 0.01 -0.07 – 0.09 -0.09 -0.20 – 0.02 0.02 -0.13 – 0.18

Interaction term 0.02

   Male:1 allele -0.13 -0.22 – -0.03

   Male:2 alleles -0.15 -0.28 – -0.02

Observations 279 279 279

R
2
 / adjusted R

2 0.124 / 0.111 0.117 / 0.098

Table S1 (continued). Linear regression results for all variables investigated by sex and APOE status. Markers in CSF

Table S1. Linear regression results for all variables investigated by sex and APOE status. Markers in CSF

Interleukin 3 ng/ml Interleukin 6.receptor ng/ml Interleukin 8 pg/ml Immunoglobulin A mg/ml Intercellular Adhesion Molecule ng/ml

279 279 279 279

ADNI MEM ADNI EF ABETA Hippocampus/Intracranial volume TAU PTAU Cortisol Cortisol ng ml C Reactive Protein ug/ml

0.106 / 0.103 0.058 / 0.055 0.203 / 0.199 0.191/0.189 0.140 / 0.134 0.136 / 0.130 0.086 / 0.073

1145 1144 947 1224 947 947 279 279

0.058 / 0.045

CD 40 antigen ng/ml Interleukin 16 pg/ml

0.081 / 0.068 0.045 / 0.031 0.092 / 0.072 0.135 / 0.122 0.107 / 0.094
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Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) 1.79 1.45 – 2.13 2.26 1.80 – 2.73 1161.57 944.04 – 1379.10 0.00747 0.00710 – 0.00785 154.16 70.57 – 237.75 15.72 6.36 – 25.09 -1.87 -9.56 – 5.81 -3.19 -3.93 – -2.45

AGE (years) -0.01 -0.01 – -0.00 -0.02 -0.03 – -0.01 -1.64 -4.52 – 1.24 -0.00003 -0.00004 – --0.00003 1.25 0.15 – 2.36 0.1 -0.02 – 0.23 0.22 0.12 – 0.32 0.01 -0.00 – 0.02

Male (ref = 

Female)
-0.16 -0.23 – -0.09 <0.0001 -0.04 -0.13 – 0.05 <0.0001 -26.62 -69.46 – 16.22 0.38 -0.00022 -0.00029 – -0.00015 <0.0001 -42.59 -59.05 – -26.13 <0.0001 -4.22 -6.06 – -2.38 <0.0001 1.18 -0.25 – 2.61 0.22 -0.1 -0.24 – 0.03 0.27

Diagnosis (ref 

= CN)
<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.44 0.28

   EMCI -0.5 -0.61 – -0.39 -0.42 -0.56 – -0.27 -85.2 -148.82 – -21.59 -0.00016 -0.00027 – -0.00005 37.85 13.41 – 62.30 4.22 1.48 – 6.96

   LMCI -1.08 -1.16 – -1.00 -0.79 -0.90 – -0.67 -256.85 -315.81 – -197.89 -0.00073 -0.00083 – -0.00064 93.34 70.69 – 116.00 10.58 8.05 – 13.12 1.24 -0.42 – 2.90 -0.15 -0.31 – 0.01

   AD -1.84 -1.94 – -1.75 -1.63 -1.76 – -1.50 -390.48 -453.59 – -327.37 -0.00106 -0.00116 – -0.00096 143.6 119.35 – 167.86 15.81 13.10 – 18.53 0.24 -1.68 – 2.16 -0.15 -0.33 – 0.04

Observations

R
2
 / adjusted 

R
2

Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) -1.11 -1.27 – -0.96 0.42 0.18 – 0.65 -3 -3.42 – -2.59 -0.26 -0.45 – -0.07 1.4 1.20 – 1.59 -2.9 -3.29 – -2.50 -0.22 -0.77 – 0.33

AGE (years) 0.01 0.00 – 0.01 0.01 0.00 – 0.01 0.01 0.00 – 0.02 0 0.00 – 0.01 0 0.00 – 0.01 0 -0.00 – 0.01 0.01 0.01 – 0.02

Male (ref = 

Female)
0.01 -0.02 – 0.03 0.77 0.05 0.01 – 0.10 0.06 0.08 0.01 – 0.16 0.11 0.01 -0.02 – 0.05 0.67 0.05 0.01 – 0.09 0.02 0.21 0.14 – 0.29 <0.0001 0.17 0.06 – 0.27 0.006

