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Abstract 4 

Microorganisms mediate many important ecosystem functions, yet it remains unclear to what extent 5 
microbial diversity or community composition is important for determining the rates of ecosystem-6 
scale functions. This uncertainty limits our ability to predict and manage crucial microbially-mediated 7 
processes, such as nutrient loss and greenhouse gas emissions. Our lack of understanding stems from 8 
the relatively large diversity of microorganisms, the difficulty in directly identifying functional groups, 9 
and our limited ability to manipulate microbial community attributes. For this reason, we propose that 10 
integrating traditional biodiversity-ecosystem function research with ideas from genotype-phenotype 11 
mapping could provide the new perspective our discipline needs. We identify three insights from 12 
genotype-phenotype mapping that could be useful for microbial biodiversity-ecosystem function 13 
studies: the concept of “agnostic” mapping, the use of more powerful ways to account for multiple 14 
comparisons, and the incorporation of covariates into models of ecosystem function. We illustrate the 15 
potential for these approaches to elucidate microbial biodiversity-ecosystem function relationships by 16 
analyzing a subset of published data measuring methane oxidation rates from incubations of tropical 17 
soil. We assert that combining the approaches of traditional biodiversity-ecosystem function research 18 
with ideas from genotype-phenotype mapping will not only generate novel hypotheses about how 19 
complex microbial communities drive ecosystem function, but also help scientists predict and manage 20 
changes to ecosystem functions resulting from human activities. 21 

1 Introduction 22 

1.1 A new perspective on microbial community-ecosystem function 23 

relationships is needed 24 

Ecologists have long investigated the effects of changing biodiversity on ecosystem function, 25 
documenting, for example, relationships between terrestrial plant community richness and primary 26 
productivity (1). The study of the relationship between microbial biodiversity and ecosystem functions 27 
is much more recent and has generated mixed results (2,3). Despite the fact that microbes mediate 28 
many important ecosystem functions, it remains maddeningly unclear to what extent microbial 29 
diversity or community composition is important for determining the rates of ecosystem-scale 30 
functions.  For example, numerous studies have attempted to correlate microbial functional group 31 
abundance or diversity with the rate of various ecosystem functions and most are unsuccessful (4,5). 32 
This uncertainty limits our ability to predict and manage crucial microbially-mediated ecosystem 33 
functions, such as nutrient loss and greenhouse gas emissions. As a discipline, we need a new 34 
perspective on these questions.  35 

Our lack of understanding stems from many sources. Microbial communities are much more 36 
diverse than those of plants and more abundant, and thus more difficult to sample comprehensively. 37 
Unlike plants, functional groups of microbes are rarely determined through observation or direct 38 
measurement, but rather must be indirectly inferred from environmental DNA, adding uncertainty. The 39 
ability to experimentally manipulate microbial diversity or community composition is much more 40 
limited for microbes. Given all of these differences (and many others), the challenge of linking 41 
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microbial communities to ecosystem functions may be less like that of plant communities, and more 42 
analogous to the complex task of linking genomic variation to organismal phenotypes. For this reason, 43 
we propose that integrating traditional biodiversity-ecosystem function research with ideas from 44 
genotype-phenotype mapping could provide the new perspective our discipline needs.    45 
 46 

1.2 There is evidence that microbial diversity can matter 47 

Perhaps our uncertainty arises because there is no general relationship between microbial biodiversity 48 
and any particular ecosystem function. For example, if local selection always optimizes the available 49 
microbial biodiversity to maximize ecosystem function, then microbial community composition should 50 
not matter for predicting the rates of microbially-mediated functions. Instead, the rates of these 51 
functions should be determined by the underlying environmental variation. In this case, the microbial 52 
community would simply act as a conduit through which the abiotic environment alters ecosystem 53 
function. Attempts to document a general relationship between microbial community attributes and 54 
function would then fail (since the primary drivers are environmental).  55 
 However, there is evidence that this is not always the case, A limited number of studies have 56 
manipulated the connection between environmental factors and microbial community composition 57 
through “common garden” or reciprocal transplant experiments, and they frequently report different 58 
rates of ecosystem functions for different microbial communities under the same environmental 59 
conditions (6).  This has been observed for plant decomposition (7,8), plant phenology (9), soil 60 
nitrogen cycling (10), and soil greenhouse gas emissions (11), among others. Therefore, variation in 61 
microbial community composition can be associated with variation in ecosystem function, independent 62 
of environmental variation.  So why has this been difficult to consistently document in the field?   63 
 64 

