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34 Abstract

35 The acute stroke phase is a critical time frame used to evaluate stroke severity, therapeutic 

36 options, and prognosis while also serving as a major target for the development of diagnostics. To 

37 better understand stroke pathophysiology and to enhance the development of treatments, our group 

38 developed a translational pig ischemic stroke model. In this study, the evolution of acute ischemic 

39 stroke tissue damage, immune response, and functional deficits were further characterized in the 

40 pig model. Stroke was induced by middle cerebral artery occlusion in Landrace pigs. At 24 hours 

41 post-stroke, magnetic resonance imaging revealed a decrease in ipsilateral diffusivity and an 

42 increase in hemispheric swelling and intracranial hemorrhage resulting in notable midline shift. 

43 Stroke negatively impacted white matter integrity leading to decreased fractional anisotropy. 

44 Similar to acute clinical patients, stroked pigs showed a reduction in circulating lymphocytes and 

45 a surge in neutrophils and band cells. Functional responses corresponded with structural changes 

46 with  reduced exploration in open field testing and impairments in spatiotemporal gait parameters. 

47 This novel, acute ischemia characterization provides important insights into tissue and functional 

48 level changes in a pig model that can be used to identify treatment targets and future testing of 

49 therapeutics and diagnostics.      

50
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55 Introduction

56 Every year, 6.2 million people worldwide die from stroke making it the leading cause of 

57 death in individuals over the age of 60 and the fifth leading cause of death in individuals ages 15-

58 59 (1, 2). Of the patients that survive, approximately 5 million are left permanently disabled 

59 making stroke a global medical and socioeconomic problem (3). The acute phase of ischemic 

60 stroke is a critical time window to determine stroke severity, treatment options, and future 

61 prognosis in clinical patients. Specifically, the acute phase is a major target for the development 

62 of novel therapeutics and diagnostics as an early reduction in brain tissue loss is directly correlated 

63 with improvements in functional outcomes. In addition, all current Food and Drug Administrative 

64 approved treatments, tissue plasminogen activator (tPA) and thrombectomy, are only effective 

65 during this acute window (4-6).  The acute phase of ischemic stroke has also been the focus of 

66 diagnostic and prognostic tool development; tools including magnetic resonance imaging (MRI) 

67 that can rapidly and accurately identify ischemic stroke and has demonstrated strong predictive 

68 value with respect to long-term patient outcomes (7-11). However, the development of therapies 

69 and diagnostic tools has been slower than desired particularly with respect to treatments with 

70 numerous failed clinical trials (12-15). 

71 A potential opportunity to hasten the speed at which therapies and diagnostics reach 

72 patients is through the use of translational large animal models that are more predictive of human 

73 outcomes. Assessments by the Stem Cell Emerging Paradigm in Stroke (STEPS) and the Stroke 

74 Therapy Academic Industry Roundtable (STAIR) consortiums identified therapeutic testing in 

75 higher-order gyrencephalic species and in translational animal models more reflective of human 

76 pathology and physiology as major needs in pre-clinical stroke studies to better predict therapeutic 

77 efficacy (6, 16-21). To address this unmet need, a pig ischemic stroke model has been recently 
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78 developed by our research team with anatomy, physiology, and stroke pathology similar to human 

79 patients (22-25). The pig brain is similar in mass compared to humans being only 7.5 times smaller, 

80 whereas the rodent brain is 650 times smaller in comparison to humans (26). This allots for a more 

81 direct assessment of therapeutic dosing in a pre-clinical model. The pig’s brain size is also an 

82 advantage in developing diagnostic tools as human 3T MRI scanners and coils can be used to 

83 develop new MRI sequences and analytical tools.  In terms of cytoarchitecture, human and pig 

84 brains are gyrencephalic and are composed of  >60% white matter (WM), while rodent brains are 

85 lissencephalic and are composed of <10% WM, making pig tissue responses potentially more 

86 predictive of human outcomes (27-30). These attributes are critically important as WM and gray 

87 matter (GM) exhibit differing sensitivities to hypoxia (30). Although the failure of 

88 pharmacological translation is multifactorial, the failure to ameliorate ischemic damage to WM is 

89 proposed to be a major factor (31). The similarities between pig and humans in brain size, 

90 cytoarchitecture, and WM  composition collectively support the use of a pig ischemic stroke model 

91 to more accurately predict potential outcomes of human clinical trials. However, more in depth 

92 characterization of the acute ischemic stroke timepoint is needed in the pig model to better 

93 understand similarities and differences between human and pig acute stroke outcomes. 

