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Abstract 

Objective: the current epilepsy classification is primarily clinical driven and lacks a mechanistic basis. A 

mechanistic basis of the classification, and within the classification especially the etiology layer, may help 

to better understand epilepsy and the associated comorbidities. It may also be helpful in guiding epilepsy 

treatment. With this study we aimed to investigate if there is a modelled mechanistic underpinning for the 

etiological epilepsy classification by assessing the association between epilepsy etiology and brain 

network topology.  

Methods: to that aim we assessed the association between epilepsy etiology and brain network topology. 

We included children referred to our outpatient first seizure clinic with suspected epilepsy who had a 

standard interictal EEG recording. From these EEGs, functional networks were constructed based on eyes-

closed resting state time-series. Networks were characterized using measures of segregation, integration, 

centrality, and network strength. Principal component analyses were used to assess whether patients with 

epilepsy of similar etiology cluster together based on their functional brain network topology.  

Results: in total, 228 children with epilepsy were included. Another 402 children served as control subjects. 

We were not able to detect a correlation between epilepsy etiology and functional brain network topology. 

We also did not find a difference in brain network topology between the controls and patients with 

epilepsy.  

Conclusions: our results do not support the presence of a brain network underpinning for the etiological 

epilepsy classification. This may support the hypothesis that brain network abnormalities in epilepsy are a 

result of ongoing seizure activity rather than the epilepsy etiology itself. Further in-depth analyses of 

network measures and longitudinal studies are needed to confirm this hypothesis. 

 

1. Introduction 

Classification systems may help to better understand diseases with their associated signs and symptoms 

(Barçin and Aktekin, 2014) as they illuminate the possible analogous pathophysiological mechanisms and 

the involvement of different organs, tissues, and cells. Classification systems exist for most common 

disease or disease groups, including epilepsy. The first scheme for the classification of epileptic seizures 

was published by the International League Against Epilepsy (ILAE) in 1969 (Gastaut, 1969). The epilepsy 

classification was primarily designed for diagnosing and treating patients, but also facilitates epilepsy 

research and communication among clinicians worldwide (Barçin and Aktekin, 2014; Scheffer et al., 2017). 
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From its inception in 1969, the epilepsy classification has been revised several times to better reflect 

developments in the understanding of epilepsy as well as advances in diagnostic and treatment options 

(Barçin and Aktekin, 2014).   

 The latest version of the epilepsy classification was proposed by the ILAE in 2017 (Scheffer et al., 

2017). Although this classification aims to incorporate recent scientific insights into epilepsy, the level of 

knowledge is not yet sufficiently advanced for constructing an entirely scientific based classification 

(Scheffer et al., 2017). The biggest gap of knowledge – which also is the hardest to bridge – is that the 

fundamental neurological basis of the epilepsies is not fully understood (Scheffer et al., 2016). The 

classification system therefore continues to rely to a large extent on proxy measures including semiology, 

electroencephalography (EEG) features and even expert opinions. As a consequence, the epilepsy 

classification has a high pragmatic utility in clinical settings, but lacks a more mechanistic basis. A 

mechanistic underpinning of the epilepsy classification in general may be useful to better understand 

disease mechanisms (Manford, 2017), associated cognitive and behavioral impairments (Seidenberg, 

Pulsipher and Hermann, 2009; Srinivas and Shah, 2017), and the clinical course of an epilepsy, while it also 

supports clinical management and the development of new treatment strategies. Since the epilepsy 

etiology is regarded as a major determinant of the clinical course (and prognosis) and epilepsy treatment 

(Shorvon, 2011), we focus on the etiological epilepsy classification in this study.  