1.3 Traditional approaches to quantifying this relationship have 65 

provided only minor improvements 66 

 67 
Most comparative studies of microbial community function in the field focus on one of two aspects of 68 
microbial community structure that are hypothesized to predict ecosystem function. The first aspect is 69 
“functional” gene or transcript abundance.  In this case, qPCR or shotgun metagenomic sequencing is 70 
used to estimate the abundance of a gene or transcript that is a putative marker for a microbial process 71 
(and thus a marker for the functional group that performs this process). For example, the gene mcrA, 72 
which encodes a subunit of the enzyme that performs the final step in methanogenesis, is commonly 73 
used as a marker for methanogenesis and for the methanogen functional group. Other examples include 74 
pmoA and methanotrophy, nifH and nitrification, and nosZ and denitrification. The abundance of these 75 
markers is often hypothesized to be predictive of the rate of their associated processes (for example, the 76 
abundance of mcrA is often hypothesized to be related to the rate of methanogenesis). There are 77 
examples where this relationship is present (12–14). However, a review of such studies found that the 78 
abundance of a functional gene or transcript is rarely correlated with the rate of the corresponding 79 
process and depends on the function of interest, with most effects either negative or not significant (4).  80 
 The second aspect of microbial community structure hypothesized to predict ecosystem 81 
function is taxonomic or functional diversity. Diversity is either estimated from sequence variants of a 82 
barcode gene such as the 16S rRNA gene or manipulated through some proxy of diversity such as 83 
sequential dilution or varying filter sizes. Studies that experimentally manipulate diversity generally 84 
find a relationship between the applied diversity treatment and ecosystem functions, including for 85 
methanotrophy (14), phosphorus leaching (15), greenhouse gas emissions (15), decomposition (16), 86 
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and nitrogen cycling (17). However, in many cases, richness is confounded with other factors such as 87 
the presence or absence of major phylogenetic groups (nematodes, fungi) or abundance of microbial 88 
cells. In addition, assembled microbial communities pose the same challenges as macroorganismal 89 
diversity experiments, for example the highest diversity treatment will more likely contain the most 90 
productive taxon. A review of microbial diversity studies shows that microbial community taxonomic 91 
and functional diversity add little explanatory power to models of ecosystem function (5). Overall, 92 
functional gene abundance and community diversity improve models of ecosystem function less than 93 
one third of the time and increase variance explained by an average of only 8 percentage points (5). 94 
 95 

1.4 Genotype-phenotype mapping as a source of inspiration 96 

Given the relative lack of success to date, it is time to rethink how we approach the challenge of 97 
mapping microbial community structure to ecosystem function.  Microbial ecologists are not the only 98 
biologists who are attempting to determine the relationship between a complex set of highly-variable 99 
data and an aggregate function.  This kind of “many-to-one” mapping is analogous to the challenge of 100 
identifying the genetic basis of complex traits in organismal populations. In such “genotype-101 
phenotype” mapping studies, a population exhibits variation in a phenotype (e.g. height or disease 102 
state) as well as variation in potentially thousands of single nucleotide polymorphisms (SNPs). To 103 
identify the genetic basis for a trait, investigators sample from this population and correlate phenotype 104 
with genotype. In most cases, there are many more loci than individuals and we do not know whether 105 
the SNPs are causally linked or are simply in linkage disequilibrium with a causal mutation. 106 
 There are a number of parallels between this challenge faced by organismal biologists and that 107 
facing microbial community ecologists.  They are both “many-to-one” mapping challenges, which 108 
involve large numbers of statistical comparisons.  Both are attempting to identify causal relationships 109 
that are potentially confounded by very complex patterns of covariation.  There is often no strong 110 
expectation about which entities (i.e. which genomic regions or which microbial taxa) are most likely 111 
to be causally-related to phenotype or function, and thus “agnostic” approaches are needed.  Both are 112 
sensitive to exactly how the “mapping” question is asked, and ultimately require manipulation (of 113 
genes or taxa) to establish causation.  We describe each of these parallels below in more detail, and 114 
provide an example of how these ideas could be applied to microbial data. 115 
 116 

