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Summary 

Classic theory upholds that energy trade-offs between reproduction and somatic 

maintenance underpin the evolution of ageing and lifespan. In contrast, the 

developmental theory of ageing (DTA) suggests that organismal senescence is 

caused by dysregulated gene expression in adulthood due to decline in selection 

gradients with age. The DTA predicts that age-specific optimisation of gene 

expression can improve survival without fitness costs. Here we investigated 

consequences for survival, reproduction, egg size and fitness of early-life, adulthood 

and post-reproductive onset of RNAi knockdown of five well-described “longevity” 

genes involved in key biological processes in Caenorhabditis elegans nematodes: 

nutrient-sensing signalling via insulin/IGF-1 (age-1) and target-of-rapamycin (raga-1) 

pathways, global protein synthesis (ifg-1), global protein synthesis in somatic cells 

(ife-2) and mitochondrial respiration (nuo-6). Downregulation of these genes in 

adulthood and/or during post-reproductive period improves survival, while there was 

little evidence for a link between impaired reproduction and extended lifespan. Our 

findings demonstrate that hyper-function of diverse physiological processes after 

sexual maturation is detrimental for survival. Therefore, optimisation of gene 

expression in adult organisms can ameliorate ageing and increase fitness. 
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Results and Discussion 

The force of natural selection is maximised during pre-reproductive development but 

declines after sexual maturation with advancing age [1-4]. Therefore, antagonistically 

pleiotropic alleles that have positive fitness effects early in life but negative fitness 

effects late in life can be selected for and lead to the evolution of ageing [1]. While 

the antagonistic pleiotropy (AP) theory is widely accepted, the proximate routes that 

lead to ageing are poorly understood. The dominant paradigm, the “disposable 

soma” theory of ageing (DST), postulates that ageing and longevity evolve as a 

result of optimised energy allocation between somatic maintenance and reproduction 

with the aim of maximising the reproductive output [5-7]. This theory predicts that 

increased investment in soma will increase survival at the cost of reduced 

reproduction, and vice versa. Indeed, there is corroborating evidence from laboratory 

[reviewed in 8] and field [reviewed in 9] studies suggesting that there is a link 

between increased reproduction and reduced lifespan. Nevertheless, the 

predominance of this theory has been increasingly challenged in recent years, both 

empirically [10-14] and theoretically [15-17]. Several studies in different model 

organisms have suggested that increased longevity and reduced reproduction can 

be uncoupled, thereby questioning the key role of energy allocation trade-offs in 

ageing. In contrast, the emerging developmental theory of ageing (DTA) maintains 

that the decline in selection gradients with age results in suboptimal regulation of 

gene expression in late adulthood leading to cellular and organismal senescence. 

The DTA upholds that gene expression is optimised for development and early-life 

reproduction and, therefore, if gene expression is instead optimised across the whole 

life course of the organism, survival can be improved without detrimental effects on 

other fitness-related traits, such as propagule size and offspring number.   
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Here we tested this prediction directly by modifying age-specific expression of 

five well-described “longevity” genes in Caenorhabditis elegans nematode worms 

that play key roles in different physiological processes: nutrient-sensing signalling via 

insulin/IGF-1 (age-1) [18, 19] and target-of-rapamycin (raga-1) [20, 21] pathways, 

global protein synthesis (ifg-1) [22], global protein synthesis in somatic cells (ife-2) 

[23, 24] and mitochondrial respiration (nuo-6) [25]. The age-1 gene encodes the 

phosphatidylinositol 3-kinase (PI3K) catalytic subunit homologue, which is involved 

in kinase-phosphorylation cascade that downregulates the DAF16/FOXO 

transcription factor [19]. Loss-of-function mutations in age-1 increase lifespan [18, 

19] but reduce early-life reproduction and fitness [26-28]. The raga-1 encodes C. 