94 MRI is an excellent tool for use in the pig ischemic stroke model as it allows for 

95 bidirectional development of the pig model as well as MRI diagnostic and prognostics. MRI allows 

96 for the assessment of stroke evolution in the pig model and evaluation of novel therapeutic 

97 efficacy. In addition, new MRI sequences and post-processing tools can be developed in the pig 

98 for use in clinical settings. Acute MRI assessment of ischemic stroke patients has become the 

99 standard of care in diagnosing and predicting patient clinical outcomes (8, 32). Clinically, 

100 diffusion-weighted imaging (DWI) has been shown to reliably enable early identification of the 
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101 lesion size, location, and age with high sensitivity and specificity (7, 33-38). Moreover, acute stage 

102 DWI lesion volume measures have proven to be highly correlated with chronic lesion size and 

103 stroke severity as determined by Modified Rankin Scale (mRS) and National Institutes of Health 

104 Stroke Scale (NIHSS), suggesting DWI provides valuable prognostic information (7-9, 38-40). 

105 DWI derived apparent diffusion coefficient (ADC) maps have aided in further understanding the 

106 time course of acute ischemic brain damage by tracking the diffusion of water in the hypoxic brain 

107 parenchyma from extracellular to intracellular compartments (41, 42). In conjunction with other 

108 MR techniques, ADC hypointensities allow clinicians to differentiate between regions at risk for 

109 cerebral infarction and irreversibly damaged tissue in order to establish time windows for stroke 

110 treatment and to identify patients who are most likely to benefit from acute stroke therapies (7, 40, 

111 43, 44). Disruption of WM structural integrity is also associated with poor early neurological 

112 outcomes in stroke patients (45). Diffusion tensor imaging (DTI) studies of human stroke reveal 

113 notable alterations in WM fractional anisotropy (FA) that correspond with the temporal evolution 

114 of stroke (10, 11). FA analysis has improved the identification of ischemic lesions at acute and 

115 subacute time points and has proved particularly useful in determining time of stroke onset, which 

116 is frequently unknown in clinical settings (11). Recently, progressive structural remodeling of 

117 contralateral WM tracts related to motor, cognitive, and sensory processing was positively 

118 associated with motor function recovery in the acute and sub-acute stages post-stroke as well as 1, 

119 4, and 12 weeks post-ischemic onset in patients (46, 47). Acute MRI analysis in the pig stroke 

120 model will allow for the characterization of clinically relevant parameters and to assess for 

121 correlations with acute functional changes as observed in human patients. 

122 Ischemic stroke leads to a wide array of acute deficits in behavior, cognition, and 

123 sensorimotor function in clinical patients thus resulting in poor mRS scale scores (48). 
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124 Neurological deficits in executive function, episodic memory, visuospatial function, and language 

125 manifest within 48 to 72 hours in 33.6% of patients (49-52). Occlusions of the middle cerebral 

126 artery (MCA) and territorial infarction are regularly linked to acute limb paresis that is sustained 

127 long-term (52). Understanding these motor impairments are essential to planning rehabilitation 

128 efforts to restore ambulatory activity levels and balance deficiencies in stroke survivors (53, 54). 

129 Specifically, improvements in foot placement, stride length, and walking speed are recognized as 

130 powerful indicators of long-term recovery (55-59). Among these neurologic and functional 

131 consequences, post-stroke depression (PSD) is the most frequent psychiatric problem occurring in 

132 one-third of stroke survivors (60). PSD is strongly associated with further inhibition of recovery 

133 processes due to the combination of ischemia-induced neurobiological dysfunctions and 

134 psychosocial distress (61, 62). The pig stroke model offers a unique opportunity to study acute 

135 changes in behavior, cognition, and motor function due to anatomical similarities in the size of the 

136 prefrontal cortex and cerebellum in addition to somatotopical organization of the motor and 

137 somatosensory cortices which are critically important in modeling human motor function effects 

138 in the acute ischemic stroke phase  (26, 63-65). 

139 The objective of this study was to utilize clincially relevant assessment modalities to 

140 characterize acute ischemic stroke in a pig model that will provide a translational platform to study 

141 potential diagnostics and therapeutic interventions. We present evidence pigs display an acute 

142 ischemic stroke response similar to human patients including brain lesioning, swelling, loss of 

143 WM integrity, and increased white blood cell (WBC) counts. These physiological changes 

144 correlated with aberrant behavior and worsened motor function. This compelling evidence 

145 suggests the pig stroke model could serve as a valuable tool in bridging the gap between pre-

146 clinical rodent studies and human clinical trials.
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147 Materials and methods

148 Animals and housing

149 All work performed in this study was approved by the University of Georgia Institutional 

150 Animal Care and Use Committee (IACUC; Protocol Number: 2017-07-019Y1A0) and in 

151 accordance with the National Institutes of Health Guide for the Care and Use of Laboratory 

152 Animals guidelines. 6, sexually mature, castrated male Landrace pigs, 5-6 months old and 48-56 

153 kg were purchased from the University of Georgia Swine Unit and enrolled in this study. Male 

154 pigs were used in accordance with the STAIR guidelines that suggests initial therapeutic 

155 evaluations should be performed with young, healthy male animals (66).  Pigs were individually 

156 housed in a Public Health Service (PHS) and AAALAC approved facility at a room temperature 

157 approximately 27°C with a 12 hour light/dark cycle. Pigs were given access to water and fed 

158 standard grower diets with provision of enrichment through daily human contact and toys. 

159 Study design

160 The sample size for this study was determined by a power calculation based on our routine 

161 use of the middle cerebral artery occlusion model with lesion volume changes by MRI imaging 

162 being the primary endpoint (67). The power analysis was calculated using a two-tailed ANOVA 

163 test, α=0.05, and an 80% power of detection effect size of 1.19 and a standard deviation of 44.63. 