Diagnosis (ref 

= CN)
0.18 0.64 0.64 0.64 0.96 0.98 0.67

   EMCI

   LMCI 0.01 -0.03 – 0.04 0.01 -0.04 – 0.06 -0.04 -0.13 – 0.05 0.01 -0.03 – 0.05 0.01 -0.03 – 0.05 0 -0.08 – 0.09 0.06 -0.06 – 0.18

   AD -0.03 -0.07 – 0.01 -0.03 -0.08 – 0.03 -0.06 -0.17 – 0.04 -0.02 -0.07 – 0.03 0.01 -0.04 – 0.06 -0.01 -0.11 – 0.09 0.02 -0.12 – 0.16

Observations

R
2
 / adjusted 

R
2

Table S2. Linear regression results for all variables investigated by sex and baseline diagnosis. Markers in CSF

Table S2 (continued). Linear regression results for all variables investigated by sex and baseline diagnosis. Markers in CSF

0.077 / 0.063 0.031 / 0.017 0.059 / 0.045 0.123 / 0.111 0.101 / 0.088

CD 40 antigen ng/ml Interleukin 16 pg/ml Interleukin 3 ng/ml Interleukin 6.receptor ng/ml Interleukin 8 pg/ml Immunoglobulin A mg/ml

0.138 / 0.125 0.089 / 0.075

279 279 279 279 279 279 279

Intercellular Adhesion Molecule ng/ml

0.088 / 0.075 0.030 / 0.0160.589 / 0.588 0.380 / 0.377 0.168 / 0.164 0.398 / 0.396 0.164 / 0.160 0.156 / 0.152

1150 1149 947 1234 947 947 279 279

ADNI MEM ADNI EF ABETA Hippocampus/Intracranial volume TAU PTAU Cortisol Cortisol ng ml C Reactive Protein ug/ml
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Table S3. Linear regression results for all plasma variables investigated by sex and APOE genotype

Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) 2.41 2.25 – 2.57 2.04 1.92 – 2.16 0.06 -0.39 – 0.52 1.91 1.78 – 2.04 1.66 1.18 – 2.14 0.79 0.62 – 0.96

AGE (years) 0 -0.00 – 0.00 0 -0.00 – 0.00 0 -0.00 – 0.01 0 -0.00 – 0.00 0 -0.01 – 0.01 0 0.00 – 0.01

Male (ref = 

Female)
0.06 0.03 – 0.09 0.002 0.01 -0.01 – 0.04 0.54 -0.15 -0.25 – -0.06 0.009 -0.04 -0.06 – -0.01 0.07 0.25 0.15 – 0.34 <0.0001 -0.01 -0.04 – 0.03 0.82

APOE status 

(ref = 0 alleles)
0.29 0.46 <0.0001 0.89 0.49 0.41

   1 allele -0.03 -0.07 – -0.00 0.01 -0.01 – 0.04 -0.28 -0.37 – -0.18 0.01 -0.02 – 0.04 0.03 -0.06 – 0.13 -0.03 -0.07 – 0.00

   2 alleles -0.04 -0.09 – 0.01 0.03 -0.00 – 0.07 -0.36 -0.50 – -0.23 0 -0.04 – 0.04 -0.1 -0.25 – 0.04 -0.03 -0.09 – 0.02

Observations

R
2
 / adjusted 

R
2

Table S3 (continued). Linear regression results for all plasma variables investigated by sex and APOE genotype

Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) -0.58 -0.68 – -0.47 2.32 2.18 – 2.47 -1.71 -1.98 – -1.45 1.42 1.30 – 1.55 0.48 0.28 – 0.69

AGE (years) 0.01 0.00 – 0.01 0 0.00 – 0.00 0 -0.00 – 0.00 0 -0.00 – 0.00 0 -0.00 – 0.00

Male (ref = 

Female)
-0.01 -0.03 – 0.01 0.63 0.01 -0.02 – 0.04 0.71 0 -0.06 – 0.05 0.92 -0.03 -0.05 – -0.00 0.19 0.02 -0.02 – 0.06 0.66

APOE status 

(ref = 0 alleles)
0.66 0.75 0.76 0.54 0.71

   1 allele -0.01 -0.03 – 0.01 -0.02 -0.05 – 0.01 0.01 -0.05 – 0.06 0.01 -0.01 – 0.04 -0.01 -0.05 – 0.03

   2 alleles 0.01 -0.02 – 0.04 -0.01 -0.06 – 0.03 0.04 -0.03 – 0.12 -0.02 -0.06 – 0.02 -0.04 -0.10 – 0.02

