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84 ABSTRACT (PLOS ONE Word Count 225)

85 Reducing unplanned readmissions is a major focus of current hospital quality efforts. In order to 

86 avoid unfair penalization, administrators and policymakers use prediction models to adjust for 

87 the performance of hospitals from healthcare claims data. Regression-based models are a 

88 commonly utilized method for such risk-standardization across hospitals; however, these 

89 models often suffer in accuracy. In this study we, compare four prediction models for unplanned 

90 patient readmission for patients hospitalized with acute myocardial infarction (AMI), congestive 

91 health failure (HF), and pneumonia (PNA) within the Nationwide Readmissions Database in 

92 2014. We evaluated hierarchical logistic regression and compared its performance with gradient 

93 boosting and two models that utilize artificial neural network. We show that unsupervised Global 

94 Vector for Word Representations embedding representations of administrative claims data 

95 combined with artificial neural network classification models significantly improves prediction of 

96 30-day readmission. Our best models increased the AUC for prediction of 30-day readmissions 

97 from 0.68 to 0.72 for AMI, 0.60 to 0.64 for HF, and 0.63 to 0.68 for PNA compared to 

98 hierarchical logistic regression. Furthermore, risk-standardized hospital readmission rates 

99 calculated from our artificial neural network model that employed embeddings led to 

100 reclassification of approximately 10% of hospitals across categories of hospital performance. 

101 This finding suggests that prediction models that incorporate new methods classify hospitals 

102 differently than traditional regression-based approaches and that their role in assessing hospital 

103 performance warrants further investigation.   

104

105

106
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108 INTRODUCTION
109
110 Approximately 15% of patients discharged after an acute hospitalization are readmitted within 

111 30 days, leading to potentially worse clinical outcomes and billions of dollars in healthcare costs 

112 [1]. Given these concerns, multiple quality efforts have been instituted in recent years to reduce 

113 readmissions in the United States. For example, the Medicare Hospital Readmission Reduction 

114 Program (HRRP) was created as part of the Patient Protection and Affordable Care Act and 

115 financially penalizes U.S. hospitals with excess 30-day readmission rates among Medicare 

116 beneficiaries [2,3]. Similar programs are being launched for patients with commercial insurance 

117 with the goal of further incentivizing hospitals to reduce readmissions [4,5]. 

118

119 Not surprisingly, the development of these programs has led to an increased demand for 

120 statistical models that accurately predict readmissions using available healthcare claims data. 

121 As the likelihood of readmission is related to key input features of patients (e.g., age and co-

122 morbidities), differences in the distribution of patients across hospitals based on such features 

123 may lead to unfair penalization of hospitals that care for more at-risk individuals. Therefore, 

124 using prediction statistical models to adjust for patient risk across hospitals is a major priority for 

125 accountability programs [6]. However, the performance of prediction models for readmissions 

126 have been generally poor. For example, existing methods that rely on regression-based models 

127 report area under the curve (AUC) for the receiver operating characteristic in the range of 0.63 

128 to 0.65, suggesting limited discrimination for prediction [7,8]. Recent use of more flexible 

129 prediction models that leverage machine learning algorithms, such as random forest and 

130 traditional artificial neural network (ANN) models, have attempted to address this limitation with 

131 minimal improvements [9-11]. 

132
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133 The purpose of this study was to explore whether advances in ANN models could improve 

134 prediction of 30-day readmission using administrative claims data and how this potential 

135 improvement may impact calculation of risk-standardized hospital readmission rates. ANN 

136 models abstract input features from large-scale datasets to predict output probability by 

137 approximating a combination of non-linear functions over the input future-space [12, 13]. 

138 Modern deployment of ANN models, including deep learning models, have been used 

139 successfully in a range of applications that include image classification and natural language 

140 processing [14-17], as well as prediction from electronic heath records [18,19]. We apply this 

141 approach to a large United States administrative claims data source focusing on 3 common 

142 conditions that were targeted under the HRRP: acute myocardial infarction (AMI), heart failure 

143 (HF) and pneumonia (PNA).