1.5 The importance of a taxonomically “agnostic” approach 117 

The traditional approach to microorganismal biodiversity-ecosystem function research is to measure or 118 
manipulate the diversity of a taxonomic group (e.g. plants) and look for an association with the 119 
function performed by that group (e.g. primary productivity).  In the broadest sense, we can think of 120 
plants as a “functional group”, i.e. a group of taxa united by their ability to perform a particular 121 
ecosystem function. Ecologists may further divide a functional group (e.g. plants) into smaller 122 
functional groupings (e.g. forbs), defined by the details of how they perform their particular ecosystem 123 
function.   124 
 However, for microbes our knowledge of functional groups is much more limited.  From a very 125 
limited number of cultured isolates we have a provisional understanding of which microbes might be 126 
involved in some ecosystem functions. And by sequencing the genomes of these isolates, we have 127 
identified genetic markers for certain functions. But most microbial taxa remain uncultured and we do 128 
not know the function of most microbial taxa detected in environmental samples (18,19). In addition, 129 
there have been recent discoveries of functions in unexpected taxonomic groups, for example 130 
methanogenesis by fungi and cyanobacteria, a function previously considered restricted to the Archaea 131 
(20,21). Because of this, it would be prudent to look more agnostically at microbial communities to 132 
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identify taxa or groups of taxa that are important for predicting the rate of ecosystem functions rather 133 
than assuming that the genetic markers we have provisionally identified for a given function represent 134 
the most likely taxa involved.  This agnostic approach is analogous to the approach of many genotype-135 
phenotype mapping studies (e.g. genome-wide association studies, aka GWAS), which often look for 136 
associations between a phenotype and loci anywhere in a genome. 137 

 138 

1.6 Dealing with multiple comparisons and covariation 139 

 140 
Microbial biodiversity-ecosystem function studies and genotype-phenotype mapping studies are both 141 
“many-to-one” mapping challenges, which involve large numbers of statistical tests.  Hundreds to 142 
thousands of tests are routinely made per study, greatly inflating the number of false positives identified 143 
using statistical hypothesis testing approaches.  Some microbial biodiversity-ecosystem function 144 
studies do not correct for this, while others use approaches that may unnecessarily inflate the false 145 
negative rate, such as the Bonferroni correction. The Bonferroni correction has been widely considered 146 
to be too conservative, particular for exploratory studies designed to generate hypotheses (22–24). 147 
Statisticians have developed a number of less-conservative approaches to correct for multiple 148 
comparisons by controlling the false discovery rate in order to balance the tradeoff between Type I and 149 
Type II errors (25,26).  These approaches are commonly used in genotype-phenotype mapping studies. 150 
 It is widely accepted that organisms, including microorganisms, exhibit population stratification 151 
due to geographic and environmental separation (27,28). Genome-wide association studies generally 152 
account for population structure due to shared ancestry among cases and controls when modeling the 153 
connection between genotype and phenotype. The classic example is the latitudinal gradient of both 154 
height and genotypic similarity in Europe, which results in spurious associations between human height 155 
and genetic variation (29,30). To correct for this covariance structure, GWAS models incorporate 156 
genotypic similarity to correct for shared ancestry using a variety of methods, such as principal 157 
component correction or variance component modeling (31,32). Typically, microbial biodiversity-158 
ecosystem function studies do not account for population stratification (i.e. community similarity 159 
across samples), although there are some exceptions (33,34). GWAS generally ignores the underlying 160 
environmental and spatial distance between samples and instead uses shared ancestry as a proxy for 161 
these variables. However, community similarity (the community analogue of shared ancestry among 162 
organisms) is not as tightly linked to geography or environment as is shared ancestry among organisms, 163 
and it could be very useful to account for these separately in microbial studies, especially if one is 164 
particularly interested in how composition alters function independent of the underlying environmental 165 
variation.  166 
 167 