164 This was a randomized study where 2 pigs were randomly assigned to each surgical day. All 

165 endpoints and functional measurements were prospectively planned and underwent blinded 

166 analysis. Predefined exclusion criteria from all endpoints included instances of infection at the 

167 incision site, self-inflicted injuries that required euthanasia, inability to thermoregulate, 

168 uncontrolled seizure activity, and/or respiratory distress. 1 pig was excluded from MRI collection 
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169 as well as post-stroke blood and functional analysis due to post-operative complications and 

170 premature death. No outliers were removed from the data. 

171 Middle cerebral artery occlusion surgical procedures

172 The day prior to surgery, pigs were administered antibiotics (Excede; 5 mg/kg 

173 intramuscular (IM) and fentanyl for pain management (fentanyl patch; 100 mg/kg/hr transdermal 

174 (TD)).  Pre-induction analgesia and sedation were achieved using xylazine (2 mg/kg IM) and 

175 midazolam (0.2 mg/kg IM). Anesthesia was induced with intravenous (IV) propofol to effect and 

176 prophylactic lidocaine (1.0 mL 2% lidocaine) topically to the laryngeal folds to facilitate 

177 intubation. Anesthesia was maintained with isoflurane (Abbott Laboratories) in oxygen. 

178 As previously described, a curvilinear skin incision extended from the right orbit to an area 

179 rostral to the auricle (24). A segment of zygomatic arch was resected while the temporal fascia and 

180 muscle were elevated and a craniectomy was performed exposing the local dura mater. The distal 

181 middle cerebral artery (MCA) and associated branches were permanently occluded using bipolar 

182 cautery forceps resulting in ischemic infarction. The temporalis muscle and epidermis were 

183 routinely re-apposed. 

184 Anesthesia was discontinued and pigs were returned to their pens upon extubation and 

185 monitored every 15 minutes until vitals including temperature, heart rate, and respiratory rate 

186 returned to normal, every 4 hours for 24 hours, and twice a day thereafter until post-transplantation 

187 sutures were removed. Banamine (2.2 mg/kg IM) was administered for post-operative pain, acute 

188 inflammation, and fever management every 12 hours for the first 24 hours, and every 24 hours for 

189 3 days post-stroke. 
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190 Magnetic resonance imaging acquisition and analysis

191 MRI was performed 24 hours post-stroke on a General Electric 3.0 Tesla MRI system. Pigs 

192 were sedated and maintained under anesthesia as previously described for MCAO surgery. MRI 

193 of the cranium was performed using an 8-channel torso coil with the pig positioned in supine 

194 recumbency. Multiplanar MR brain imaging sequences were acquired including T2 Fluid 

195 Attenuated Inversion Recovery (T2FLAIR), T2Weighted (T2W), T2Star (T2*), DWI, and DTI. 

196 Sequences were analyzed using Osirix software. Cytotoxic edema consistent with ischemic stroke 

197 was confirmed 24 hours post-stroke by comparing corresponding hyperintense regions in 

198 T2FLAIR and DWI sequences and hypointense regions in ADC maps. 

199 DWI sequences were used to generate ADC maps. ADC values were calculated for each 

200 axial slice at a manually drawn region of interest (ROI) that was defined by areas of hypointensity 

201 and directly compared to an identical ROI in the contralateral hemisphere. Average ADC values 

202 were obtained by calculating the average signal intensity across all slices and reported as 10-3 

203 mm2/s. Hemisphere volume was calculated using T2W sequences for each axial slice by manually 

204 outlining the ipsilateral and contralateral hemispheres. The hemisphere areas were multiplied by 

205 the slice thickness (3mm) to obtain total hemisphere volumes. Lesion volume was calculated using 

206 DWI sequences for each axial slice by manually outlining hyperintense ROIs. The area of each 

207 ROI was multiplied by the slice thickness (2mm) to obtain the total lesion volume. Similarly, 

208 intracranial hemorrhage (ICH) volume was calculated by manually outlining areas of 

209 hypointensity utilizing T2* sequences. Midline shift (MLS) was calculated utilizing T2W 

210 sequences for each axial slice by measuring the distance from the natural midline along the anterior 

211 and posterior attachments of the falx cerebri to the septum pellucidum. DTI was utilized to generate 

212 FA maps. FA values of the internal capsules were calculated manually on one representative slice 
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213 per pig and were expressed as a percent change in the ipsilateral hemisphere relative to the 

214 contralateral hemisphere.

215 Blood collection and analysis

216 Venous blood samples were collected pre-stroke, 4, 12, and 24 hours post-stroke into 

217 K2EDTA spray coated tubes (Patterson Veterinary). 4 μL of blood was pipetted onto the base of 

218 a ColorFrost microscope slide (ThermoScientific) approximately 1 cm from the edge. At an angle 

219 of approximately 45 degrees, a spreader slide was placed in front of the blood and retracted until 

220 the blood sample evenly spread along the width of the slide. Even pressure on the spreader slide 

221 was applied in a forward direction in order to create a smear. Care was taken to ensure each blood 

222 smear covered two-thirds of the slide and exhibited an oval feathered end. Each slide was air dried 

223 for 10 minutes, fixed with methanol for 2 minutes, air dried for 2 minutes, and then stained in 

224 Wright-Giemsa stain for 5 minutes. The stained slide was submerged in distilled water (dH2O) for 

225 10 minutes. Finally, the slide was rinsed, air dried, and then a cover slip was applied using 

226 Phosphate Buffered Saline (PBS). Trained, blinded personnel completed manual white blood cell 

227 counts of lymphocytes, neutrophils, and band cells at the monolayer, beginning approximately one 

228 millimeter away from the body of the smear. The first 100 white blood cells visualized were 

229 identified and cell counts were expressed as a percentage.