144

145 METHODS
146
147 We conducted this study following the Transparent Reporting of a Multivariable Prediction 

148 Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guidelines (see checklist in the 

149 Supplementary Information). All statistical code for replicating these analyses are available on 

150 the following GitHub repository: https://github.com/wenshuoliu/DLproj/tree/master/NRD. Data 

151 used for these analyses are publicly available at: https://www.hcup-

152 us.ahrq.gov/tech_assist/centdist.jsp. 

153

154 Study Cohort

155 We used the 2014 Nationwide Readmissions Database (NRD) developed by the Agency for 

156 Healthcare Research and Quality (AHRQ) Healthcare Cost and Utilization Project (HCUP), 

157 which includes data on nearly 15 million admissions from 2048 hospitals [20-22]. The NRD has 

158 the advantage of including all payers, including government and commercial insurers. We 
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159 identified patients hospitalized for AMI, HF, and PNA. We created a separate cohort for each 

160 condition using strategies for identifying patients that were adopted from prior published work [8, 

161 23]. The cohort of index admissions for each condition was based on principal International 

162 Classification of Diseases-9 (ICD-9) diagnosis codes at discharge (e.g. in the case of AMI we 

163 used 410.xx, except for 410.x2) while excluding the following cases: (1) records with zero length 

164 of stay for AMI patients (n=4,926) per standards for constructing that cohort (as patients with 

165 AMI are unlikely to be discharged the same day); (2) patients who died in the hospital (n=13,896 

166 for AMI, n=14,014 for HF, n=18,648 for PNA); (3) patients who left the hospital against medical 

167 advice (n=2,667 for AMI, 5,753 for HF, n=5,057 for PNA); (4) patients with hospitalizations and 

168 no 30-day follow up (i.e. discharged in December, 2014 (n=23,998 for AMI, n=44,264 for HF, 

169 n=47,523 for PNA)); (5) patients transferred to another acute care hospital (n=8,400 for AMI, 

170 n=5,393 for HF, n=4,839 for PNA); (6) patients of age < 18 years old at the time of admission 

171 (n=12 for AMI, n=409 for HF, n=28,159 for PNA); and (8) patients discharged from hospitals 

172 with less than 10 admissions (n=1,956 for AMI, n=1,221 for HF, n=418 for PNA). In 

173 circumstances where the same patient was admitted several times during the study period, we 

174 selected only the first admission. Flow diagrams for the cohort selection are shown in eFigure 1.

175
176 Study Variables

177 Our outcome was 30-day unplanned readmission created using the NRD Planned Readmission 

178 Algorithm [23]. The NRD also includes patient-level information on demographics and up to 30 

179 ICD-9 diagnosis codes and 15 procedure codes from each hospitalization. Among the diagnosis 

180 codes, the principal diagnosis code at discharge represents the primary reason for the 

181 hospitalization while the rest represent comorbidities for the patient. To improve computational 

182 efficiency, we only included codes that appeared at least 10 times in the whole NRD database, 

183 reducing the number of ICD-9 diagnosis and ICD-9 procedure codes for inclusion in our 
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184 analyses from 12,233 to 9,778 diagnosis codes and from 3,722 to 3,183 procedure codes, 

185 respectively. 

186
187 Statistical Models and Analysis

188 We evaluated four statistical models: 1) a hierarchical logistic regression model; 2) gradient 

189 boosting (using the eXtreme Gradient Boosting [XGBoost] [24] approach, a widely-used, 

190 decision tree-based machine learning algorithm) using ICD-9 diagnosis and procedure codes 

191 represented as dummy variables (1 if present, 0 if absent); 3) an ANN model using a feed-

192 forward neural network with ICD-9 codes represented as dummy variables; and 4) an ANN 

193 model in which ICD-9 codes were represented as latent variables learned through a word 

194 embedding algorithm. We used hierarchical logistic regression as a baseline comparator given 

195 its ubiquitous use in health services and outcomes research. XGBoost is based on gradient 

196 boosted decision trees and it is designed for speed and performance. We used it given its rising 

197 popularity in recent years as a flexible machine learning algorithm for structured data. A more 

198 detailed explanation for the statistical models and ANN approaches as well as accompanying 

199 statistical code are available in the Supplementary Information.  

