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Abstract 

Synchronized neuronal population activity in the gamma-frequency range (> 30 Hz) correlates 

with the bottom-up drive of various visual features. It has been hypothesized that gamma-band 

synchronization enhances the gain of neuronal representations, yet evidence remains sparse. 

We tested a critical prediction of the gain hypothesis, which is that features that drive 

synchronized gamma-band activity interact super-linearly. To test this prediction, we employed 

whole-head magnetencephalography (MEG) in human subjects and investigated if the strength 

of visual motion (motion coherence) and luminance contrast interact in driving gamma-band 

activity in visual cortex. We found that gamma-band activity (64 to 128 Hz) monotonically 

increased with coherence and contrast while lower frequency activity (8 to 32 Hz) decreased with 

both features. Furthermore, as predicted for a gain mechanism, we found a multiplicative 

interaction between motion coherence and contrast in their joint drive of gamma-band activity. 

The lower frequency activity did not show such an interaction. Our findings provide evidence, that 

gamma-band activity acts as a cortical gain mechanism that nonlinearly combines the bottom-up 

drive of different visual features in support of visually guided behavior.  
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Introduction  

Synchronized neuronal population activity in the gamma-frequency range (> 30 Hz), i.e. gamma-

band activity, is a hallmark of feed-forward visual processing (Donner and Siegel 2011; Vinck et 

al. 2013; van Kerkoerle et al. 2014; Fries 2015). It is robustly driven by sensory stimulation and 

varies with several parameters of visual stimuli such as stimulus size (Gieselmann and Thiele 

2008; Perry et al. 2013; Vinck and Bosman 2016), luminance contrast (Hall et al. 2005; Henrie 

and Shapley 2005; Niessing 2005; Ray and Maunsell 2010b; Hadjipapas et al. 2015; Perry et al. 

2015), stimulus orientation (Friedman-Hill 2000; Siegel and König 2003; Koelewijn et al. 2011) 

and visual motion (Liu and Newsome 2006; Siegel et al. 2007; Muthukumaraswamy and Singh 

2013). Gamma-band activity increases monotonically with visual motion coherence (Siegel et al. 

2007) and increases approximately linearly with luminance contrast (Hall et al. 2005; Henrie and 

Shapley 2005; Niessing 2005; Ray and Maunsell 2010b; Hadjipapas et al. 2015; Perry et al. 

2015).  

Gamma-band activity is also related to cognitive processes. It correlates with selective visual 

attention (Fries 2001; Siegel et al. 2008), and predicts visual discrimination performance (Siegel 

et al. 2008) and reaction times during sensory discrimination (Womelsdorf et al. 2006; Rohenkohl 

et al. 2018). Thus, gamma-band activity may reflect a cortical gain mechanism. Enhanced 

rhythmic synchronization may increase the impact of neuronal spiking onto downstream neuronal 

populations in the context of visually guided behavior (König et al. 1996; Salinas and Sejnowski 

2001; Fries et al. 2007; Donner and Siegel 2011; Fries 2015).  

A critical prediction of the cortical gain hypothesis is that a combination of visual features that 

drive gamma-band activity does result in a super-linear (e.g. multiplicative) interaction, rather 

than a mere additive effect of these features on gamma-band activity. We tested this prediction 

recording magnetencephalography (MEG) in human participants that viewed dynamic random-
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dot motion patterns with varying luminance contrast and motion coherence. We found that, in 

addition to a linear drive of gamma activity through coherence and contrast, these stimulus 

features indeed showed a multiplicative interaction. Modulations of gamma-band activity were 

localized to visual cortex and accompanied by a more widespread modulation of lower frequency 

activity (8 – 32 Hz) that did not show an interaction between stimulus features. Our results provide 

novel evidence that gamma-band activity reflects a bottom-up driven cortical gain mechanism in 

the support of visually guided behavior. 

Material and Methods 

Participants  

Nineteen subjects (5 male, mean +- SD age, 26.2 +- 3.2 years; age range, 21-35 years) 

participated in the experiment and received monetary compensation for their participation. The 

study was conducted in accordance with the Declaration of Helsinki, approved by the local ethics 

committee and informed consent was obtained from all subjects prior to the recordings. All 

subjects were in good health and had normal or corrected-to-normal vision. 14 subjects 

participated in the full experiment of 900 trials, one subject stopped after 283 trials, one subject 

stopped after 798 trials, one subject after 881 trials, one subject after 894 trials and one subject 

after 899 trials.  