elegans orthologue of GTPase RagA, which is the amino-acid sensing activator of 

the target-of-rapamycin complex 1 (TORC1) signal transduction pathway [20] that 

governs cell growth and shapes lifespan [29]. Loss-of-function raga-1 mutants have 

longer lifespan and slower behavioural decline with age [30]. The ife-2 encodes a 

eukaryotic translation initiation factor eIF4E, which is a regulator of protein synthesis 

and is most abundant in the somatic cells in C. elegans. Under standard temperature 

(20°C), disruption of ife-2 via mutation or lifelong RNA interference (RNAi) increases 

survival and without negative effects on brood size [24, 31], and it is suggested that 

the lifespan extension is conferred specifically via reduction of protein synthesis in 

the soma [32]. The nuo-6 encodes mitochondrial subunit of complex I in the 

mitochondrial respiratory chain, and lifelong nuo-6 RNAi reduces growth and fertility 

but increases longevity [25].  

Our approach was to use age-specific RNAi to downregulate the expression 

of these genes starting at three different stages across the life course of C. elegans: 

i) newly laid egg (lifelong treatment), ii) sexual maturity (adulthood treatment) and iii) 
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the end of self-fertilized reproduction (post-reproductive treatment). This approach 

allowed us to assess the fitness consequences of lifelong and adulthood-only 

downregulation of the target genes, as well as the effects of post-reproductive 

downregulation on survival. The latter effect is particularly interesting in this regard, 

because it allows us to test whether age-specific optimisation of gene function can 

extend lifespan in the absence of the energy cost of reproduction. If post-

reproductive downregulation of gene expression can indeed increase survival, it 

would be a proof-of-principle that gene expression in late-life is not optimised for long 

life. Nevertheless, an even more crucial test was whether we can modify different 

physiological functions in adulthood to improve survival without hampering key life-

history traits. We investigated the age-specific RNAi effects on survival, age-specific 

reproduction and egg size (as a measure of parental investment into offspring and a 

proxy for offspring quality); we then used these data to determine lifetime 

reproductive success (LRS) and rate-sensitive individual fitness (λind). 

Timing of RNAi treatment had profound effects on survival, age-specific and 

lifetime reproduction, egg size and fitness (Fig.1 and 2, Fig. S1, Tables 1 and 2). 

Nevertheless, there was little evidence for a link between increased lifespan and 

reduced fitness. Downregulation of age-1 across all life stages improved longevity 

but the effect became progressively weaker with increasing age of onset of the RNAi 

treatment; however, we found no indication that age-1 RNAi negatively affected 

lifetime reproductive success (LRS), egg size or individual fitness (λind) (Fig. 1 and 2, 

Fig. S1, Table 1). Interestingly, the effect of TORC1 downregulation via raga-1 RNAi 

on traits was quite different: lifelong RNAi did not have any positive effect, while 

adulthood-only and post-reproductive treatments slightly improved survival but did 

not affect LRS, egg size or individual fitness (Fig.1 and 2, Fig. S1, Table 1). These 
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results suggest that the two major nutrient-sensing molecular signalling pathways, 

IIS and TOR, have very different effects on vital life-history traits. 

Age-specific downregulation of nuo-6 showed a perfect negative correlation 

between survival and reproduction. Similar to the results with age-1, nuo-6 RNAi 

increased survival and the effect became weaker with increased age of onset of 

RNAi treatment (Fig.1, Table 2). Contrary to effect of age-1 RNAi, however, 

improved survival was mirrored by negative effects on LRS and fitness, while egg 

size was improved in the lifelong treatment (Fig.1 and 2, Fig. S1, Tables 1 and 2). 

Downregulation of ifg-1 predictably abolished reproduction in the lifelong 

treatment, and severely reduced it when started in adulthood, while the few eggs 

produced in adulthood-only treatment were quite large (Fig. 1, Fig. S1, Table 1). 

Interestingly, there was no effect of reduced reproduction on survival (Fig. 1, Table 

2). Perhaps even more remarkable was the positive effect of post-reproductive ifg-1 

RNAi on survival (Fig.1, Table 2). These results support the notion that superfluous 

protein synthesis in late-life reduces longevity in C. elegans.  