  A theoretical approach that may be able to capture a mechanistic underpinning of the current – 

primarily clinically driven – epilepsy classification is perceiving the brain as a complex network (Bullmore 

and Sporns, 2009). A brain network is a simplified mathematical representation of the different areas the 

brain consists of and how (strong) they are connected to each other. Network analysis can be applied to 

both structural (structural MRI) and functional (functional MRI, magnetoencephalography, EEG) brain 

mapping techniques, resulting in structural and functional networks, respectively (Rubinov and Sporns, 

2010). Structural and functional brain networks can be characterized by a variety of local and global 

network measures characterizing the topological properties of the network (Rubinov and Sporns, 2010).  

  Previous research has extensively shown that epilepsy can be perceived as a network disorder 

(Kramer and Cash, 2012; van Diessen et al., 2013). In this study we thus aim to investigate if there is a brain 

network underpinning for the etiological epilepsy classification by assessing the relationship between a 

patient’s epilepsy etiology and the brain network configuration. We thereby focus on functional EEG based 

brain networks. We hypothesized that the etiological subdivision of epilepsies can also be found in the 

functional brain network organization, meaning there is a neural network underpinning for the current 

etiological epilepsy classification.   
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2. Methods 

2.1 Patient selection 

We retrospectively collected data of children (0-18 years) referred to the outpatient First Seizure Clinic 

(FSC) of the University Medical Center Utrecht between January 2008 and May 2018 after one or more 

paroxysmal event(s) suspicious for epilepsy, who had a standard EEG recording of sufficient quality. 

Epilepsy was diagnosed by a child neurologist based on clinical presentation, EEG findings, additional 

testing (for instance sleep-deprivation EEG, neuroimaging, lumbar puncture, genetic testing), and at least 

one year of clinical follow-up. Children in whom the diagnosis of epilepsy was rejected, were included as 

control group. For some children, it was still unclear whether they had epilepsy or not after additional 

testing and clinical follow-up. These children were excluded from our study. We also excluded children who 

already had an established diagnosis of epilepsy at the time of visiting the FSC and children who were on 

anti-epileptic drug treatment at the time of the EEG recording. We did not exclude children who were 

diagnosed with epilepsy in the past and presenting at the FSC after their past epilepsy was believed to be 

resolved. For those who visited the FSC more than once, we only included the EEG data of the first visit.  

  The institutional Medical Research Ethics Committee approved the use of the retrospectively 

collected patient data and concluded that the Medical Research Involving Human Subjects Act did not 

apply. The need for informed consent was waived, provided that the data were handled anonymously. 

 

2.2 Data items 

From all children eligible for inclusion in our study, we systematically collected the FSC EEG recording and 

corresponding report, final diagnosis (epilepsy or no epilepsy), and the following additional clinical 

characteristics: sex, age at first seizure-like event, age at EEG, developmental status, general medical 

history, and family history with respect to seizures. Personal data items that could directly be traced back 

to the included children were anonymized.  

  For the children diagnosed with epilepsy, we scored the epilepsy type (focal, generalized or both), 

the epilepsy syndrome if applicable, and the presumed epilepsy etiology (structural, genetic, metabolic, 

immunological, infectious or unknown) according to the most recent epilepsy classification (Scheffer et 

al., 2017). All epilepsy syndromes we considered in this study, are listed in Supplementary Table 1. Some 

patients’ epilepsies were classifiable in more than one etiological group. Since the etiological classification 

is not hierarchical, one cannot say that one etiology is more important than another. We therefore chose 

to score the etiology most important for the actual seizures to occur for epilepsies with more than one 

etiology. For instance: an epilepsy due to a focal cortical dysplasia based on a gene abnormality has both 

a genetic and a structural etiology, but the brain lesion is primarily responsible for seizure generation – and 

thus a structural etiology is scored.  

  We used the web-based software tool for clinical study data OpenClinica to systematically store 

all data. Data collection was performed by two authors [EvD and GS] separately. Difficulties in scoring the 
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data-items were resolved by discussing them with another author [LN] and, if necessary, with a child 

neurologist [FJ]. Part of our dataset (children visiting the FSC between January 2008 and May 2013) was 

already published in a previous study (van Diessen et al., 2018; training cohort). 