Stimulus material  

The stimuli consisted of dynamic random-dot patterns with bright dots on a black background 

(Fig. 1). During the entire experiment, subjects sat in the MEG in upright position. For every trial, 

they first saw a blank black screen with a fixation cross in the center (Fig. 1A).  After 500 ms, a 

dynamic random-dot stimulus appeared on either the left or the right side of the fixation cross (10 

deg eccentricity, 12 deg stimulus diameter). 1000 ms later, the stimulus disappeared. After a 

variable delay (300 to 600 ms) a Go cue was given through a brief dimming of the fixation cross 
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(1 frame, ~16 ms). The participants then pressed one of two buttons to indicate whether they saw 

an upward or downward stimulus motion.  

The stimuli had varying features with three levels of motion coherence (12%, 56%, 100%; Fig. 

1B) and three levels of luminance contrast (Weber contrast levels: 20%, 60%, 100%). The varying 

coherence was induced using random direction noise with the ‘same’ rule (Scase et al. 1996) (12 

deg stimulus diameter, 1000 dots, 10 deg/s dot speed, 0.1 deg dot radius). Thus, a fraction of 

dots — the ’signal dots’ — moved all in the signal directions (upward or downward movement) 

during the entire stimulus presentation, while another fraction of ‘noise dots’ moved in random 

directions. We manipulated the contrast of the stimuli by increasing dot brightness against a 

constant luminance background. The task factors motion direction (upward vs. downward), 

presentation side (left vs. right), coherence level and contrast level were counter-balanced and 

randomly varied across trials during every experiment. The stimulus-response mapping (button 

press with the left vs. right hand to indicate upward vs. downward motion, respectively) was 

counter-balanced across subjects.  

Data acquisition and preprocessing  

MEG was continuously recorded using a 275-channel whole-head system (Omega 2000, CTF 

Systems Inc.) in a magnetically shielded room. The head position relative to the sensors was 

measured using three head localization coils (nasion, left/right pre-auricular points). 

Electroencephalography (EEG) recordings were performed in parallel to the MEG recordings. 

The EEG data is not presented here. All analyses were performed in Matlab (MathWorks) using 

custom code and the open source toolboxes Fieldtrip (Oostenveld et al. 2011) and SPM12 

(http://www.fil.ion.ucl.ac.uk/spm). The MEG signals were recorded with a sampling rate of 2483.8 

Hz. Off-line, the data was high-pass filtered with a cut-off frequency of 1 Hz and down-sampled 

to 500 Hz. Line noise was removed by applying band-stop filters at 50, 100, 150, 200 and 250 

Hz with cut-offs at 1 Hz (all 4th-order zero-phase Butterworth filters). Trials containing jumps and 
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channels that were affected from flux trapping due to the simultaneous EEG-MEG recordings 

were excluded from the analysis. We conducted an independent component analysis (FAST ICA; 

Hyvärinen and Oja 2000) to further clean the data from eye blink, eye movement, muscular and 

pulse artefacts. We inspected the first 100 components of each subject visually according to their 

topology, time courses and spectra. Components that could be clearly detected as artefacts were 

subtracted from the data before further analysis (mean: 4.7; SD:  4.1 components per subject).   

Spectral Analyses.  

All spectral analyses were performed using Morlet’s wavelets. We retrieved the time–frequency 

representation (TFR) for frequency f of the signal x(t) at time t with the convolution operation:  

!"#(%, ') = *(%) ∗ ,(%, '). 

We write w(t,f) for Morlet’s wavelets:  

,(%, ') = -./0
1/345

1
.63780, 

where 90 is the standard deviation (:;) of the signal in the time domain and - is a normalization 

factor. In both time and frequency domain, Morlet’s wavelets are Gaussian shaped. 98 = </' is 

the :; in the frequency domain at frequency ' and < is the width of the wavelet. The :; in time 

domain is given by 90 = 1/(2?98). We used a spectral width of 5 cycles and a temporal width of 