Age-specific downregulation of ife-2 increased survival across all treatments 

with the effect becoming progressively weaker with the later age of RNAi onset 

(Fig.1, Table 1), similar to the results with age-1 and nuo-6. Interestingly, there were 

no negative effects on LRS (Fig. S1, Table 1), while adulthood-only RNAi actually 

increased egg size (Fig. 1, Tables 1 and 2). Thus, adulthood-only ife-2 RNAi 

simultaneously improved survival and investment in offspring; moreover, within-

model contrasts suggest adulthood-only ife-2 RNAi had higher individual fitness than 

control animals (Table S4), although there was no overall significant effect across all 

three treatments (Table 1). Nevertheless, bootstrapping analyses which does not 
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depend on a specified distribution of the data suggests that adulthood-only ife-2 

RNAi does increase rate-sensitive fitness (Fig. 2).     

The dominant DST paradigm proposes that improved somatic maintenance 

necessitates increased energy allocation, which will lead to reduced investment in 

growth and reproduction. Contrary to this, the DTA maintains that survival can be 

improved by optimising age-specific gene expression without reproduction costs 

because gene expression is predicted to be optimised for development and early-life 

reproduction. The corollary of this argument that optimising gene expression during 

adulthood can even increase Darwinian fitness. The force of natural selection 

declines with age, and does so very rapidly in small fast-reproducing organisms such 

as C. elegans [33]. This means that even very small positive effects on vital life-

history traits early in life can be beneficial for Darwinian fitness despite large fitness 

costs late in life [2, 33]. This also implies that natural selection on regulating gene 

expression in late-life is very weak in C. elegans and there is scope for experimental 

optimisation of age-specific gene expression. 

 We found that most of the “longevity” genes that we tested showed poor 

correlation between the age-specific gene expression effects in survival, 

reproduction, egg size and individual fitness (Fig. 1 and 2, Table 1). Only one of 

these genes – nuo-6 – showed the pattern of the negative correlation between 

increase in survival and reduced reproduction and fitness that is predicted under the 

DST. We note that such correlation does not imply causation even in this one case, 

and it is possible that upregulation of stress resistance pathways in nuo-6 does not 

depend on energy reallocation from reduced egg laying. These results support the 

previous work showing that rates of ageing are affected by mitochondrial function 

during development [34]. Nevertheless, our result also showed that adulthood-only 
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reduction in mitochondrial respiration also can extend lifespan. We also note that the 

lack of negative effects of RNAi on LRS or fitness in other genes was not caused by 

lack of power to detect negative effects, because the treatment means of these non-

significant effects were actually positive for most comparisons (Figure 2, S1). 

 Remarkably, adulthood-only RNAi knockdown of ife-2 improved survival and 

egg size. These results suggest that superfluous protein synthesis in the somatic 

cells of adult worms promotes cellular senescence and reduces Darwinian fitness 

through the effects on both parents and their offspring through egg size.     

 More generally, we showed that adulthood-only, or even post-reproductive 

downregulation of important physiological functions, such as IIS nutrient-sensing 

signalling, global protein synthesis in all tissues and in the somatic cells, and 

mitochondrial respiration can improve survival without negative fitness effects. The 

results that we obtained in age-specific age-1 and ife-2 RNAi experiments suggest 

that adulthood-only knockdowns can increase fitness because they improve survival 

without negative effects on reproduction, and even a positive effect on egg size and 

individual fitness in the case of ife-2. Perhaps particularly intriguing is the fact that in 

four out of five cases, lifespan extension could be achieved via post-reproductive 

onset of RNAi treatment. While post-reproductive worms do not affect the allelic 

frequencies in the next generation, as there is no post-hatching parental care in this 

system, this latter result nevertheless suggests that late-life hyperfunction of certain 

genes contributes to earlier death. 