 

2.3 Data acquisition and selection 

All EEGs were recorded with at least 21 scalp electrodes (Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, T7, T8, P3, 

P4, P7, P8, Pz, O1, O2, A1, A2), arranged according to the international 10-20 system (SystemPLUS 

EVOLUTION, Micromed, Italy). Some EEG recordings also included the two additional electrodes F9 and 

F10. Impedance of each electrode was kept below 5 kΩ. The sampling frequency of the EEGs ranged 

between 512 and 2048 Hz.  

  For network analysis, we only needed the resting state parts of the EEGs. Quality of all EEGs was 

reviewed by visual inspection by two of the authors [EvD and GS]. Difficulties were resolved by discussion. 

Bad quality EEGs were excluded from further analyses. An EEG was assessed as being bad when at least 

one of the following exclusion criteria was met: EEG registration with electrode cap, missing electrodes, 

EEG full of artefacts (myogenic and/or electrode-contact artefacts in electrodes other than Fp1/2, A1/2, 

F9/10, see below), sleep or altered state of consciousness during EEG, and no or too short (< fifteen 

seconds) eyes-closed resting state. See also Supplementary Figure 1 for an overview of our EEG quality 

assessment. For all EEGs of sufficient quality, we selected an epoch of fifteen seconds interictal, eyes-

closed resting state EEG, preferably without spikes and minor artefacts.  

  EEGs were anonymized and exported as raw Micromed files (TRC format), with standard G2 

referencing. The frontoparietal (Fp1 and Fp2) and basal temporal (A1 and A2) electrodes were excluded 

from data analysis, since they often contain eye-movement artefacts. If present, additional channels F9 

and F10 were also excluded to make sure that every brain network would contain an equal number of nodes 

across the group (that is: electrodes, n=17). Before plotting networks, all resting state epochs were down 

sampled to 256 Hz and re-referenced against the average reference electrode. Additionally, all EEG data 

were band-pass filtered into the common broadband (0.5-30 Hz), delta (0.5-4.0 Hz), theta (4-8 Hz), alpha 

(8-13 Hz), and beta (13-30 Hz) band. We excluded the gamma-band (30-80 Hz) from further analyses, as 

this band is prone to be contaminated with muscle artefacts. Epoch processing was carried out using 

MATLAB and R software.  

 

2.4 Functional connectivity 

Brain functional networks were constructed per fifteen second epoch, based on the functional connectivity 

between each pair of electrodes, resulting in a square symmetric 17 by 17 functional connectivity matrix. 

Functional connectivity was assessed using the phase lag index (PLI). The PLI is a value between 0 and 1 

indicating the level of phase synchronization between two EEG signals. (Stam, Nolte and Daffertshofer, 
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2007) The higher the PLI value, the higher the level of synchronization and the stronger the functional 

connectivity.    

 

2.5 Network construction and graph theoretical analysis 

Based on the connectivity matrix, a weighted directed network was constructed for each subject, 

expressed with the graph G = (V, E, W), consisting of V vertices (nodes, 17 in our study) and E edges 

(connections) and W representing the symmetric V x V connectivity matrix with Wij quantifying the 

connection strength as determined with the PLI between vertices vi and vj.    

Functional brain network properties were described and quantified using weighted measures of 

segregation (clustering coefficient (C), modularity (Q)), integration (characteristic path length (L)), and 

centrality (betweenness centrality (BC) and closeness centrality (CC)) (Figure 1). In addition, we also 

calculated the average network strength. The network’s integration reflects the ability to rapidly combine 

information from different brain areas. Measures of segregation indicate the network’s ability of 

specialized processing in local circuits. Centrality measures assess the importance of the individual nodes 

in a network (Rubinov and Sporns, 2010). Brief descriptions of the specific metrics are provided in 

Figure 1 | Schematic representation of network metrics.  
A) A constructed brain network consisting of nodes (circles) and edges 
(lines). B) Network segregation; the clustering coefficient is based on 
triangles in a network, while the modularity characterizes the modular 
(ellipses) structure of a network. C) Network integration; the shortest path 
length (in blue) is indicative for the efficiency of the exchange of information 
between brain areas. D) Network centrality; centrality measures identify 
the most central nodes in and their importance for a network.  
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Supplementary Table 2. The metric formulas are published in various previous studies (Rubinov and 

Sporns, 2010). All metrics were calculated from the weighted adjacency matrix using the NetworkToolbox 

package in R.  