390. We computed the wavelet transformation in steps of 20 ms at frequencies between 8 and 

256 Hz, logarithmically scaled in quarter octave steps.  

Source localization  

We projected the frequency-decomposed MEG data to predefined source locations using 

adaptive linear spatial filters (Beamforming) (Van Veen et al. 1997; Gross et al. 2001). To account 

for different head anatomy, we constructed a personalized lead field for each participant 

individually. The lead field describes what signal we would observe at the sensors, if an isolated 
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dipole with fixed current pointing to each of the 3 principle axes was active (forward model). The 

construction of lead fields was based on T1 magnetic resonance imaging (MRI) data from each 

subject. First, we segmented the data into different tissue types: grey and white matter, 

cerebrospinal fluid, skull and skin. Based on the segmented MRI data, we constructed individual 

single-shell head models (Nolte 2003) and subsequently matched a standardized source-model 

to the individual brain shapes  (Hipp et al. 2012). The source-model contained 400 locations that 

homogeneously covered the space below the MEG sensors approximately 1 cm beneath the 

skull. Source coordinates, head model and MEG channels were calculated relative to the three 

head localization coils. We used DICS beamforming in the frequency domain (Gross et al. 2001) 

to project the data from sensor level to source space. Beamforming renders activity from sources 

of interest with unit gain, while suppressing contribution from all other sources. Briefly, DICS 

beamforming uses the cross-spectral density matrix (A:;) on sensor level, specifically for every 

frequency band, and the individual lead fields B to define spatial filters ": 

"(C, ') = [B(C, ')E	A:;GHIJ(')/K	B(C, ')]/KB(C, ')E	A:;GHIJ(')/K, 

where C denotes sources and A:;GHIJ	 is the real part of the A:;.�To obtain the 3-by-3 source 

level A:; (A:;6), we projected the sensor level A:; through the filter ": 

A:;6(') = M.NO("(C, ')A:;(')"(C, ')E)� 

We then performed principal component analysis (singular value decomposition) on the source 

level A:;6 and selected the first principal component that represents the most dominant dipole 

orientation. Subsequently, we projected the Filter " onto the first principal component and 

obtained "PG6. Finally, we projected the !"# data from the sensor level to source level by 

multiplying them with the filter "PG6:  

!"#6(%, ') = "PG6(C, ')	!"#(%, '), 

where !"#6 denotes the time–frequency representation on source-level.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/741066doi: bioRxiv preprint 

https://doi.org/10.1101/741066
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

Response normalization  

To suppress stimulus-evoked responses, we subtracted the average potential across trials per 

condition, subject, time-frequency bin and source.  

To project the data into a consistent relationship between cortical hemisphere and side of 

stimulation (left vs. right), we flipped the responses across the sagittal axis of the brain. Thus, the 

left hemisphere of the brain represents activity contralateral to the stimulation and the right 

hemisphere represents the activity ipsilateral to the stimulation.  

We characterized spectral responses #(') as the percentage of change in signal amplitude at 

frequency f and time t relative to the pre-stimulus baseline:  

#(') = Q(8)/R(8)

R(8)
∗ 100, 

where :(') denotes the spectral amplitude in the temporal interval of interest and T(') denotes 

the spectral amplitude during the pre-stimulus baseline (500 ms before up to stimulus onset), 

averaged across all trials and conditions. We show the spatial distribution of power relative to 

baseline in five frequency bands, averaged across all subjects, trials and time bins from 0.1 to 

1.1 s post stimulus onset. At later time points, we observed activity modulations that localized to 

the motor cortex, which likely reflected neuronal process related of response preparation. Thus, 

we restricted all analyses to the time window from 0.1 to 0.6 s post stimulus onset. In order to 

assess the modulation of neuronal responses by stimulus conditions (see below), we normalized 

all neuronal activity according to the mean across all trials and conditions of a subject, separately 

for every time, frequency and source bin.  
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Analysis of Response Modulation.  

We used sequential polynomial regression (Büchel et al. 1998; Rees et al. 2000; Siegel et al. 

2007) to assess the modulation of responses by contrast and coherence. The response U was 

modelled as a combination of predictor variables *K	(contrast) and *3 (motion coherence):  

U = VW + VK*K + V3*3 + VY*K*3 + VZ*K
3 + V[*3

3 + V\*K
3*3

3 

with V reflecting the polynomial coefficients. To assess the amount of variance that each predictor 

accounted for independently, we orthogonalized the regressors prior to model fitting using QR-

decomposition. Starting with the zero-order (constant) model and based on F-statistics (Draper 

and Smith 1998), we tested whether incrementally adding new predictors improves the model 

significantly. We used the identical procedure to characterize the spectral, temporal and spatial 

specificity of the response modulations, as depicted in the main text figures. 