230 Gait analysis

231 Pigs underwent gait analysis pre-stroke and 48 hours post-stroke to assess changes in 

232 spatiotemporal gait parameters. Data was recorded using a GAITFour electronic, pressure-

233 sensitive mat (CIR Systems Inc., Franklin, NJ) 7.01 m in length and 0.85 m in width with an 

234 active area that is 6.10 m in length and 0.61 m in width. In this arrangement, the active area is a 

235 grid, 48 sensors wide by 480 sensors long, totaling 23,040 sensors. 2 weeks pre-stroke, pigs were 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/740159doi: bioRxiv preprint 

https://doi.org/10.1101/740159
http://creativecommons.org/licenses/by/4.0/


11

11

236 trained to travel across a gait mat at a consistent, 2-beat pace. To reinforce consistency, rewards 

237 were given at each end of the mat for successful runs. Pre-stroke gait data was collected on 3 

238 separate days for each pig. At each time point, pigs were encouraged to move along the mat until 

239 5 consistent trials were collected in which the pigs were not distracted and maintained a 

240 consistent pace with no more than 15 total trials collected. 

241 Gait data was semi-automatically analyzed using GAITFour Software to provide 

242 quantitative measurements of velocity (cm/sec) and cadence (steps/min). Additional 

243 measurements were quantified specifically for the affected front left limb, which is contralateral 

244 to the induced stroke lesion on the right side of the brain. These measurements included stride 

245 length (the distance between successive ground contact of the same hoof), swing percent of cycle 

246 (the percent of a full gait cycle in which a limb is not in contact with the ground), cycle time (the 

247 amount of time for a full stride cycle), swing time (the amount of time a limb is in the swing 

248 phase, or not in contact with the ground) and mean pressure (the amount of pressure exerted by a 

249 limb).   

250 Open field testing

251 As an additional measure of functional outcome, pigs underwent open field (OF) 

252 behavior testing pre-stroke and 48 hours post-stroke. All tests took place in a 2.7 m x 2.7 m arena 

253 lined with black rubber matting, used to provide stable footing. White curtains were hung around 

254 the arena to reduce visual distractions during testing. Trials were recorded using EthoVision 

255 video tracking software (Noldus Systems) to obtain objective and quantifiable measures of 

256 behavioral characteristics.

257 Pigs were individually brought to the behavior arena and allowed to explore for 10 

258 minutes during the OF test. Behaviors automatically tracked during this test include velocity and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/740159doi: bioRxiv preprint 

https://doi.org/10.1101/740159
http://creativecommons.org/licenses/by/4.0/


12

12

259 distance traveled. Additionally, exploratory behaviors typical of pigs such as sniffing the wall 

260 (perimeter sniffing) were manually tracked and coded in the EthoVision software by trained 

261 personnel.   

262 Statistical analysis

263 All quantitative data was analyzed with SAS version 9.3 (Cary, NC) and statistical 

264 significances between groups were determined by one-way analysis of variance (ANOVA) and 

265 post-hoc Tukey-Kramer Pair-Wise comparisons. Comparisons where p-values were ≤ 0.05 were 

266 considered significantly different.

267 Results

268 MCAO induces acute ischemic infarction and decreased diffusivity.

269 To confirm ischemic stroke 24 hours post-MCAO, MRI DWI (Fig 1A) and T2FLAIR 

270 sequences were assessed. Scans exhibited territorial hyperintense lesions characteristic of an 

271 edematous injury. Hypointense lesions observed on corresponding ADC maps (Fig 1B) confirmed 

272 areas of restricted diffusion indicative of cytotoxic edema thus confirming permanent cauterization 

273 of the MCA resulted in ischemic stroke. DWI-ADC mismatch resulted in identification of 

274 potentially salvageable penumbra tissue. DWI sequences revealed an average lesion volume of 

275 9.91±1.40 cm3 (Fig 1A). ADC sequences revealed significantly (p≤0.0001) decreased diffusivity 

276 within ischemic lesions when compared to identical regions of interest in the contralateral 

277 hemisphere (0.34±0.02 vs. 0.62±0.03 x10-3mm2/s, respectively; Fig 1B-C). 

278 Ischemic stroke results in acute hemispheric swelling, hemorrhage, 

279 and loss of white matter integrity.
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280 Analysis of T2W sequences at 24 hours post-stroke revealed a trending (p=0.16) increase 

281 in ipsilateral hemisphere volume indicative of cerebral swelling when compared to the 

282 contralateral hemisphere (25.99±1.78 vs. 22.49±1.40 cm3, respectively; Fig 2A-C) and an 

283 associated MLS of 2.48±0.55 mm (Fig 2A-B). Acute ICH was observed via T2* sequences with a 

284 consistent mean hemorrhage volume of 1.73±0.07 cm3 (Fig 2D-E, white arrow), which suggests 

285 the ischemic infarct area underwent hemorrhagic transformation (HT). These HTs impacted basal 

286 ganglion structures as well as portions of the cerebellum, brain regions responsible for motor 

287 function.  To assess changes in WM integrity, FA values of the internal capsules were evaluated 

288 24 hours post-stroke, revealing a significant (p<0.01) decrease in the ipsilateral internal capsule 

289 (IC) when compared to the contralateral side (0.17±0.01 vs. 0.23±0.01 respectively; Fig 3A-C). 