 

2.6 Principal component analysis 

We used principal component analysis (PCA) to analyze our data. PCA is a statistical tool to reduce the 

number of variables (that is: the dimensionality) of a dataset, while retaining as much as possible of the 

variation of this set (Jolliffe and Cadima, 2016). This analysis was required to deal with the relatively large 

number of network characteristics in our dataset. For variable reduction in a PCA, a number of original, 

correlated variables are transformed into a smaller number of uncorrelated variables: the principal 

components. So, instead of analyzing a variety of original variables, just a limited number of components 

containing the majority of the dataset’s variation are investigated (Groth et al., 2013). The first principal 

component always explains the highest percentage of the variability in the data, and each succeeding 

component explains the highest percentage of the remaining variability. 

 With the intention to reveal clusters of participants with it, we chose to do a PCA for a dataset split 

on epilepsy diagnosis (epilepsy versus no epilepsy) and for a dataset split on epilepsy etiology (only 

epilepsy patients). Principal component analyses were performed per frequency band. Next to the network 

measures, we also included gender, developmental status, and age at presentation as variables in our 

analyses, since it is known that these factors can influence functional network topologies, and thus can 

cause variability in the data (van den Heuvel et al., 2009; Boersma et al., 2011; Smit et al., 2012). Analyses 

were thus performed with a total of eleven variables for each frequency band: nine quantitative variables 

(maximum and medium betweenness centrality, maximum and medium closeness centrality, clustering 

coefficient, age at EEG recording), and two qualitative (gender and developmental status) variables. For 

PCAs including both quantitative (that is: numerical) and qualitative variables (that is: categorical), we used 

the PCAmix package in R. Since the results of a PCA depend on the scales of measurement of the included 

variables, we standardized the quantitative variables prior to conducting the PCAs by subtracting the 

variable mean of and dividing each variable data point by the variable standard deviation. Figure 2 

represents a schematic overview of our methodological work-up.   
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Figure 2 | Schematic overview of methodological work-up.   
1) Standard EEG recording for all participants, retrospectively collected. 2) Construction of EEG based functional brain networks. 3) An overview of calculated 
network measures and demographical data items form the input for the principal component analyses. 4) Principal component analyses reduce the number 
of correlated variables to a smaller number of uncorrelated principal components. 5) Cluster analysis detects clusters in the PCA plots, which can be related 
to clinical data (diagnosis, epilepsy etiology). Since there were obviously no clusters present in our data, we did not perform the cluster analysis. PC: principal 
component, V: variable.   
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3. Results  

3.1 Demographics 

In total, we identified 981 children who visited the FSC of the University Medical Center Utrecht between 

1 January 2008 and 31 May 2018, of whom 630 were eligible for inclusion in our study (Figure 3). From these 

630 children, 228 (36.2%) were diagnosed with epilepsy and the remaining 402 (63.8%) subjects were 

included as controls. There were no major differences in baseline characteristics between the patient and 

control group, except for the developmental status. A delayed development (intelligence quotient (IQ) < 

70) was slightly more often seen in the patient than in the control group (21.9% versus 16.2%). All baseline 

characteristics for both the patients with epilepsy and the control subjects are listed in Table 1.  

 Regarding the patients’ epilepsies, an unknown etiology was most common (95 children, 41.7%). 