 Overall, the results of this study are consistent with the hypothesis that 

selection optimises gene expression in early life, while post-maturation expression 

can be optimised further, as predicted by the developmental theory of ageing. While 
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the lack of selection on gene expression during post-reproductive period is rather 

straightforward, one can question why is selection so weak during the reproductive 

period of C. elegans life cycle. The answer likely lies in the biology of this species, 

which is characterised by a very rapid and strong (orders of magnitude) age-specific 

decline in selection gradients [33]. Indeed, the selection gradients on fecundity 

decline nearly exponentially with age in the laboratory [33], and this decline is likely 

further exacerbated in nature where the food resources are ephemeral. Therefore, 

small differences in fitness of two-day old worms may be largely invisible to 

selection. However, while the decline in selection gradients with age is particularly 

strong in C. elegans, reduced force of selection with advancing age is a general 

pattern across organisms. 

Conclusions 

Our findings support the hypothesis that gene expression is optimised for 

development and early-life reproduction across a broad range of physiological 

processes. Consequently, gene expression in adulthood can be optimised further to 

improve survival and, potentially, fitness. Only ife-2 adulthood-only RNAi animals 

had simultaneously increased survival and egg size; however, longevity usually 

correlates with increased resistance to different ecologically relevant stressors, such 

as temperature, light and pathogens [35, 36], so it is likely that improved survival 

could contribute positively to fitness under challenging conditions in nature. These 

results of course do not preclude the possibility that other types of trade-offs 

contribute to ageing in C. elegans. One important aspect to consider is phenotypic 

plasticity and how these animals would perform in different contexts. Future work 

should focus on studying fitness consequences of age-specific gene expression 

optimisation across a broad range of ecologically relevant environments. 
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Notwithstanding the results of such future studies, these findings here strongly 

support the theoretical conjecture that non-energy-based trade-offs between gene 

effects on fitness across the life course play a key role in the evolution and 

expression of ageing and longevity.  
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Figure 1. Age-specific reproduction, lifespan and egg size, presented for each gene, 
and separated by treatment group. Colours indicate control (yellow), lifelong RNAi 
treatment (orange), RNAi during adulthood only (purple) and post-reproductive RNAi 
(blue). For age-specific reproduction and egg size, symbols represent mean ± SE. 
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Figure 2. Individual fitness (λind) calculated from age-specific fecundity data, 
separated by gene and treatment group: control (yellow), lifelong RNAi treatment 
(orange) and RNAi during adulthood only (purple). Top panels show raw data, with 
the mean ± 95%CI indicated by black bars at each group. Bottom panels show 
estimation plots, where RNAi treatments are compared to the control, with a graded 
sampling distribution of bootstrapped values and the bootstrapped 95% CI.  
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Table	1.	The	overall	effect	of	down-regulating	age-1,	raga-1,	nuo-6,	ifg-1	or	ife-2	on	lifespan,	fitness	(λind),	lifetime	reproductive	success	(LRS)	and	egg	size.		

	

	 	 Lifespan	 	 Fitness (λind)	 	 LRS	 	 Egg	size	
Gene Factor χ2	 d.f.	 p	 	 χ2	 d.f.	 p	 	 χ2	 d.f.	 p	 	 χ2	 d.f.	 p	
age-1 Treatment 137.97	 3	 <0.001	 	 4.838	 2	 0.089	 	 1.484	 2	 0.476	 	 0.26	 2	 0.878	
raga-1 Treatment 45.681	 3	 <0.001	 	 0.986	 2	 0.611	 	 3.024	 2	 0.221	 	 3.30	 2	 0.192	
nuo-6 Treatment 206.72	 3	 <0.001	 	 66.352	 2	 <0.001	 	 93.681	 2	 <0.001	 	 9.40	 2	 0.009	
ifg-1 Treatment 108.43	 3	 <0.001	 	 541.13	 2	 <0.001	 	 1271.300	 2	 <0.001	 	 151.65	 2	 <0.001	
ife-2 Treatment 110.89	 3	 <0.001	 	 5.485	 2	 0.064	 	 0.707	 2	 0.702	 	 6.45	 2	 0.040	
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Table 2. Age-specific reproduction. The effect of RNAi-treatment, Age and Age2 on age-specific 
reproduction for each of the five genes. All models were fitted using a Conway-Maxwell-Poisson 
(CMP) distribution (models with CMP distribution had lowest AIC for all genes, see Table S7). It was 
not possible to model age-specific reproduction for ifg-1, since most treatment-levels and ages lacked 
reproduction (see Fitness and LRS instead). 

