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Abstract

Approximately 150 triatomine species are known to be infected with the Chagas
parasite, Trypanosoma cruzi, but they differ in the risk they pose to human populations.
The largest risk comes from species that have a domestic life cycle and these species
have been targeted by indoor residual spraying campaigns, which have been successful
in many locations. It is now important to consider residual transmission that may be
linked to persistent populations of dominant vectors, or to secondary or minor vectors.
The aim of this project was to define the geographical distributions of the community of
triatomine species in Latin America. Presence-only data with over 12, 000 observations
of triatomine vectors were extracted from a public database and target-group
background data were generated to account for sampling bias in the presence data.
Geostatistical regression was then applied to estimate species distributions and fine-scale
distribution maps were generated for thirty triatomine vector species. The results for
Panstrongylus geniculatus, P. megistus, Triatoma barberi, T. brasiliensis, and T.
pseudomaculata are presented in detail and the model validation results for each of the
30 species are presented in full. The predictive maps for all species are made publicly
available so that they can be used to assess the communities of vectors present within
different regions of the endemic zone. The maps are presented alongside key indicators
for the capacity of each species to transmit T. cruzi to humans. These indicators
include infection prevalence, evidence for human blood meals, and colonisation or
invasion of homes. A summary of these indicators shows that the majority of the 30
species mapped by this study have the potential to transmit T. cruzi to humans.

Author summary

The Pan American Health Organisation’s Strategy and Plan of Action for Chagas
Disease Prevention, Control and Care highlights the importance of eliminating those
triatomine vector species that colonise homes, and has had great success in many
locations. Since indoor residual spraying campaigns have targeted these species, their
importance relative to other vectors has diminished and their geographical distributions
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may also have changed. It is now vital to consider the full community of vector species,
including previously dominant vectors as well as secondary or minor vector species, in
order to target residual transmission to humans. Our aim was to define the geographical
distributions of the most commonly reported triatomine species in Latin America. We
extracted reports of triatomine vector species observed at specific locations from a
public database and we used a geostatistical model to generate fine-scale predictive
maps for thirty triatomine vector species. We present these maps alongside a summary
of key indicators related to the capacity of each species to transmit the Chagas parasite
to humans. We show that most of the 30 species that we have mapped pose a potential
threat to human populations.

Introduction 1

American trypanosomiasis, or Chagas disease, is one of the 10 neglected diseases 2

addressed by the London Declaration, which calls for control and elimination of these 3

devastating diseases by 2020 [1]. It is a disease of Latin America and the Pan American 4

Health Organisation (PAHO) has set out a ’Strategy and Plan of Action for Chagas 5

Disease Prevention, Control and Care’ [2]. This strategy includes the elimination of 6

domestic vectors to prevent intra-domiciliary transmission, as well as screening blood 7

donors and pregnant women to prevent transmission via blood donation or the placenta, 8

and implementation of best practice in food handling to prevent oral transmission. Our 9

study focuses on the primary route of infection; the contamination of a vector bite by 10

the faeces of that vector. 11

The T. cruzi parasite is transmitted to humans by over 150 different vector species 12

from 18 different genera [3]. The transmission risk that each vector species poses is 13

influenced by how likely it is to come into contact with humans and this, in turn, is 14

influenced by short-distance movement (for example does the species enter and/or 15

colonise homes) and its larger-scale geographical distribution. Studies assessing 16

vulnerability of individuals to Chagas disease have shown that, while housing, ecotype 17

and soci-economics are all relevant, triatomine presence is the most important 18

indicator [4]. Thus understanding the distribution of these vector species is vital to both 19

target control measures and to assess disease risk. 20

Before the current intervention era, five vector species were recognised as being 21

dominant in the transmission of Trypanosoma cruzi to humans based on their habit of 22

colonising houses, behaviour (feeding-defecation interval) and widespread geographical 23

distributions [5]. Since indoor residual spraying (IRS) campaigns have successfully 24

targeted these dominant species in many locations, their importance relative to other 25

vectors has diminished and their geographical distributions may also have changed [6]. 26

It is now vital to understand the full community of vector species, including previously 27

dominant vectors as well as secondary or minor vector species, in order to target 28

residual transmission to humans [6–8]. Data on intervention coverage with spatially and 29

temporally high resolution across the entire zone was, however, unavailable and thus 30

could not be taken into account at the modelling stage. 31

Several studies have investigated species behaviours that influence short distance 32

travel in and around homes, such as host-seeking, aggregation and dispersal [9–19], but 33

fewer studies have considered the larger-scale geographical distributions of these species. 34

The studies of geographical species distributions that have been conducted typically 35

focus on a single country or a region within a country [19–24]. One earlier study 36

considered the distribution of infected vectors across South America, without 37

distinguishing species [25], but no studies have considered the geographical distributions 38

of individual dominant and secondary vector species in Latin America. A lack of 39

consistent region-wide information makes it harder to construct an overview for the 40
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region as a whole or to compare areas within the endemic zone. 41

The data recording presence of a species are often sparse and suffer from sampling 42

bias, which makes inter-region comparison of these records difficult. The aim of this 43

study is to use statistical models to produce a comprehensive set of maps predicting the 44

distributions of triatomine vector species while taking into account the limitations of 45

the data. We use an extensive database of reported occurrences of each species, data on 46

environmental variables that are likely to influence species presence, and build species 47

distribution models to improve our current understanding of the spatial distribution of 48