83 children (36.4%) had an epilepsy of genetic origin and 45 children (19.7%) were diagnosed with epilepsy 

due to structural brain abnormalities (acquired or congenital). A metabolic etiology was considered for five 

(2.2%) patients’ epilepsies. Epilepsies of infectious and immune origins were not observed in our patient 

cohort (Table 1).  

Figure 3 | Subject flowchart. 
From the 981 identified children 630 were eligible for inclusion in our study. Information on final 
diagnosis was already collected, but not accessed during the EEG quality review process to avoid 
selective inclusion. *EEGs were reviewed using the review flowchart as depicted in Supplementary 
Figure 1. AED: anti-epileptic drug, FSC: First Seizure Clinic.  
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3.2 Principal component analyses 

3.2.1 Principal component analyses epilepsy versus no epilepsy  

The proportion of variance explained by the first dimension or principal component ranged between 47.6% 

(delta band) and 54.7% (alpha band). The proportion of variance explained by the second principal 

component ranged between 10.4% (alpha band) and 13.1% (delta band). See Figure 4A for the broadband 

data. Plots for the other frequency bands can be found in Supplementary Figure 2. Variables strongly 

correlating (r2 > 0.7) with principal component 1 (and with each other), were the maximum and medium 

closeness centrality, the path length, and network strength. Principal component 2 only showed moderate 

correlations (r2 0.3-0.7) with the maximum and median betweenness centrality (Figure 5A and Table 2 

(broadband), Supplementary Table 3 (other bands)). With visual inspection, no clusters could be observed 

in any of the data plots. Therefore, no further cluster analyses have been performed.  

 

3.2.2 Principal component analyses epilepsy etiologies  

The proportion of variance explained by the first dimension or principal component ranged between 46.7% 

(beta band) and 54.0% (alpha band). The proportion of variance explained by the second principal 

component ranged between 11.0% (broadband) and 12.6% (beta band). See Figure 4B for the broadband 

data. Plots for the other frequency bands can be found in Supplementary Figure 3. Variables strongly 

correlating (r2 > 0.7) with principal component 1 (and with each other), were the maximum and medium 

closeness centrality, the path length, and network strength. Principal component 2 only showed moderate 

correlations (r2 0.3-0.7) with the maximum betweenness centrality and gender (Figure 5B and Table 2 

(broadband), Supplementary Table 3 (other bands)). With visual inspection, no clusters could be observed 

in any of the data plots. Therefore, no further cluster analyses have been performed.  

Table 1 | Baseline characteristics. 
Baseline characteristics of the children included in our study.  

  Epilepsy No epilepsy All 

Demographics 

Subjects 228 (36.2) 402 (63.8) 630 (100) 

Male gender 131 (57.5) 219 (54.5) 350 (55.6) 

Age at EEG recording 8.6 ± 4.0 8.3 ± 4.5 8.4 ± 4.3 

Delayed development 50 (21.9) 65 (16.2) 115 (18.2) 

Epilepsy etiology 

Unknown 95 (41.7) - - 

Genetic 83 (36.4) - - 

Structural 45 (19.7) - - 

Metabolic 5 (2.2) - - 

Infectious 0 (0.0) - - 

Immune 0 (0.0) - - 

 All numbers are displayed as absolute number (percentage), 
except for the age at EEG recording, which is displayed as mean 
± SD. The age is represented in years.months.  
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Figure 4 | Results of principal component analyses for the broadband.  
A) Distribution of individuals (n=630) at PCA dimension 1 (horizontal) and 2 (vertical), split on final diagnosis. B) 
Distribution of individuals (n=228) with epilepsy at PCA dimension 1 (horizontal) and 2 (vertical), split on epilepsy 
etiology. Percentages in the brackets display the percentages of variance in the data explained by the corresponding 
PCA dimension.  