290 Collectively, MRI results demonstrated MCAO led to tissue-level damage including ischemic 

291 infarction, decreased diffusivity, hemispheric swelling, pronounced MLS, HT, and disrupted WM 

292 integrity.

293 Ischemic stroke increases circulating neutrophil levels and decreases 

294 circulating lymphocyte levels.

295 To determine changes in immune cell response to acute ischemic stroke, venous blood 

296 samples were collected pre-stroke, 4, 12, and 24 hours post-stroke. Band neutrophils (Fig 4A-B), 

297 neutrophils (Fig 4C-D), and lymphocytes (Fig 4E-F) were assessed via manual cell counts. Band 

298 neutrophils significantly (p<0.05) increased 12 hours post-stroke compared to pre-stroke 

299 (5.50±0.99% vs. 1.92±0.51% respectively; Fig 4B). Similarly, the number of circulating 

300 neutrophils was significantly (p<0.05) increased at 4 and 12 hours post-stroke when compared to 

301 pre-stroke (43.7±5.27% and 48.9±3.92% vs. 26.5±1.96%, respectively; Fig 4D). The number of 

302 circulating lymphocytes was significantly (p<0.05) decreased at 12 and 24 hours post-stroke 
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303 compared to pre-stroke (25.60±4.01% and 26.60±4.29% vs. 44.83±3.66% respectively; Fig 4F). 

304 These results demonstrated stroke resulted in an increase in circulating band neutrophils and 

305 neutrophils and a decrease in circulating lymphocytes which indicates an acute immune 

306 response.   

307 Ischemic stroke decreases exploratory behaviors during open field 

308 testing.  

309 Changes in exploratory behaviors were assessed using the open field (OF) test 48 hours 

310 post-stroke. Perimeter sniffing, a typical exploratory behavior exhibited by pigs, was recorded 

311 utilizing Ethovision XT tracking software to assess differences in perimeter sniffing pre- and 

312 post-stroke (Fig 5A-B); representative 10 minute movement tracings show perimeter sniffing 

313 (red) and non-perimeter sniffing (yellow). Pigs’ perimeter sniffing frequency significantly 

314 (p<0.05) decreased  48 hours post-stroke compared to pre-stroke (132.94 vs 264.02 times, 

315 respectively, Fig 5C). However, no significant differences were noted for velocity and distance 

316 traveled in the OF test between pre- and 48 hours post-stroke. These results suggest that stroke 

317 impairs normal exploratory behaviors.   

318 Ischemic stroke results in spatiotemporal gait deficits. 

319 Key spatiotemporal gait parameters were analyzed pre-stroke and 48 hours post-stroke to 

320 detect potential impairments in motor function as an outcome of stroke. Significant (p<0.01) 

321 decreases were noted in the average velocity and cadence at 48 hours post-stroke compared to 

322 pre-stroke indicating the speed of the pigs decreased as a result of stroke (61.018.39 vs 

323 162.912.73 cm/s and 61.015.91 vs 126.443.72 steps/min, respectively, Fig 6A-B). Further 

324 changes were noted in measurements of the contralateral left forelimb (LF). The limb 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/740159doi: bioRxiv preprint 

https://doi.org/10.1101/740159
http://creativecommons.org/licenses/by/4.0/


15

15

325 contralateral to the stroke lesion typically has more pronounced motor deficits relative to the 

326 ipsilateral limb in humans, mice, and rats (68, 69). The swing percent of cycle significantly 

327 (p<0.01) decreased demonstrating pigs spent more time with the LF in contact with the ground at 

328 48 hours post-stroke compared to pre-stroke suggesting an increased need for support 

329 (30.702.12 vs 48.892.35%, respectively, Fig 6C). A significant (p<0.01) decrease in stride 

330 length of the LF was observed at 48 hours post-stroke compared to pre-stroke (59.043.85cm vs 

331 76.724.60cm, respectively, Fig 6D). Cycle time of the LF significantly (p<0.01) increased 

332 signifying a slower gait at 48 hours post-stroke compared to pre-stroke (1.02.09 vs 

333 0.480.013sec, respectively, Fig 6E). Finally, the mean pressure exhibited by the LF 

334 significantly (p<0.01) decreased at 48 hours post-stroke compared to pre-stroke (2.62.03 vs 

335 2.82.03 arbitrary units (AU), respectively, Fig 6F). Deficits in the measured gait parameters 

336 indicate stroke lead to substantial motor impairments at acute time points in pigs. 