Cluster-based permutation statistics  

We used cluster-based permutation statistics in the analysis of power relative to baseline as well 

as model coefficients. We determined cluster sizes as contiguous differences from zero with 

identical sign with p < 0.05 (random effects two-tailed t-test, uncorrected). The analysis was 

repeated 10,000 times, shuffling the signs of the effects per subject and taking the maximum 

cluster size determined as above. A cluster was determined to be significant at p < 0.05 when its 

size exceeded the 95th percentile of this maximum cluster size distribution to account for multiple 

testing (Nichols and Holmes 2002). 
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Figure 1. Experimental paradigm and stimulus space. A, On each trial, subjects fixated a small central fixation cross. 

Following a blank baseline (>500 ms), a dynamic random-dot stimulus appeared either on left or right side and 

disappeared again after 1000 ms. After a variable delay (300-600 ms), the fixation cross disappeared as a go cue for 

the response. Subject reported the perceived motion direction (up vs. down) with a button press (left vs. right hand) B, 

Stimuli varied in motion coherence (12%, 56%, 100%) and luminance contrast (20%, 60%, 100%).  

Results  

We recorded MEG in human subjects (n = 19) that viewed dynamic random-dot stimuli with 

varying luminance contrast (3 levels) and motion coherence (3 levels) (Fig. 1B). After stimulus 

presentation (1000 ms) and a variable 300 to 600 ms delay, the participants indicated whether 

they saw an upward or a downward motion with a button press (Fig. 1A).  

In line with previous findings (Hall et al. 2005; Siegel et al. 2007; Hipp et al. 2011), stimulus 

presentation increased gamma-band activity (> 64 Hz) compared to the blank fixation baseline 

in the visual cortex contralateral to the visual stimulus (Fig. 2A; both p < 0.01, cluster-based 

permutation). For all further analyses we averaged responses across the sources within 

contralateral occipital cortex. The robust increase in the gamma band was accompanied by a 
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more widespread decrease in lower frequency bands (Fig. 2A; all three frequency bands between 

8 and 64 Hz p < 0.01, cluster-based permutation). Both, the high-frequency enhancement and 

low-frequency suppression started around 0.1 s post stimulus onset and were then sustained 

(Fig. 2B; both p < 0.01, cluster-based permutation).  

Figure 2. Stimulus induced responses relative to baseline. A, Cortical distribution of the power response during 

stimulation (0.1 to 1.1 s) in five frequency bands. Brains are viewed from the back. B, Power response resolved in time 

and frequency in occipital cortex contralateral to the visual hemifield of stimulation. The region of interest is depicted 

on the upper right. C, Time-frequency resolved power responses in each stimulus condition. In all panels, statistical 

significance (p < 0.05 corrected, cluster-permutation) is indicated by color opacity. Same color-scale as in B. 

We next addressed how gamma-band activity varied with luminance contrast and motion 

coherence (Fig. 2C). For all 3 levels of motion coherence and contrast, visual stimulation induced 

a robust increase of gamma-band activity and decrease of low-frequency activity (Fig. 2C; all 
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clusters p < 0.05, cluster-based permutation). Furthermore, gamma-band activity increased 

monotonically with both visual features (Fig. 2C). We next quantitatively assessed these 

modulations and tested for a potential interaction between coherence and contrast using a model-

based approach.  

We performed sequential polynomial regression to model the neuronal response as a linear and 

quadratic function of motion coherence and luminance contrast as well as of the interaction of 

these linear and quadratic features (Büchel et al. 1998; Rees et al. 2000; Siegel et al. 2007). The 

fitted model coefficients reveal the corresponding linear and quadratic modulations of the 

neuronal response by coherence and contrast (Fig. 3A). Importantly, stimulus coherence and 

contrast were uncorrelated by design, and all model coefficients were estimated independently 

using orthogonalized regressors. Thus, the interaction coefficients reflect multiplicative response 

modulations that cannot be explained by linear modulations (see Materials and Methods for 

further details). We found that both, contrast and motion coherence had a positive linear effect 

on visual gamma-band activity (Fig. 3A; contrast: p < 0.001; coherence: p < 0.0001, cluster-based 

permutation). These modulations were confined to frequencies from about 64 to 128 Hz, started 

shortly after stimulus onset and were then sustained throughout the stimulation period. In addition 

and in agreement with previous results (Gray and Singer 1989; Siegel and König 2003; Siegel et 

al. 2007), we observed a linear decrease of activity with contrast at lower frequencies from about 