200

201 The first model we constructed employed a hierarchical logistic regression model taking into 

202 account age, gender and co-morbidities. For co-morbidities, we used the well-established 

203 Elixauser Comorbitidy Index [25] to identify 29 variables to include as independent features in 

204 the model, with a hospital-specific intercept to account for patient clustering [7]. We 

205 implemented this model using the R package lme4. 

206

207 For the second model, we applied XGBoost with the ICD-9 codes represented as dummy “1/0” 

208 input variables to provide a comparison from a popular machine learning tool. XGBoost has 

209 been well-recognized as an “off-the-shelf” algorithm that is highly effiecient and requires little 
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210 hyper-parameter tuning to achieve state-of-the-art performance in a variety of tasks [26]. We 

211 implemented this model using the Python package xgboost.   

212

213 For the third model, we implemented a feed-forward ANN model trained on dummy variable 

214 representation of ICD-9 diagnoses and procedure codes. The hospital ID was treated in the 

215 same way. We employed two hidden layers of neurons in this network to learn complex patterns 

216 from the input features instead of using human-engineered selection of variables (i.e., the 

217 Elixhauser Comorbidity Index). However, ANN models can be difficult to train because they 

218 require human parameter specification to reach optimal performance. Further, ANN models may 

219 be difficult to train due on large data-sets (over 4 million parameters in this case).

220

221 In the fourth model, we encoded 9,778 ICD-9 diagnosis and 3,183 procedure codes into 200- 

222 and 50-dimensional latent variable space, using the Global Vector for Word Representations 

223 (GloVe) algorithm [27]. We used GloVe,  an unsupervised embedding algorithm to project ICD-9 

224 co-occurrences to a lower dimension feature-space. The prescence of two ICD-9 diagnosis or 

225 procedure codes in a patient record during hospitalization was considered as a co-occurrence. 

226 We then counted the number of co-occurrences for each pair of ICD-9 diagnosis and/or 

227 procedure codes through the entire NRD database (excluding the testing set) and constructed 

228 the code embedding vectors according to the GloVe algorithm. A two-dimensional visualization 

229 of the embedding vectors of the ICD-9 diagnosis codes is shown in the eFigure 3. The 

230 visualization demonstrates that word embedding resulted in related diseases being closer to 

231 each other and is consistent with the application of word embedding algorithms in other 

232 administrative claims data [28, 29]. 

233

234 We used the deep set structure proposed by Zaheer et al [30] to incorporate ICD-9 diagnosis 

235 and procedure codes into the ANN model. This allowed us to account for varying counts of 
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236 secondary ICD-9 diagnosis and procedure codes across patients and allow our model to be 

237 invariant to the ordering of these codes (e.g., the 2nd and the 10th code are interchangeable). 

238 The hospital ID was embedded into a 1-dimensional variable – conceptually this is similar to the 

239 hospital-level random intercept used in the hierarchical logistic regression models. The 

240 architectures of the two ANN models are shown in eFigure 2. The implementation of the ANN 

241 models was done using the Python packages Keras and Tensorflow. 

242

243 To avoid the risk of overfitting, each of the study cohorts were divided into training, validation 

244 (for parameter tuning), and final testing sets at a proportion of 80%, 10%, and 10%, stratified by 

245 hospitals (i.e., within each hospital). We calculated AUC for the standard hierarchical logistic 

246 regression model, the XGBoost model and both ANN models on the final testing set, with the 

247 95% confidence interval given from a 10-fold cross-validation. Once the models were 

248 developed, we then calculated risk-standardized hospital readmission rates for both the 

249 hierarchical logistic regression and ANN models (as the ANN models were superior to the 

250 gradient boosting model). We calculated these using predictive margin, which is a 

251 generalization of risk adjustment that can be applied for both linear and non-linear models (like 

252 ANN models) [31, 32]. Specifically, the predictive margin for a hospital is defined as the average 

253 predicted readmission rate if everyone in the cohort had been admitted to that hospital. Benefits 

254 of predictive margins over conditional approaches have been discussed in Chang et al [33]. We 

255 compared this approach to the traditional approach for calculating risk-standardized hospital 

256 readmission rates in hierarchical logistic regression models that uses the predicted over 

257 expected readmission ratio for each hospital and then multiplying by the overall unadjusted 

258 readmission rate [7]; importantly, we found similar results (see eFigure 4).