2 An example: high-affinity methane oxidation 168 

 169 
To illustrate the ideas outlined above, we reanalyzed a subset previously published data (33) using a 170 
modified procedure from the original version.  A full description of the study design, samples, and data 171 
generation can be found in that manuscript. Briefly, these data were gathered from intact soil cores 172 
taken from diverse ecosystems of the Congo Basin in Gabon, Africa. Cores were incubated in the 173 
laboratory under different concentrations of methane to identify the rates of specific methane cycling 174 
pathways. For this example, we will analyze data from just one of these pathways, high-affinity 175 
methane oxidation (the oxidation of atmospheric concentrations of methane), which we will refer to 176 
below as “methane oxidation”. In addition, for simplicity we only include amplicon sequences from the 177 
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DNA-inferred community and not the RNA-inferred community, both of which are presented in the 178 
original paper (33).  The data we analyzed include methane oxidation measurements, amplicon 179 
sequence variants (ASVs; (35)) generated using DADA2 and inferred from 16S rRNA gene sequences, 180 
pmoA abundance estimates (via qPCR), latitude and longitude, and four environmental covariates (soil 181 
moisture, bulk density, carbon, and nitrogen).  182 
 Analyses were conducted in the R statistical environment using the phyloseq package (36,37). 183 
The relative abundances of ASVs were corrected using the variance stabilizing transformation from 184 
DESeq2 (38,39). We first test typical measures of microbial structure including functional gene 185 
abundance and community richness, which was estimated using the breakaway package (40). We then 186 
demonstrate significant covariation between community structure (estimated as Bray-Curtis distance 187 
using vegan), environmental variation (euclidean distance), and geographic distance (euclidean 188 
distance) using Mantel tests (41,42). Finally, we present one approach to identifying taxa which are 189 
significantly associated with function independent of the environment by fitting variance component 190 
models using varComp to test the relationship between relative abundance of each ASV and methane 191 
oxidation rate (43). To illustrate how including different covariates (environmental, geographic, and 192 
community) can result in different conclusions about which taxa are associated with function, we fit 193 
this model with and without random effects variance components for environmental similarity, 194 
geographic site ID, and Bray-Curtis similarity. Significant taxa were determined by controlling the 195 
false discovery rate at q-value < 0.05 (26). Figures were created using ggplot2 (44).  196 
 Methane oxidation rate was not significantly correlated with pmoA gene abundance or richness 197 
(Table 1, Figure 1). We tested collinearity between each pair of distance matrices for community, 198 
environment, and geography using Mantel tests and estimated p-values by permutation. We found a 199 
moderate and significant correlation between community composition and environmental variation, 200 
geography and community composition, and geography and environmental variation (Table 2, Figure 201 
2). Principal coordinate plots show that beta diversity of samples separated by site ID and by ecosystem 202 
type (wetland or upland; Figure 2). Finally, we tested the effect of the relative abundance of each ASV 203 
on methane oxidation rate. We found different numbers of taxa significantly associated with methane 204 
oxidation depending on which covariates were included in the model (Table 3).  In particular, 460 taxa 205 
were identified with no covariates whereas 6 were identified after including all covariates. Though we 206 
cannot infer function from 16S sequences, these 6 taxa fall into three genera and one class with 207 
cultured representatives that are not known to consume methane (45–48). Their effect on methane 208 
oxidation rate ranges from 0.5 to 1.5 (Figure 3).  An effect of 1.5 means that for a one unit increase in 209 
relative abundance there is a 1.5 increase in k (the rate of exponential decrease in methane 210 
concentration over time).  211 

 212 

3 Discussion 213 

 214 
In this paper, we argue that the traditional approach to microbial biodiversity-ecosystem function 215 
research often ignores the complexity of microbial community dynamics, in particular the complex 216 
patterns of covariation that often arise among microbial community similarity, environmental 217 
similarity, and spatial proximity.  We propose that a better approach would be to learn from other 218 
complex many-to-one mapping problems in biology, particularly genotype-phenotype mapping.  These 219 
studies often explicitly account for covariation, they correct for multiple comparisons in powerful 220 
ways, and they frequently take an “agnostic approach” that does not assume a particular relationship 221 
between structure and function. 222 
 We illustrate the potential for these approaches to elucidate microbial biodiversity-ecosystem 223 
function relationships by analyzing a subset of published data from incubations of tropical soil.  In this 224 
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example, soil cores from different ecosystems exhibited different rates of methane oxidation, but 225 
simple correlations between these rates and the diversity or abundance of putative methane oxidizing 226 
bacteria were not informative.  These results agree with recent reviews of the literature that 227 
demonstrate that such simple approaches are often not a fruitful avenue for elucidating microbial 228 
structure-function connections.  229 

We then asked if the relative abundance of particular taxa were related to ecosystem function, 230 
and we identified 460 taxa whose relative abundances were associated with rates of methane oxidation 231 
after controlling the false discovery rate (q-value < 0.05). These taxa could be related to ecosystem 232 
function in multiple ways.  The most interesting possibility is that each of these taxa is statistically 233 
related because it is causally connected to the function. This could be direct, for example an organism 234 
that consumes methane, or indirect, for example an organism that regulates substrates necessary for 235 
consumers of methane. In either of these cases, the taxon could be useful as a biomarker of function or 236 
as an organism to investigate in order to better understand the biological drivers of variation in methane 237 
oxidation.   238 