8 to 20 Hz (p < 0.01, cluster-based permutation). This effect started around 150 ms after stimulus 

onset. There was a weak sub-linear modulation (negative quadratic) of gamma-band activity with 

contrast (p < 0.05, cluster-based permutation). In addition and in line with previous results (Siegel 

et al. 2007), we observed a significant supra-linear (quadratic) increase of gamma-band activity 

with motion coherence between 32 and 128 Hz (p < 0.001, cluster-based permutation). 
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Figure 3. First- (linear) and second-order (quadratic) response modulations. A, Results of a sequential polynomial 

regression per time--frequency bin, including first- and second-order coefficients and their interactions. Statistical 

significance (p < 0.05 corrected, cluster-permutation) is indicated by color opacity. B, Response-coefficients as a 

function of frequency for the contralateral occipital cortex in the time window from 0.1 to 0.6 s past stimulus onset. 

Significant deviations from zero are indicated by the colored bars above the line-plots. C, Spatial specificity of selected 

response modulations in the time window from 0.1 to 0.6 s past stimulus onset. Statistical significance (p < 0.05 

corrected, cluster-permutation) is indicated by color opacity. See Supplementary Fig. 1 for cortical distributions of all 

factors for all frequency bands. 

Consistent with our hypothesis, we also found a robust multiplicative interaction between 

coherence and contrast (p < 0.01, cluster-based permutation, Fig. 3A). This interaction was 

confined to the frequency range between 64 and 128 Hz, started around 200 ms after stimulus 

onset and was then sustained. There was no such interaction between the negative response 

modulation of coherence and contrast at lower frequencies.  
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To further investigate the spectral profile of response modulations through coherence and 

contrast, we applied the same stepwise modelling (sequential polynomial regression) to the 

stimulus response averaged across time (0.1 to 0.6 s post stimulus onset) at each single 

frequency (Fig. 3B). In line with the temporally resolved analysis, this approach revealed robust 

linear effects of contrast and motion coherence in the gamma band and lower frequency ranges 

as well as quadratic effects of both visual features in the gamma-band (all p < 0.01, cluster-based 

permutation). We observed a multiplicative interaction between coherence and contrast in the 

gamma-band. Furthermore, in this analysis, we also observed a weak second-order interaction 

of contrast and coherence for the gamma-band (p < 0.01; multiplicative interaction of quadratic 

coherence and contrast). There was no significant linear or quadratic interaction of coherence 

and contrast for lower frequency ranges. 

In which cortical regions do visual contrast and coherence modulate frequency specific neuronal 

population activity? To answer this question, we repeated the above analyses for each source 

location across the entire cortex, for 5 frequency bands (8-16 Hz, 16-32 Hz, 32-64 Hz, 64-128 

Hz, 128-256 Hz) in the time range of 0.1 to 0.6 post stimulus and applied a spatial cluster-

permutation statistic (Fig. 3C, 0.1 to 0.6 s post stimulus; all clusters shown p < 0.05, cluster-

based permutation; see also Supplementary Fig. 1). Contrast and coherence induced a negative 

linear modulation in low frequencies (8 to 32 Hz) that extended along the dorsal visual stream 

peaking in occipitoparietal regions. The linear gamma-band modulations of contrast and 

coherence, including their multiplicative interaction, were more confined and shifted towards the 

pole of the occipital cortex (see Supplementary Fig. 1 for cortical distributions of all factors).  
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Figure 4. Average power response in the time window from 0.1 to 0.6 s in contralateral occipital cortex and fitted 

response models as a function of contrast, coherence and frequency band. Dots and error bars indicate the mean 

response and the corresponding standard error of the mean (SEM) across subjects. Lines indicate the fitted polynomial 

response model. Models include the significant coefficients (p < 0.05) of the sequential polynomial regression for the 

respective frequency band.  