259

260 RESULTS

261 Study Cohort
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262 Our study cohort included 202,038 admissions for AMI, 303,233 admissions for HF, and 

263 327,833 admissions for PNA, with unadjusted 30-day readmission rates of 12.0%, 17.7% and 

264 14.3% respectively. The mean (standard deviation) age was 66.8 (13.7) for AMI, 72.5 (14.2) for 

265 HF and 69.2 (16.8) for PNA, with the proportion of females 37.6%, 48.9% and 51.8%, 

266 respectively. Summary baseline characteristics are shown in Table 1 with additional details of 

267 the ICD-9 diagnosis and procedure codes in eTable 1. In these cohorts, we noticed an 

268 extremely skewed prevalence of ICD-9 diagnosis and procedure codes that were used to 

269 identify features for training related to comorbidities. For example, in the AMI cohort, three 

270 quarters of the 5,614 distinct secondary ICD-9 diagnosis codes appear less than 49 times 

271 (prevalence 0.02%), while the most frequent ICD-9 diagnosis code (i.e., 41.401 for coronary 

272 atherosclerosis of native coronary artery) appears 152,602 times (prevalence 75.5%). See 

273 eTable 1 for details.

274
275 Performance of Prediction Models

276 Results of prediction of 30-day readmission as assessed by AUC are reported in Table 2 for 

277 each model and each cohort. The gradient boosting model utilizing XGBoost performed slightly 

278 better than the hierarchical logistic regression model and similar to the basic feed-forward ANN 

279 model. In general, the medical code embedding deep set architecture model generated the best 

280 results on all cohorts relative to the other three models. Compared with hierarchical logistic 

281 regression, the medical code embedding deep set architecture model improved the AUC from 

282 0.68 (95% CI 0.678, 0.683) to 0.72 (95% CI 0.718, 0.722) for the AMI cohort, from 0.60 (95% CI 

283 0.592, 0.597) to 0.64 (95% CI 0.635, 0.639) for the HF cohort, from 0.63 (95% CI 0.624, 0.632) 

284 to 0.68 (95% CI 0.678, 0.683) for the PNA cohort. In a sensitivity analysis, we repeated the 

285 same analysis on elderly patients (65 years old and above) and these are provided in eTable 2. 

286 Not unexpectedly, the overall AUCs decreased in the sensitivity analysis due to restriction of the 

287 cohort by age (which is a powerful predictor of readmission for patients); however, the margins 
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288 for differences in AUCs across the four different statistical models increased slightly with this 

289 restriction by age.

290
291 Risk-Standardized Hospital Readmission Rates

292 Given its overall higher performance, we compared risk-standardized hospital readmission rates 

293 calculated from the medical code embedding deep set architecture model with those calculated 

294 from the hierarchical logistic regression model. The histograms and summaries of these results 

295 are shown in Figure 1. Distributions of the risk-standardized hospital readmission rates from the 

296 two models were similar with just a modest shift downward in the mean for the medical code 

297 embedding deep set architecture model. We observed substantial differences in terms of 

298 rankings of individual hospitals between the two models. For both models, we divided the 

299 hospitals into three groups based on quintiles of predicted risk-standardized hospital 

300 readmission rates: top 20%, middle 60% and bottom 20%. For AMI, the medical code 

301 embedding deep set architecture model classified 72 (6.4%) hospitals in the middle 60% that 

302 the hierarchical model classified in the top 20% and classified 37 (3.3%) hospitals in the middle 

303 60% that the hierarchical model classified in the bottom 20%. Results were similar for the HF 

304 and PNA cohorts (Table 3).

305
306
307 DISCUSSION
308
309 In recent years, ANN models have shown advantages over traditional statistical models in a 

310 variety of medical tasks [18, 19]. Whether the application of such models to administrative 

311 claims data brings similar improvement in specific tasks related to prediction is worth exploring. 