Alternatively, a significant association could occur for non-causal reasons.  For example, any 239 
organism that tends to be in high abundance where methane oxidation rates are high would be 240 
correlated with methane oxidation, even if it has no causal relationship. This could be because such an 241 
organism is favored under the same environmental conditions that favor methane oxidizing bacteria (or 242 
that favor methane oxidation in general).  Such covariation can drive associations that are not causal, 243 
but the effects of such covariation can be reduced through a number of approaches (many developed by 244 
biologists interested in genotype-phenotype mapping).   245 

In our example, we showed that the abundances of microbial taxa exhibit complex patterns of 246 
covariation with each other and with environmental conditions and spatial location. These 247 
biogeographic patterns might be even stronger if we could sample the populations more intensively 248 
(49). Once we account for this covariation, our list of taxa associated with function was reduced to 6.  249 
These 6 taxa include taxa that are not known to directly contribute to methane oxidation, suggesting 250 
that the drivers of methane oxidation may be indirect, perhaps mediated by ecological interactions 251 
among taxa from multiple functional groups.   252 

This approach is powerful because it accounts for the covariances that arise from the 253 
fundamental ecological processes that drive community assembly and underlie biogeographical 254 
patterns (27,50). It is also powerful because it is focused on a much more specific version of the 255 
“biodiversity-ecosystem function” question, i.e. it asks “which taxa are uniquely associated with 256 
function?”. By “uniquely associated”, we mean those taxa associated with function irrespective of 257 
environmental conditions, local community structure, or spatial proximity.  This is not only a more 258 
specific question than is usually asked in microbial biodiversity-ecosystem function studies, but it is 259 
also a more appropriate one, especially if one is interested in how to incorporate microbial community 260 
data into ecosystem models. For modeling what is usually important is to identify those taxa that add 261 
explanatory power beyond that provided by other factors (such as environmental conditions).   262 
 We identified three insights from genotype-phenotype mapping that could be useful for 263 
microbial biodiversity-ecosystem function studies: the concept of “agnostic” mapping, the use of more 264 
powerful ways to account for multiple comparisons, and the incorporation of covariates.  But there are 265 
other insights to be gained as well.  For example, some phenotypes (e.g. the propensity for diseases 266 
such as Parkinson's) are controlled by a single genetic locus (51,52). However, most phenotypes 267 
studied to date arise from the influence of many loci of small effect (as well as environmental factors; 268 
(53,54)). Organismal biologists have developed approaches tailored to identifying such loci; for 269 
example, by sampling organismal populations in a way that constrains genetic variation unrelated to 270 
phenotype. Similarly, for some ecosystem functions, it is possible that a single microbial taxon could 271 
substantially influence its rate. For example, methane flux from permafrost in Sweden may be 272 
controlled by a single taxon (55). However, most microbially-mediated ecosystem functions are likely 273 
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the result of interactions (direct and indirect) among many taxa.  We could maximize our ability to 274 
identify taxa of small effect by constraining variation, e.g. by sampling microbial communities in a way 275 
that makes them similar in structure (similar ecosystem, soil type, and abiotic conditions) while still 276 
varying in function. 277 
 Ultimately, the relationships identified in genotype-phenotype mapping studies must be 278 
verified.  There are multiple ways that this verification is accomplished. In some cases, organisms can 279 
be artificially selected for a particular phenotype (e.g. through experimental evolution in an 280 
environment that favors the phenotype of interest) and the genetic changes that occur in response to 281 
selection can be compared to those identified via mapping studies (such as GWAS).  An analogous 282 
approach for microbial biodiversity-ecosystem function studies would be to apply artificial ecosystem 283 
selection (sensu (56)) on a given function and compare the taxa that change in response to selection 284 
with those identified via a comparative approach (such as the one illustrated in our example).   285 
 The most common way that loci identified in a mapping study are verified is through 286 
manipulative genetics.  The identified loci can be knocked out or over-expressed, and the effect on 287 
phenotype compared to that predicted from mapping studies.  There is no direct analogue for this in 288 
microbial biodiversity-ecosystem function studies.  In some cases it may be possible to inhibit a 289 
particular functional group through the use of a specific antimicrobial or a chemical inhibitor (57), but 290 
this is not generally true.  It may be possible in some cases to isolate a microorganism of interest in 291 
pure culture and add it back to a particular ecosystem, transiently increasing its abundance (roughly 292 
analogous to “overexpressing” a gene).  Synthetic communities (contrived assemblages of 293 
microorganisms) may ultimately be the most powerful way to test hypotheses about microbial 294 
biodiversity-ecosystem function relationships, but currently these approaches are limited by the small 295 
number of taxa that can be routinely cultured from most environments. 296 