A B 

  diagnosis etiology 

  PC1 PC2 PC1 PC2 

Numerical variables   

BC_max 0.191 0.568 0.259 0.335 

BC_median 0.391 0.360 0.456 0.189 

C 0.917 0.060 0.920 0.043 

CC_max 0.959 0.001 0.956 0.001 

CC_median 0.933 0.041 0.932 0.033 

EEG_age 0.036 0.081 0.018 0.228 

PL 0.845 0.024 0.837 0.018 

Q 0.445 0.008 0.479 0.000 

Strength 0.928 0.055 0.929 0.041 

Categorical variables   

Development 0.000 0.010 0.009 0.315 

Gender 0.004 0.007 0.000 0.002 

 

Table 2 | Correlations between variables and principal 
component 1 and 2 for the broadband.   

Numbers for the numerical variables are the squared 
correlations between the variables and the principal 
components. For the categorical variables, the numbers 
display the correlation ratios between the variables and 
the principal components. A correlation coefficient 
between 0 and 0.3 was considered weak (red), between 
0.3 and 0.7 moderate (blue), and between 0.7 and 1.0 
strong (green). Abbreviations: see Figure 5.   
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Figure 5 | Correlation between the included variables and principal component 
1 and 2 for the broadband.   
A) Correlation of variables with principal component 1 and 2 for the PCA epilepsy 
versus no epilepsy. B) Correlation of variables with principal component 1 and 2 for 
the PCA epilepsy etiology. BC_max: maximum betweenness centrality, 
BC_median: median betweenness centrality, C: clustering coefficient, CC_max: 
maximum closeness centrality, CC_median: median closeness centrality, EEG_age: 
age at EEG recording, PC: principal component, PL: characteristic path length, Q: 
modularity.  
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4. Discussion 

In this large pediatric network study, we assessed the possible association between epilepsy etiology and 

global functional brain network organization. By means of principal component analyses, we were not able 

to detect such an association, meaning that we did not find the distinct epilepsy etiologies to be 

represented by specific functional brain network topologies. Besides, we were also not able to differentiate 

between patients with epilepsy and control subjects in the principal component analyses. These results 

apply for all frequency bands explored in our study (broadband, delta, theta, alpha, and beta band). 

Further, our results show that the average clustering coefficient, characteristic path length, closeness 

centrality (median and maximum), and network strength are highly correlated with each other in all 

frequency bands, either positively or negatively.   

 

Mechanistic concepts for network alteration in epilepsy 

Brain functioning in its complexity is currently incompletely understood and not fully mechanistically 

interpretable. Nonetheless, explaining the essential brain manifestations in terms of mechanisms may 

help unraveling pathophysiological behavior and dysfunction. This requires developing models with some 

level of abstraction and simplification. Two basic models regarding network alterations in epilepsy have 

evolved over time. The first model states that epileptic activity itself causes changes in the brain network 

organization. This theory is supported by the finding that network abnormalities become more prominent 

as the duration of epilepsy increases (Qiu et al., 2017; Park et al., 2018). The second model focuses on the 

epilepsy origin primarily and states that the underlying disease etiology is directly responsible for the 

disruption of neural networks, which in the end may lead to seizure generation. This hypothesis does not 

deny the network deforming capacity of seizures but regards the epilepsy etiology as the most important 

determinant of network abnormalities (Scott, 2016). If the latter hypothesis holds true, one could expect 

that there are differences in the brain network topologies in epilepsies of different etiologies. Since we did 

not find such topological differences, our study does not directly support the etiology model. We were also 

not able to detect topological brain network differences between healthy children and children with 

epilepsy. This is in contrast with findings of subtle network changes in a selected subset of our study 

population that we previously described (van Diessen et al., 2016). It should, however, be mentioned that 

we did not look into network differences at the level of individual measures. Besides, the chosen network 

measures were limited to the most commonly used measures. It thus remains unclear if network 

differences are truly absent. In this light, further exploration of network topological differences, with more 

complex and less correlated measures, is needed (van Diessen et al., 2014). Furthermore, one could argue 