312 This is especially important given the ubiquitous nature of claims data for assessing quality and 

313 hospital performance. In this paper, we applied ANN models towards the task of predicting 30-

314 day readmission after AMI, HF, and PNA hospitalizations and compared it to existing 
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315 approaches that use input features from classification systems that rely on expert knowledge 

316 like hierarchical logistic regression models as well as gradient boosting. Our findings suggest 

317 ANN models provide more accurate predictions of readmission and generate risk-standardized 

318 hospital readmission rates that vary from commonly used hierarchical logistic regression 

319 models. 

320

321 There has been substantial work performed on constructing risk prediction models to predict 

322 readmissions after a hospitalization. The most frequent way these models are employed is 

323 through regression-based models that include age, gender and co-morbidities as input features 

324 [7]. For co-morbidities, ICD-9 diagnosis and procedure codes obtained from administrative 

325 claims data are used as input features to adjust for differences in individual patient risk in these 

326 models; however, not all of the thousands of potential ICD-9 diagnosis and procedure codes are 

327 included in the models and selecting which to incorporate is an important step. The selection 

328 has been based largely on expert input and empirical studies that have been used to generate 

329 fixed classification systems like the Hierarchical Condition Categories [34] or Elixhauser 

330 Comorbidity Index [25]. 

331

332 An advantage of ANN models is their ability as a statistical model to include thousands of 

333 features, as well as capture potential non-linear effects and interactions of these features. ANN 

334 models do not rely on human-generated classification systems but learn to automate extraction 

335 of relevant features from the data. Yet few studies to date have employed these models in 

336 administrative claims data. We believe a primary reason for this is that ANN models can be 

337 difficult to train due to the issues related to parameter optimization and memory consumption in 

338 the setting of a large number of parameters – sometimes in the order of millions. In the few 

339 studies that have used ANN models with administrative claims data [9, 35, 36], their use also 

340 may not have fully captured their full potential for risk prediction. For example, the use of binary 
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341 “1/0” input features for ICD-9 diagnosis and procedure codes may ignore hidden relationships 

342 across comorbidities, limiting the ability of ANN models to improve on traditional hierarchical 

343 logistic regression or other methods like gradient boosting. 

344

345 Of course, there has been some work on predicting readmissions using ANN models in the 

346 published literature. Futoma et al. implemented the basic architecture of feed-forward ANN 

347 models and showed modest advantages over conventional methods [9]. A number of 

348 researchers proposed to embed medical concepts (including but not limited to ICD-9 diagnosis 

349 and procedural codes) into a latent variable space to capture their co-relationships [28, 29, 37]; 

350 however, these investigators used this approach largely for cohort creation rather than 

351 predicting clinical outcomes or risk-adjustment. Krompass et al [36] used Hellinger-distance 

352 based principal components analysis [38] to embed ICD-10 codes and then built a logistic 

353 regression model using the embedded codes as input features. They found marginal 

354 improvements in prediction of readmissions over a feed-forward neural network but were 

355 restricted by their limited sample size. Choi et al. [35] designed a graph-based attention model 

356 to supplement embedding with medical ontologies for various prediction tasks, including 

357 readmission. However, their model did not explicitly consider the fact that the medical codes are 

358 permutation invariant. In this paper, we took advantage of a novel word embedding approach, 

359 Global Vector for Word Representations (GloVe) [27], as well as a new and recently proposed 

360 deep set architecture [30] to fully capture the inter-relationship and the permutation-invariant 

361 nature of the diagnosis and procedure codes. These choices – which were purposeful and 

362 driven by our intuition on the benefits of ANN models for this specific task – resulted in improved 

363 accuracy of prediction for readmission for a word embedding deep set architecture model 

364 across all 3 conditions. 

365
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366 Our study should be interpreted in context of the following limitations. First, although we found 

367 ANN models outperformed hierarchical logistic regression models, it is uncertain whether these 

368 improvements will justify their use more broadly as this requires consideration of other issues. 

369 For example, ANN models require large-scale data sources to train. Even though such data 

370 were available given the NRD for our current work, these are not always available. But the 

371 widespread availability and application of administrative claims data in assessing quality and 

372 hospital performance justifies the need to explore ANN models (and other approaches) further. 