337 Discussion 

338 In this study, we observed and characterized acute stroke injury severity, prognostic 

339 biomarkers, and potential therapeutic targets utilizing clinically relevant MRI, immune, behavior, 

340 and motor function tests in the translational ischemic stroke pig model. Lesion volumes were 

341 consistent among pigs and closely replicated human lesion volumes with similar impairments in 

342 functional performance (70-73). Ischemic injury produced cerebral swelling and consequent MLS 

343 as well as notable ICH, all of which are strongly associated with stroke patient morbidity (39, 74, 

344 75). In addition, stroke led to reduced WM integrity of the IC correlating with a contralateral 

345 deteriorations in motor function commonly seen in patients post-stroke (30, 76, 77). Also similar 

346 to human stroke patients, MCAO led to an acute immune response marked by an increase in 
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347 circulating neutrophils and a corresponding decrease in circulating lymphocytes which is a key 

348 biomarker for identifying ischemic stroke patients at risk for the development of intracranial 

349 hemorrhage thus influencing the use of tPA (78-80). Functional assessments showed impaired 

350 behavior and motor function disruptions that affected both spatiotemporal parameters and weight 

351 distribution, all of which parallel clinical functional outcomes in stroke patients (81-83). By further 

352 understanding these physiological hallmarks and exploiting the similarities between pigs and 

353 humans, the ischemic stroke pig model can be utilized to decrease the translational gap between 

354 rodent models and human stroke patients.

355 Early detection of ischemic infarction via DWI analysis has proven to be a critical 

356 component for both prognosis and therapeutic potentials within the narrow treatment window of 

357 acute ischemic stroke (84-86). This study showed mean lesion volumes of 9.91±3.14 cm3 at 24 

358 hours post-stroke. Given that pig brains are approximately 7.5 times smaller than human brains, 

359 lesion volumes were found to closely replicate patient DWI lesion volumes. Acute DWI lesion 

360 thresholds of 72 cm3 are common in patients with major cerebral artery occlusions (26, 87-90). 

361 Often pre-clinical stroke models have relied on T1 or T2 MRI sequences which are typically 

362 delayed in early recognition of cerebral ischemia and do not account for diffusion abnormalities 

363 that may evolve into infarction (91-93). DWI lesion measurements overcome this limitation. 

364 Common pathological features of human ischemic infarction were also observed in our model 

365 including significant restricted diffusion in focal regions spanning the parietal, limbic, and 

366 temporal lobes as indicated by ADC maps (85, 94-96). Specifically, our pig model replicates 

367 characteristics of human MCA stroke by primarily demonstrating cytotoxic edema which will later 

368 evolve into vasogenic edema. In some pre-clinical stroke models, including rodent photochemical 

369 and photothromobotic models, cytotoxic edema and vasogenic edema develop simultaneously 
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370 resulting in ischemic lesions lacking a penumbra (97, 98). This is a major model limitation as the 

371 penumbra is considered potentially salvagable tissue in human patients and is a coveted therapeutic 

372 intervention target. MRI-based discrimination of core from penumbra and non-ischemic tissue 

373 provides critical information for the testing of neuroprotective and restorative treatments as well 

374 as the initiation of surgical interventions within acute and sub-acute treatment windows (99, 100). 

375 For example, ischemic core volumes distinguishable from penumbra enable clinicians to consider 

376 the risk of cerebral hemorrhage from acute revascularization therapy (101). For these reasons, 

377 evaluating the efficacy and safety of potential treatments in an animal model with similar 

378 pathophysiology of acute ischemia in terms of cytotoxic and vasogenic edema as humans is of 

379 significant value.  

380 Cerebral edema and consequent hemispheric swelling are serious stroke complications that 

381 result in rapid neurological deterioration and a disproportionately high 30-day patient mortality 

382 rate of 60-80% (102-104). Crudely managed via osmotic diuretics and/or decompressive 

383 craniectomies, patients are in desperate need for more effective and less invasive 

384 pharmacotherapies (105-107). These needs have been met with poor therapeutic translation due to 

385 discrepencies in lissencephalic small animal stroke models including limited cerebral edema and 

386 swelling as well as variable MLS and mortality rates (108-110). Specifically in endothelin-1 (ET-

387 1) rodent stroke models, animals exhibit a dose-dependent ischemic lesion with marginal ischemic 

388 edema making this model less suited for studying acute stroke pathophysiology (111-114). In 

389 contrast, our pig stroke model exhibited increased ipsilateral hemipshere swelling due to the 

390 development of cytotoxic edema and consquent MLS within 24 hours post-stroke. These 

391 observations are in keeping with other large animal models of stroke, in which permanent ovine 

392 MCAO demonstrated cerebral edema and MLS (115). These physiological responses post-
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393 ischemic stroke are frequently associated with different levels of consciousness and serve as a 

394 predictive indicator of patient prognosis (116, 117). Furthermore, clinical studies indicate 

395 quantification of MLS can predict cerebral herniations and subsequent death prior to clinical signs 

396 and are a clinically relevant feature of this pig stroke model (118).