Observations 527 527 527

R
2
 / adjusted 

R
2

0.002 / -0.005 0.016 / 0.0080.133 / 0.126 0.023 / 0.015 0.009 / 0.002

CD 40 antigen ng/ml Interleukin 16.IL 16.pg m Interleukin 3 ng/ml Interleukin 6 receptor ng/ml Immunoglobulin A mg/ml

526 527

527

0.038 / 0.031 0.014 / 0.007 0.105 / 0.098 0.019 / 0.012 0.056 / 0.048 0.027 / 0.019

527 527 526 527 527

Interleukin 18 pg/ml Cortisol Cortisol ng/ml C Reactive Protein ug/ml Intercellular Adhesion Molecule ng/ml Immunoglobulin E ng/ml Interleukin 8 pg/ml
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Table S4. Linear regression results for all plasma variables investigated by sex and baseline diagnosis.

Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) 2.33 2.17 – 2.49 2.08 1.96 – 2.20 -0.07 -0.56 – 0.41 1.92 1.78 – 2.05 1.6 1.11 – 2.09 0.78 0.61 – 0.96

AGE (years) 0 -0.00 – 0.00 0 -0.00 – 0.00 0.01 0.00 – 0.01 0 -0.00 – 0.00 0 -0.01 – 0.01 0 0.00 – 0.01

Male (ref = 

Female)
0.06 0.03 – 0.09 0.005 0.02 -0.01 – 0.04 0.47 -0.14 -0.24 – -0.05 0.03 -0.03 -0.06 – -0.01 0.08 0.25 0.15 – 0.34 <0.0001 0 -0.04 – 0.03 0.88

Diagnosis (ref 

= CN)
0.63 0.01 0.08 0.27 0.88 0.35

LMCI 0.04 -0.01 – 0.10 -0.02 -0.07 – 0.02 -0.26 -0.44 – -0.09 -0.01 -0.06 – 0.03 -0.01 -0.18 – 0.17 -0.04 -0.10 – 0.02

AD 0.03 -0.03 – 0.10 0.03 -0.02 – 0.08 -0.22 -0.41 – -0.03 0.02 -0.03 – 0.08 -0.04 -0.23 – 0.16 0 -0.07 – 0.06

Observations

R
2
 / adjusted 

R
2

Table S4 (continued). Linear regression results for all plasma variables investigated by sex and baseline diagnosis.

Predictors Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p Estimates CI adjusted p

(Intercept) -0.56 -0.67 – -0.46 2.38 2.23 – 2.53 -1.62 -1.89 – -1.35 1.44 1.32 – 1.56 0.42 0.22 – 0.63

AGE (years) 0.01 0.00 – 0.01 0 0.00 – 0.00 0 -0.00 – 0.00 0 -0.00 – 0.00 0 -0.00 – 0.00

Male (ref = 

Female)
-0.01 -0.03 – 0.01 0.68 0.01 -0.02 – 0.04 0.63 -0.01 -0.06 – 0.05 0.52 -0.02 -0.05 – -0.00 0.19 0.02 -0.02 – 0.06 0.68

Diagnosis (ref 

= CN)
0.08 0.08 0.75 0.63 0.84

LMCI -0.02 -0.05 – 0.02 -0.08 -0.13 – -0.02 -0.04 -0.14 – 0.06 -0.03 -0.08 – 0.01 0.03 -0.05 – 0.10

AD 0.02 -0.02 – 0.06 -0.08 -0.14 – -0.02 -0.12 -0.22 – -0.01 -0.03 -0.08 – 0.02 0.02 -0.07 – 0.10

Observations 527 527

R
2
 / adjusted 

R
2

0.013 / 0.006 0.014 / 0.006

526 527 527

0.143 / 0.137 0.036 / 0.029 0.008 / -0.000

CD 40 antigen ng/ml Interleukin 16 pg/ml Interleukin 3 ng/ml Interleukin 6 receptor ng/ml Immunoglobulin A mg/ml

0.032 / 0.025 0.034 / 0.026 0.043 / 0.036 0.029 / 0.021 0.050 / 0.043 0.027 / 0.020

527 527 526 527 527 527

Interleukin 18 pg/ml Cortisol Cortisol ng/ml C Reactive Protein ug/ml Intercellular Adhesion Molecule ng/ml Immunoglobulin E ng/ml Interleukin 8 pg/ml
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