 297 

4 Conclusion 298 

 299 
Microbial biodiversity-ecosystem function research has demonstrated that functional group abundance 300 
(measured via genetic markers from environmental DNA) is often not a good predictor of ecosystem 301 
function and that microbial diversity metrics on average do not add much power to ecosystem models. 302 
A new perspective on how to determine the relationship between microbial communities and ecosystem 303 
functions is sorely needed.  Organismal biologists have over a hundred years of experience identifying 304 
relationships between complex sets of highly-variable data (genotypes or genome sequences) and 305 
aggregate functions (organismal phenotypes).  We assert that combining the approaches of traditional 306 
biodiversity-ecosystem function research with ideas from genotype-phenotype mapping could provide 307 
this new perspective.  This integration could not only make underutilized approaches such as covariate 308 
modeling and artificial selection more available to microbial ecologists, but also provide instructive 309 
examples of how best to conceive of microbial biodiversity-ecosystem function questions.  If this 310 
integration is successful, it is possible that in the not-so-distant future our field will be able to robustly 311 
identify taxa, genes, or even molecules that will allow us to accurately predict the response of 312 
ecosystems to environmental change. Doing so will not only generate novel hypotheses about how 313 
complex microbial communities drive ecosystem function, but also help scientists predict and manage 314 
changes to ecosystem functions resulting from human activities.  315 
 316 
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Tables and Figures 331 

Table 1. Functional gene abundance and ASV richness are not good predictors of methane oxidation 332 
rate. Linear models predicting methane oxidation rate from measures of microbial community 333 
structure. 334 
 335 
Term Estimate SE t-statistic p-value n 
pmoA copy number 0.019 0.011 1.700 0.096 42 
Richness 0.001 0.001 0.694 0.491 44 
  336 
Table 2. Mantel tests for each pair of dissimilarity matrices. Community distance matrix was based on 337 
Bray-Curtis distance while both environment and geography distance matrices were based on 338 
Euclidean distance. P-values determined by permutation test with 999 permutations. 339 
 340 
Terms Mantel statistic (r) 95% upper quantile of 

permutations 
p-value 

Community ~ Environment 0.479 0.096 0.001 
Community ~ Geography 0.360 0.055 0.001 
Environment ~ Geography 0.241 0.060 0.001 
 341 
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Table 3. Number of significant taxa after including each set of covariates in a variance component 342 
model. Removed and Added columns are relative to the no-covariate model. Significance is determined 343 
by controlling the false discovery rate at q-values < 0.05. 344 
 345 
Terms Removed Added Significant 
None 0 0 460
Geo 338 21 14
Com 460 0 0
Env 281 1 180
Geo + Env 458 0 2
Geo + Env 377 13 96
Com + Env 447 0 13
Geo + Com + Env 454 0 6
 346 
 347 
 348 

 349 
 350 
Figure 1. Methane oxidation rate is not correlated with functional gene abundance or ASV richness. 351 
Correlations between community attributes and ecosystem function. A) Abundance of the functional 352 
gene pmoA (n = 42) and B) ASV richness (n = 44). Lines represent the ordinary least squares regression 353 
line with standard errors. 354 
 355 
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 356 
 357 
Figure 2. Microbial community composition is spatially and environmentally structured. Principle 358 
coordinate plots of Bray-Curtis distance representing the first three axes of community composition. In 359 
A, B, and C, points are identified by Site ID and in D, E, and F, points are identified by wetland or 360 
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upland ecosystem. All four environmental covariates separate strongly by wetland/upland. Axis length 361 
is proportional to variance explained as indicated in parentheses. PC = principal coordinate. 362 
 363 
 364 

 365 
 366 
Figure 3. Taxa associated with methane oxidation rates after controlling for geographic location, 367 
environmental similarity, and community composition. Points are estimates for the linear relationship 368 
between the relative abundance of a single ASV and methane oxidation rate with standard errors from 369 
variance component models including similarity matrices as covariates for community and 370 
environment and site ID for geographic location. Amplicon sequence variants are labelled at the finest 371 
resolution available: genus for all except the Group 1 Acidobacterium. Points are identified by Phylum. 372 
Significant taxa were determined by controlling the false discovery rate at q-value < 0.05. 373 
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