In a final step, we investigated how well the polynomial model fit the data. To this end, we 

repeated the regression analysis for neuronal responses in five frequency bands (Fig. 4; 0.1 to 

0.6 s post stimulus; responses in contralateral visual cortex as above). Models of all but the 

middle frequency band (32 to 64 Hz) included contrast as a linear predictor (all p < 0.0001). 

Models between 16 and 128 Hz also included a linear coherence predictor (all p < 0.05). Both 
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low frequency models (8 to 16 Hz and 16 to 32 Hz) included squared contrast (both p < 0.05), 

and for 32 to 64 Hz, the model included quadratic coherence (p < 0.05). Importantly, the linear 

interaction of coherence and contrast only improved the model for 64 to 128 Hz (p < 0.001). For 

this frequency range (64 to 128 Hz), the neuronal data was well fit (R2 = 0.55) by the full response 

model including linear contrast, linear coherence, their interaction as well as quadratic contrast 

and coherence.  

Discussion  

Here, we combined MEG, source reconstruction and parametric visual stimulation to test a critical 

prediction of the hypothesis that visual gamma-band activity acts as a cortical gain mechanism, 

which is that features that drive gamma-band activity interact super-linearly. To this end, we 

investigated the joined effect of visual contrast and motion coherence on gamma-band activity in 

human visual cortex. We found wide-spread activity modulations along the visual hierarchy in 

response to varying contrast and motion coherence. Low-frequency activity (8 to 32 Hz) 

decreased with coherence and contrast along the dorsal visual stream but exhibited no 

interaction between stimulus features. In contrast, for gamma-band activity, the driving influences 

of contrast and coherence interacted multiplicatively, thus confirming the prediction for a gain 

mechanism. Our findings provide novel evidence for the notion of gamma-band activity as a 

signature of local interactions that is driven through bottom-up sensory features and that 

regulates the gain or impact of sensory processing onto downstream regions (Siegel et al. 2007, 

2008, 2012; Fries 2015). 

The influence of contrast on neuronal spiking activity in visual cortex has been studied 

extensively. Neurons in areas along the dorsal visual stream exhibit a sigmoidal contrast 

response function (Albrecht and Hamilton 1982; Sclar et al. 1990; Martıńez-Trujillo and Treue 

2002), with different cells saturating at different contrast levels (Albrecht and Hamilton 1982). 
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Gamma-band activity has been reported to increase approximately linearly with contrast in 

human MEG and EEG (Hall et al. 2005; Hadjipapas et al. 2015; Perry et al. 2015), while both 

linear (Logothetis et al. 2001; Henrie and Shapley 2005) and saturating (sub-linear) (Ray and 

Maunsell 2010a; Hadjipapas et al. 2015) modulations have been observed invasively in monkey 

visual cortex. In accordance with these reports, we found that gamma-band activity increased 

monotonically with contrast. Furthermore, we found that the increase of gamma-band activity with 

contrast was saturating (sub-linear), which accords well with recent results in non-human 

primates (Ray and Maunsell 2010b; Hadjipapas et al. 2015).  

Previous studies observed a strong relationship between the peak-frequency of gamma-band 

activity and luminance contrast using grating stimuli (Ray and Maunsell 2010b; Hadjipapas et al. 

2015). We did not observe such a frequency modulation in the present data (see Fig. 2). This 

may point to a stimulus specific origin of contrast-dependent frequency shifts in gamma-band 

activity (gratings vs. random-dot motion).  

For motion coherence, response curves are also similar between single unit spiking and gamma-

band population activity. The relationship between the motion coherence of a dynamic random-

dot pattern and a cell’s response is predominantly linear (Britten et al. 1993; Heuer and Britten 

2007). Also gamma-band activity in the human MEG increases approximately linearly with the 

motion coherence of dynamic random-dot patterns, with some subjects showing a quadratic 

(supra-linear) response (Siegel et al. 2007). Our results confirm these findings with both linear 

and quadratic modulations of gamma-band activity by motion coherence.   

Although the relationship between single stimulus features and gamma-band activity has been 

studied extensively, little is known about the interaction of different stimulus features. Our results 

show that two stimulus features that monotonically increase gamma-band activity (contrast and 

motion coherence) interact supra-linearly in human visual cortex. This finding accords well with 
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another MEG study that investigated the effect of three different stimulus parameters on gamma-

band activity (full-field vs quadrant, static vs. motion, circular vs. linear grating) 

(Muthukumaraswamy and Singh 2013). Gamma activity exhibited main effects for all three 

stimulus features, and, in accordance with the present results, also significant positive 

interactions among all factors (Muthukumaraswamy and Singh 2013).  