that the sparsity of a standard EEG recording might be insufficient to find network differences between 

patient groups. For example, a previous study has (indirectly) addressed the association between brain 

network topology and epilepsy etiology by means for functional MRI (Doucet et al., 2014). In temporal lobe 

epilepsy, a very subtle difference in functional brain network topology was found between patients with 
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structural and non-structural epilepsy. Subanalysis in our study did not reveal differences for the structural 

epilepsies compared with epilepsies of other origins. Another explanation might be the construction of 

functional network in signal rather than source space. By denominating EEG electrodes as functional 

nodes, it remains questionable if information on the underlying networks can be inferred (van Diessen et 

al., 2015). 

 

Strengths and limitations of the study 

 Our study is unique with respect to the number of subjects included. It should, at the same time, be noted 

that our patient group was quite heterogeneous regarding epilepsy types, but at least the data collection 

and processing is equal for all patients, thereby reducing data variability. Furthermore, we only included 

drug-naïve children with epilepsy, thereby ruling out the effect of anti-epileptic drugs as potential 

confounder (Haneef, Levin and Chiang, 2015; van Veenendaal et al., 2017). Third, although we formulated 

a hypothesis beforehand, by choosing principal component analyses we let our data speak for themselves, 

while we did not select the network metrics to be used to plot clusters manually.  

  Although our study has some major strengths, several limitations should also be mentioned. 

Firstly, we aimed to evaluate brain network configurations for all six etiological classes postulated in the 

newest epilepsy classification (Scheffer et al., 2017). However, epilepsies of a structural, genetic, and 

unknown etiology are overrepresented in our cohort, while the epilepsies with an infectious, immune or 

metabolic etiology are very scarce or even absent. Though this is explained by the incidence of the 

different etiologies in childhood epilepsy and also applies to other, similar cohorts (Wirrell et al., 2011; 

Sokka et al., 2017), it hampers the generalization of our results to the entire etiological classification. 

Another factor limiting the generalizability is the unequal representation of the children’s ages in our study 

population. The majority of very young children had an artefact-full EEG or an EEG recording without a 

sufficient eyes-closed resting state period, for which we excluded them from further analysis. Although we 

included age at the time of EEG acquisition as a variable in our principal component analyses, we cannot 

state with certainty that our results are also applicable for the very young patient group. Secondly, as 

described earlier, some epilepsies were classifiable in more than one etiological class, of which we chose 

the most important one with respect to the development of seizures. This approach is pragmatic, but 

debatable. The same applies for children who visited the FSC twice. For most of these children, the 

diagnosis was equal both times, but some of them did not have clear clinical and/or electrophysiological 

signs for an epilepsy diagnosis at their first visit, while they were diagnosed with epilepsy several years 

later, at their second visit. This raises the question whether these children were allocated to the right group 

based on their first FSC visit. Lastly, though the first two principal components of our analyses account for 

a good sixty to sixty-five percent of the variance within our dataset, we still lost around one third of the 

original information in the data. Adding more principal components to our plots could have reduced the 

percentage of missed information, but also would have made the plots sparser and harder to interpret. We 
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therefore think we chose the right balance between the amount of information in the data and the data 

interpretability.   

Conclusion and further directions 

In conclusion, this study sought to provide a brain network underpinning for the etiology layer of the 

current epilepsy classification. Our results do not support the presence of such an underpinning, which 

may point in the direction that the underlying disease etiology is not directly responsible for brain network 

modulation and, consequently, seizure generation. Our study, however, has some important limitations. 

More studies are needed to further explore the possible association between brain network topology and 

the (etiological) subdivision of the epilepsies. To overcome the limitations of EEG based networks, we 

suggest a large (f)MRI studies. Further, longitudinal studies including patients with epilepsies of different 

etiologies are needed to shed more light on the role of both the epilepsy etiology and recurrent seizures in 

the development of brain network alterations.    
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