373 Second, ANN models are computationally intensive and retain a “blackbox” feel with its findings 

374 difficult to understand and explain to users (similar to other models like gradient boosting). 

375 These issues may make it less attractive to policymakers and administrators when there may be 

376 a need to justify why performance is lacking in a public program (e.g., HRRP). Third, ANN 

377 models may not work for applications beyond 30-day readmission in these 3 common 

378 conditions. Work is needed to compare the performance of ANN models with traditional 

379 approaches for other outcomes (e.g., mortality), rare diseases, or populations (i.e., non-

380 hospitalized patients). 

381

382 In summary, ANN models with medical code embeddings have higher predictive accuracy for 

383 30-day readmission when compared with hierarchical logistic regression models and gradient 

384 boosting, a widely used, decision tree-based machine learning algorithm. Furthermore, ANN 

385 models generate risk-standardized hospital readmission rates that lead to differing assessments 

386 of hospital performance when compared to these other approaches. The role of ANN models in 

387 clinical and health services research warrants further investigation. 

388
389
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Tables
Table 1. Summary statistics of the predictors for each of the 3 cohorts assessed in this study population.

Acute Myocardial Infarction Heart Failure Pneumonia

No Readmission Readmission No Readmission Readmission No Readmission Readmission

N = 177,892 N = 24,146 N = 249,584 N = 53,649 N = 257,135 N = 46,508

Age, mean (std) 66.3 (13.7) 70.5 (13.3) 72.5 (14.3) 72.5 (13.9) 68.6 (17.2) 70.3 (15.8)

Female pct. 36.60% 45.00% 48.80% 49.30% 52.60% 50.20%

No. of diagnosis codes, mean (std) 12.4 (6.1) 15.7 (6.4) 15.1 (5.5) 16.2 (5.7) 12.7 (5.8) 14.7 (5.8)

No. of procedure codes, mean (std) 5.6 (3.3) 5.2 (3.9) 1.1 (1.9) 1.3 (2.1) 0.7 (1.5) 1.0 (1.8)
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Table 2. Results of prediction of 30-day readmission for acute myocardial infarction, heart failure and pneumonia as assessed by the 
Area under the curve of Receiver Operating Characteristic (AUC, with 95% confidence intervals in parentheses) given by the four 
models: the hierarchical logistic regression, XGBoost, feed-forward artificial neural network (ANN), and medical code embedding 
deep set architecture models.

Methods Acute Myocardial Infarction Heart Failure Pneumonia

Hierarchical Logistic Regression 0.681 (0.678, 0.683) 0.595 (0.592, 0.597) 0.628 (0.624, 0.632)

XGBoost 0.702 (0.698, 0.705) 0.614 (0.611, 0.617) 0.654 (0.651, 0.656)

Feed-Forward ANN 0.707 (0.705, 0.709) 0.623 (0.620, 0.626) 0.663 (0.660, 0.666)

Medical Code Embedding Deep Set 

Architecture
0.720 (0.718, 0.722) 0.637 (0.635, 0.639) 0.680 (0.678, 0.683)
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Table 3. Cross tabulation of divided groups between the hierarchical logistic regression (HLR) and the medical code embedding 
Deep Set architecture (ME-DS) model for each cohort. 

Acute Myocardial Infarction Heart Failure Pneumonia

Rank in HLR model

Rank in 

ME-DS 

model

Top 20%
Middle 

60%
Bottom 20% All Top 20% Middle 60%

Bottom 

20%
All Top 20%

Middle 

60%
Bottom 20% All

Top 20% 151 72 0 223 235 106 0 341 261 122 0 383

Middle 

60%
72 563 37 672 106 854 66 1026 122 949 82 1153

Bottom 

20%
0 37 186 223 0 66 275 341 0 82 301 383

All 223 672 223 1118 341 1026 341 1708 383 1153 383 1919
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Figure Titles and Captions

Figure 1. Distribution of risk-standardized hospital readmission rates for acute myocardial infarction (AMI), congestive health failure 
(HF), and pneumonia (PNA), generated by hierarchical logistic regression (HLR) model and the medical code embedding Deep Set 
architecture ANN (ME-DS) model.
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