 

  Age-specific reproduction 
Gene Factor χ2 d.f. p 
age-1 Treatment 0.704 2 0.704 
 Age 1094.192 1 <0.001 
 Age2 1115.490 1 <0.001 
 Treatment × Age 5.826 2 0.054 
 Treatment × Age2 5.174 2 0.075 
     
raga-1 Treatment 1.536 2 0.464 
 Age 1202.446 1 <0.001 
 Age2 1248.191 1 <0.001 
 Treatment × Age 11.888 2 0.003 
 Treatment × Age2 11.186 2 0.004 
     
nuo-6 Treatment 79.657 2 <0.001 
 Age 522.752 1 <0.001 
 Age2 589.162 1 <0.001 
 Treatment × Age 18.537 2 <0.001 
 Treatment × Age2 17.870 2 <0.001 
     
ifg-1 Almost complete cross-separation, not possible 

to model 
     
ife-2 Treatment 0.408 2 0.815 
 Age 1439.479 1 <0.001 
 Age2 1487.427 1 <0.001 
 Treatment × Age 16.522 2 <0.001 
 Treatment × Age2 23.244 2 <0.001 
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Methods 
Strains 

Caenorhabditis elegans nematodes of strain Bristol N2 wild-type, obtained from 
Caenorhabditis Genetics Center, were used in all assays. Populations were recovered from 
frozen and bleached before the start of the experiment. Standard NGM agar plates [1] were 
used to grow the nematode populations and antibiotics (100 µg/ml Ampicillin and 100 µg/ml 
Streptomycin) and a fungicide (10 µg/ml Nystatin) was added to the agar to avoid infections 
[2]. Up until the start of the experiment nematode populations were fed antibiotic resistant 
Echerichia coli OP50-1 (pUC4K), gifted by J. Ewbank at the Centre d’Immunologie de 
Marseille-Luminy, France. During recovery from freezing and throughout the experiment the 
worms were retained in climate chambers maintaining 20°C and 60% relative humidity.  

In order to induce RNAi knockdown, the nematodes were fed E. coli of the strain HT115 
(DE3) containing a Timmons and Fire feeding vector L4440 modified to express the dsRNA 
of the gene of interest. The genes targeted by RNAi were age-1(B0334.8), raga-1 (T24F1.1), 
nuo-6 (W01A8.4), ife-2 (R04A9.4) and ifg-1 (M110.4). These strains were provided by 
Source Bioscience and Julie Ahringer. In addition to the RNAi knockdown bacteria, a control 
strain of HT115 was used, carrying an empty L4440 feeding vector [3].  

Cultures of the RNAi clones were grown in LB medium supplemented with Ampicillin (50 
µg/ml) before seeded onto 35mm standard NGM plates with the addition of IPTG (1 mM) 
and Ampicillin (50 µg/ml) as recommended by Kamath et al. [4]. After seeding, the bacteria 
was allowed to grow over night in 20°C to induce expression of RNAi, before worms were 
placed on the plates.  

Experimental set-up 

Age synchronized eggs were collected from OP50-1 (pUC4K) fed unmated hermaphrodites 
on adult day 2. These eggs were placed either on RNAi seeded plates and maintained on 
RNAi throughout life (lifelong-exposure), on empty vector from egg to late L4 stage and then 
onto RNAi (adulthood-exposure), on empty vector from egg to day 6 of adulthood and then 
on RNAi (post-reproductive exposure) or maintained throughout life on empty vector plates 
(control). For every gene knockdown, assays were performed in two blocks. The scoring was 
achieved by a blinded observer, with agar plates of the different treatments handled in a 
randomized order.  