397 Although MRI techniques have become increasingly valuable in characterizing and 

398 refining the field’s understanding of ICH, the time course and underlying mechanisms remain 

399 poorly understood due to variability in the onset, size, and location of ICH in current stroke animal 

400 models (119). Often resulting from hemorrhagic transformation (HT) in ischemic stroke patients, 

401 spontaneous ICH incidence ranges from 38-71% in autopsy studies and from 13-43% in CT studies 

402 (120, 121). Furthermore, when ICH occupies >30% of the infarct zone, it has been correlated with 

403 early neurological deterioration and a significant increase in mortality rates 90 days post-ischemic 

404 stroke (122, 123). T2* sequences showed consistent mean hemorrhage volume between stroke 

405 pigs, indicating MCAO caused loss of macro- and microvessel integrity. The classical clinical 

406 presentations of ICH were replicated in our model through the progression of neurological deficits 

407 within hours post-stroke including decreased consciousness, head-pressing, vomiting, facial 

408 paralysis, and limb weakness (120, 124, 125). Interestingly, these neurological deficits correlated 

409 with the location of ICH. For example, ICH in the cerebellum was associated with ataxia whereas 

410 ICH in basal ganglia structures were associated with limb weakness. In previous studies, early 

411 neurologic deterioration was attributed primarily to cerebral edema and lesion volume; however, 

412 recent clinical pathological, MR, and CT studies suggest hemorrhage into ischemic tissues is a 

413 major contributor to poor clinical outcome, making ICH a novel target of pre-clinical studies (126-

414 129). By replicating both tissue-level and neurological presentations unique to ICH, our model 

415 presents an exciting new platform for testing hemostatic therapies and surgical interventions. 
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416 For the first time, it was observed MCAO led to reduced WM integrity in the IC 24 hours 

417 post-stroke in the pig model. This subcortical structure is highly involved in communication 

418 between the cerebral cortex and brainstem resulting in profound muscle weakness and inhibited 

419 perception of sensory information of the patient’s face, arm, trunk, and leg post-stroke (130). 

420 Studies using Functional Ambulatory Categories found patients with IC lesions experience 

421 persistent (>6 months) functional motor deficits; requiring aids for balance and support during 

422 ambulation (131). As the right IC transmits nerve signals for movement of the left side of the body, 

423 our pig MCAO model closely replicated post-stroke deficits as seen through a decrease in 

424 spatiotemporal gait parameters of the hemiplegic limb including LF stride length and LF swing 

425 percent of cycle. Similarly, stroke patients exhibit decreases in the duration of stride length and 

426 the swing phase in the hemiplegic limb (132-135). Mean pressure of the LF limb was also 

427 decreased in stroke pigs likely as a result of overall greater weakness of the hemiplegic limb (136). 

428 Stroke pigs compensated for limb weakness and balance impairments by taking shorter, slower 

429 steps, thus reducing their velocity and cadence to better stabilize their gait. In a comparable human 

430 study utilizing the analogous GAITRite system, WM lesions corresponded with a poorer gait score 

431 as measured by step length and abnormal cadence in patients (77). These manifestations support 

432 our previous studies evaluating functional deficits post-stroke, thus providing further evidence 

433 quantitative gait analysis is a critical tool for the evaluation of stroke severity and therapeutic 

434 impact on recovery (25, 137). 

435 Immune and inflammatory responses have been shown to play a key role in the sequela of 

436 ischemic stroke (138). Within the first few hours after stroke, neutrophils are recruited to the site 

437 of injury and release cytokines, chemokines, free oxygen radicals, and other inflammatory 

438 mediators (139). In this study, we observed a significant increase in neutrophils at 4 and 12 hours 
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439 post-stroke. Neutrophil release of inflammatory mediators has been directly associated with cell 

440 damage or death as well as damage to the vasculature and extracellular matrices (139). Neutrophils 

441 have been implicated to play a significant role in blood brain barrier disruption and HT following 

442 ischemic stroke, which may explain one potential mechanism for HT observed 24 hours post-

443 stroke in this study (79).  Conversely, acute ischemic stroke has been shown to induce a rapid and 

444 long-lasting suppression of circulating immune cells such as lymphocytes that can lead to 

445 increased susceptibility of systemic infections after stroke (140). In this study, we observed a 

446 significant decrease in lymphocytes at 12 and 24 hours post-stroke, consistent with reports that 

447 stroke in humans induces immediate loss of lymphocytes that is most pronounced at 12 hours post-

448 stroke (141). Though the exact mechanisms by which lymphocytes mediate immunosuppression 

449 post-stroke remain unclear, clinical evidence supports that lower levels of lymphocytes are a sign 

450 of poor long-term functional outcome (142-144). The neutrophil-to-lymphocyte ratio (NLR) was 

451 determined to be a useful marker to predict neurological deterioration and short-term mortality in 

452 patients with acute ischemic stroke (145, 146). Elevated NLRs have been reported to be associated 

453 with chronic inflammation, poor functional prognosis, and larger lesion volumes in ischemic 

454 stroke patients (78, 139, 146-148). These results suggest that neutrophil recruitment in our pig 

455 model may play a significant role in inflammatory-mediated secondary injury processes that 

456 contribute to the development of functional impairments. Furthermore, similar to human stroke 

457 patients, neutrophil and lymphocyte levels in our pig model may also serve as ideal markers for 

458 stroke severity and outcome prediction.   

459 Open field testing is regularly used to evaluate behavior in rodents after ischemic stroke 

460 (149), specifically as an indicator of changes in exploratory behaviors (150, 151). In this study, a 

461 significant decrease was noted in perimeter sniffing frequency post-stroke in open field testing. 
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462 Pigs are inherently exploratory animals and perimeter sniffing is a typical exploratory behavior 

463 (152). This change in behavior may be attributed to post-stroke depression (PSD) as this behavioral 

464 disturbance has been reported to commonly develop in humans in the acute post-stroke period 

465 (153, 154). In accordance with the behavioral changes noted in the present study, PSD in humans 

466 is characterized by general apathy and lack of interest (155, 156). Evaluation and understanding 

467 of behavioral changes in a translational, large animal stroke model is crucial for future studies to 

468 assess functional outcomes of potential therapies.