Local gamma-band activity likely arises from the interplay of both, lateral excitatory interactions 

and local inhibitory feedback (Bush and Sejnowski 1996; Kopell et al. 2000; Siegel et al. 2000; 

Bartos et al. 2007; Fries et al. 2007; Cardin et al. 2009; Fries 2009; Sohal et al. 2009; Donner 

and Siegel 2011; Vinck and Bosman 2016). The increase of gamma-band activity with contrast 

and motion coherence may reflect the enhanced rhythmic structuring of spiking activity with 

enhanced recruitment of these locally recurrent interactions through stronger bottom-up drive. 

Furthermore, stronger motion coherence enhances the spatiotemporal predictability of visual 

stimuli, which may further enhance the recruitment of stimulus specific lateral excitation (Gilbert 

and Wiesel 1989; Lund et al. 2003) and inhibition (Coen-Cagli et al. 2015; Vinck and Bosman 

2016).   

Visual gamma-band activity increases with selective visual attention (Fries 2001; Siegel et al. 

2008), and enhances perceptual accuracy (Siegel et al. 2008) and response speed (Womelsdorf 

et al. 2006). Several factors may contribute to these behavioral effects. On the one hand, local 

gamma-band activity may rhythmically modulate and enhance the information content of 

neuronal spiking (Siegel et al. 2009; Womelsdorf et al. 2012; Vinck and Bosman 2016). On the 

other hand, local gamma-band activity may enhance the impact or gain of spiking activity on 

subsequent processing stages by to distinct mechanisms. First, the temporal synchronization of 

presynaptic spikes likely leads to their super-additive impact on postsynaptic neurons (MacLeod 

et al. 1998; Salinas and Sejnowski 2001; Azouz and Gray 2003; Laughlin and Sejnowski 2003; 

Fries 2009; Donner and Siegel 2011). Second, the rhythmic synchronization of presynaptic 
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spiking may enhance its downstream impact by enabling its phase-alignment to corresponding 

postsynaptic rhythmic excitability fluctuations (Fries 2005; Siegel et al. 2008; Gregoriou et al. 

2009; Bosman et al. 2012; Grothe et al. 2012). Our findings support this notion by showing a 

multiplicative interaction, i.e. an enhanced gain of gamma-band responses among visual features 

that drive this type of neuronal population activity. 

Notably, we did not observe an interaction of coherence and contrast in their modulation of low-

frequency activity (<30 Hz). Although, both features monotonically suppressed low-frequency 

activity in a graded fashion, there was no interaction between these effects. While ample 

evidence supports a behavioral effect of visual low-frequency population activity in particular in 

the alpha-band (Thut et al. 2006; Siegel et al. 2008; Jensen and Mazaheri 2010), our results 

suggest that, in contrast to gamma-band, slow rhythmic population activity may not exert a gain-

like interaction between different visual features.    

An interesting question is whether the different stimulus features modulated gamma-band activity 

preferentially in different cortical areas. Contrast may be expected to preferentially modulate 

earlier processing stages with steep contrast-response functions (e.g. V1), while motion 

coherence may preferentially modulate later stages specialized in motion processing, such as 

area MT+. Such differences may contribute to the multiplicative interaction in average gamma 

activity across visual cortex through a sequential gain enhancement across several processing 

stages. Although we observed modulations of gamma-band activity specifically in the 

contralateral visual cortex, due to the limited spatial resolution, it is difficult to pinpoint the exact 

cortical stages of gain modulation and interactions with MEG. Further invasive studies are 

required to address this question. 
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In sum, we find that visual motion and contrast interact multiplicatively in their drive of visual 

gamma-band activity. Gamma-band activity may reflect a visual gain mechanism that combines 

sensory features and regulates the impact of sensory processing onto downstream regions. 
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Supplementary Figure 1. Cortical distribution of all response modulations in the time window from 0.1 to 0.6 s past 

stimulus onset for all five frequency-bands. Statistical significance (p < 0.05 corrected, cluster-permutation) is indicated 
by color opacity.  
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