Reproductive assays 

To gather daily reproductive output per worm, unmated hermaphrodites were reared on 
individual plates from late L4 stage until reproduction ceased. The worms were moved onto 
new plates every 24h. Eggs laid on the plates were allowed to hatch and develop during two 
days, when the total amount of worms on the plates were counted. For each block, 15 
replicate worms were set up for each gene and treatment combination, giving 30 worms per 
gene, except for the second block of ife-2 and raga-1, where more worms were set up in 
order to compensate for lost worms in the first block.  

Lifespan assays 

Lifespan assays were performed on unmated hermaphrodites from larval stage L4 until 
death. Worms were set up in groups of ten and transferred onto fresh plates daily while 
scoring survival. Death was defined as the absence of movement in response to touch. For 
each block, 50 replicate worms were set up for each gene and treatment combination, giving 
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100 worms per gene, except for the second block of ife-2 and raga-1, where more worms 
were set up in order to compensate for lost worms in the first block. 

Egg size measurement 

Egg photos were taken from the same plates as used in the lifespan assays. At adult day 2 
the 10 lifespan worms were allowed to lay eggs for 2 hours on a fresh agar plate, after which 
photos of 10 eggs were taken per plate of 10 worms. A microscope camera was used to 
attain the photos which were later analysed in ImageJ (https://imagej.nih.gov/ij/). 

Statistical analyses 

All analyses were performed separately for each gene. Before analysis, we excluded 
individuals from plates that were severely contaminated by infection. We also removed one 
infertile control individual (table S1-S2). 

All statistical analyses were performed using the statistical software R 3.6.0. Lifespan was 
analysed using Cox proportional hazard models implemented in the coxme package, with 
Treatment as a fixed factor and Block and Plate as a random effects. Individuals dying of 
matricide (internal hatching of eggs) were censored. 

Age-specific reproduction was analysed using generalized linear mixed-effect models. We 
used the first 3 days of reproduction, since reproduction ceased at day 4. We treated 
Treatment, Age and Age2 as crossed fixed factors, and fitted Block as well as Individual as 
random effects (to control for repeated measures). Since reproduction data is often 
overdispersed, we fitted three different model implementations. First, we fitted the models 
using a Poisson distribution in the lme4 package. Secondly, we also included a subject-level 
random effect in the model, to control for possible overdispersion. Thirdly, we fitted a model 
with a Conway-Maxwell-Poisson (CMP) distribution using the glmmTMB package, which 
numerically estimates the mean and variance separately, and is well suited to deal with 
overdispersed data [5]. The models where then compared using AIC and the model with 
lowest AIC selected. Treatment levels without any reproduction were removed in order to run 
the model (lifelong exposure to ifg-1). 

Individual fitness (λind) was calculated from the life-table of age-specific reproduction, by 
solving the Euler-lotka equation using the lambda function in the popbio package. The life-
table was constructed using a development time of two days. We then analysed λind in 
linear mixed-effect models using the lme4 package, with treatment as a Fixed factor and 
Block as a random effect. 

Lifetime reproductive success (LRS) was scored as the total number of offspring per 
individual, and was analysed using generalized linear mixed-effect models using Poisson or 
CMP distribution, as described above for age-specific reproduction. We fitted treatment as a 
fixed factor and Block as a random effect. 

Individual fitness and LRS was also analysed by bootstrapping, using the dabestrR package, 
and the 95% confidence intervals are graphically presented by the package in figure 2 and 
S1. 

Egg size was analysed in linear mixed-effect models using the lme4 package, with 
Treatment as a fixed effect and Block and Plate as random effects. Treatments without any 
eggs produced were not included (lifelong exposure to ifg-1). 
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