469 In this study, we have demonstrated our pig model of ischemic stroke positively replicates 

470 cellular, tissue, and functional outcomes at acute time points similar to human stroke patients. 

471 MCAO in our pig ischemic stroke model exhibited a multifactorial effect leading to cytotoxic 

472 edema, lesioning, hemispheric swelling, and ICH, while also impairing diffusivity and WM 

473 integrity. These structural changes correlated with behavioral and motor function deficits in a 

474 similar manner to acute human stroke patients. As an effective model of acute ischemic stroke 

475 pathophysiology, the pig system is potentially an excellent tool for identifying potential treatment 

476 targets and testing novel therapeutics and diagnostics.      
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488 Figure legends

489 Figure 1: MCAO induces acute ischemic infarction and decreased 

490 diffusivity. DWI sequences exhibited territorial hyperintense lesions of 9.91±1.40 cm3 

491 characteristic of an edematous injury (A, white arrow). ADC maps revealed signal void indicative 

492 of restricted diffusion and cytotoxic edema (B, white arrow). Ipsilateral ROIs exhibited a 

493 significantly (p≤0.0001) lower ADC value relative to the contralateral hemisphere (0.34±0.02 vs. 

494 0.62±0.03 x10-3mm2/s, respectively; C). * indicates significant difference between hemispheres.

495 Figure 2: Ischemic stroke results in hemispheric swelling, consequent 

496 midline shift, and intracranial hemorrhage. T2W sequences revealed increased 

497 swelling of the ipsilateral hemisphere (25.99±1.78 vs. 22.49±1.40 cm3; A-C) resulting in a 

498 pronounced MLS of 2.48±0.55 mm compared to pre-stroke imaging (A and B, red lines). 

499 Characteristic hypointense ROIs indicated the presence of ipsilateral ICH when compared to pre-

500 stroke T2* sequences (1.73±0.17 cm3, D and E, white arrow). 

501 Figure 3: Ischemic stroke diminishes white matter integrity of the 

502 internal capsule. Pre-stroke the left and right IC possess similar WM integrity (A). 24 hours 

503 post-stroke, the ipsilateral IC exhibited a disruption in WM integrity (B, white arrow). Further 
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504 analysis revealed a significant (p<0.01) decrease in the ipsilateral IC FA value when compared to 

505 the contralateral IC (0.17±0.01 vs. 0.23±0.01 respectively; C). * indicates significant difference 

506 between hemispheres.

507 Figure 4:  Ischemic stroke leads to increases in circulating neutrophil 

508 levels and decreases in circulating lymphocyte levels. Band neutrophils 

509 showed a significant (p<0.05) increase 12 hours post-stroke when compared to pre-stroke 

510 (5.50±0.99 vs. 1.92±0.51% respectively; A, B). Circulating neutrophils were significantly 

511 (p<0.05) increased at 4 and 12 hours post-stroke relative to pre-stroke (43.7±5.27 and 48.9±3.92% 

512 vs. 26.5±1.96%, respectively; C, D). Circulating lymphocytes were significantly (p<0.05) 

513 decreased at 12 and 24 hours post-stroke compared to pre-stroke (25.60±4.01 and 26.60±4.29% 

514 vs. 44.83±3.66% respectively; E, F). * indicates significant difference between pre-stroke and 

515 post-stroke time points.

516 Figure 5: MCAO leads to functional disabilities and behavioral 

517 abnormalities. Ethovision XT tracking software was used during OF testing to automatically 

518 assess differences in perimeter sniffing (red line) versus OF arena exploration (yellow line) pre-

519 stroke (A) and post-stroke (B). Exploratory perimeter sniffing frequencies were significantly 

520 (p<0.05) reduced at 48 hours post-stroke compared to pre-stroke observations (13.02.94 vs 

521 26.04.02, respectively; C). * indicates a significant difference from pre-stroke. 

522 Figure 6: Ischemic stroke results in spatiotemporal gait deficits. 

523 Velocity and cadence significantly (p< 0.01) decreased post-stroke (61.018.39 vs 162.912.73 

524 cm/s and 61.015.91 vs 126.443.72 steps/min, respectively, A-B). The LF swing percent of cycle 

525 significantly (p<0.01) decreased compared to pre-stroke (30.702.12 vs 48.892.35%, 
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526 respectively, C). A significant (p<0.01) decrease in LF stride length was observed post-stroke 

527 compared to pre-stroke (59.043.85 vs 76.724.60cm, respectively, D). LF cycle time 

528 significantly (p<0.01) increased relative to pre-stroke (1.02.09 vs 0.480.013sec, respectively, 

529 E). The mean pressure exhibited by the LF significantly (p<0.01) decreased at post-stroke 

530 compared to pre-stroke (2.62.03 vs 2.82.03 arbitrary units (A.U.), respectively, F). * indicates 

531 significant difference between pre-stroke and post-stroke time points.
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