T. cruzi. 49

Materials and methods 50

Species occurrence and background points 51

The primary source of vector species data was a database of vector occurrence locations, 52

which was supplemented with additional species presence points derived from a 53

database of infections in vector species. Data on vector occurrence were extracted from 54

DataTri, a publicly available database that reports the presence of a given triatomine 55

species, the date of collection (if available) and geographical coordinates for each 56

collection [26]. Additional vector occurrence data was added using a database of 57

Trypanosoma cruzi infections in triatomines that also provided the vector species found, 58

the date of collection (if available) and geographical coordinates for each collection [27]. 59

Any data points from DataTri that were duplicated in the second data set were removed 60

before vector occurrence data from the infections database were added to the DataTri 61

data set. Data points before the year 2000 were removed because the aim was to 62

investigate vector distributions in the current era. 63

The available vector occurrence data is usually referred to as presence only data. 64

Techniques for modelling such data often involve augmenting the presence data with 65

pseudo-absence or background points, which requires a source of appropriate background 66

data [28–30]. Here we use a target-group background (TGB) approach by choosing 67

background data that exhibits similar sampling bias as the occurrence data [31]. This 68

approach can reduce the bias introduced by preferential sampling of the presence 69

locations. It was successfully used to map geographical distributions of malaria hosts 70

and vectors [32] and predict infection risk zones of yellow fever [33]. In simulation 71

studies this method also performed well when compared to approaches using 72

presence-absence data [31,34]. As with all models of presence-only data, the maps 73

produced using the TGB approach represent relative rather than absolute probabilities 74

of species occurrence. 75

We constructed one TGB data set for each vector species as outlined below and 76

illustrated in Figure 1 for Panstrongylus megistus: 77

(1) The presence locations of vector species k = 1, . . . ,K (target-group) were 78

extracted from the database and a convex hull containing all presence locations 79

was constructed (panel (A) in Figure 1). 80

(2) This hull was extended by a constant width of 5 degrees in all directions to allow 81

for uncertainty with respect to the range of the species being modelled (extended 82

hull ; panel (B) in Figure 1). 83

(3) The presence locations of all other species within the extended hull were defined 84

as background points (blue dots in panel (C) of Figure 1). 85

(4) Duplicate observations at the same site and the same year were removed. 86

(5) At the modelling stage, the background points were weighted such that their total 87

weight is equal to the number of presence observations (cf. [31, 32]). 88
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For some species, only few observations were available in the data set. It was 89

suggested that approximately five [35] or ten [36–38] events (presences) per predictor 90

are required to reliably fit a logistic regression. Given that we use up to 30 predictors, 91

this would imply a sample size of n ≈ 150 and ≈ 300, respectively. In our data, 14 and 92

and 9 species fulfilled this (approximate) requirement. For completeness, we fit models 93

for all species with n > 50, but obviously results must be interpreted with care as the 94

sample size (number of presence observations) decreases (see Results section). Species 95

with fewer than fifty observations in the training and test data were not modelled, 96

however, their presence locations were used as background points for the species that 97

were modelled. 98

Fig 1. Construction of background points. Illustration of the construction of
background points using the TGB approach for species Panstrongylus megistus. Panel
(A): A convex hull is constructed around the presence locations of the species. Panel
(B): The hull is extended by a fixed width of 5 degrees (extended hull). Panel (C):
Background points are added using presence locations of all other species within the
extended hull. Panel (D): Blocks of width wk are allocated randomly across the
extended hull. The observations in blocks numbered 1-4 are used as training data, and
the observations in blocks numbered 5 are assigned to the test data. One fold consists of
all blocks sharing the same number.

Environmental variables 99

Previous work has shown that vector distributions are influenced by climate, land cover 100

types and rural/urban classifications [19–24]. Environmental variables for these three 101

data types were obtained at a nominal resolution of 5× 5 kilometres. The climatic 102

variables used were land surface temperature (annual; day, night and diurnal 103

difference) [39], two measures of surface moisture (annual) [40], rainfall (annual) [41], 104

elevation (static) [42] and slope (static) [43]. The variable used for land cover were the 105

16 IGBP land cover classes (annual) [44] and an enhanced vegetation index [45]. Finally 106

the variables used to distinguish rural, peri-urban and urban areas were urban footprint 107

(static) [46], nighttimelights (static) [47], human population (annual) [48] and 108

accessibility (static, based on road networks and distance to cities) [49]). Annual 109

environmental variables were not always available for all time periods in which 110

occurrence data was available. In this case, we instead used values from the closest year. 111

Model evaluation 112

In the context of spatial analysis, data available for modelling often only encompasses 113

few locations in areas for which predictions are generated. Therefore, the model is 114

usually evaluated on out of sample data to avoid over-fitting, to ensure transferability to 115

new locations and to obtain realistic estimates for the goodness of fit. Standard 116
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approaches to model evaluation, however, can yield over-optimistic metrics of the model 117

predictive ability unless the spatial nature of the data (and the model) is taken into 118

account [50–52]. To address these concerns, the data was initially split randomly into 119

train-test data (80%) and evaluation data (20%), stratified by species. The latter data 120

set is only used for the final model evaluation, without ever being used for estimation 121

(column ”AUC∗” in Table 2). Additionally, the train-test data was split into five folds. 122

Following recommendations in [53] each fold consisted of multiple spatial blocks, where 123

the block size wk for species k = 1, . . . ,K was set such that approximately 50 blocks (10 124

per fold) would cover the extended hull of that species and defined as wk =
√

ak

50 , where 125

ak is the area of the extended hull of species k = 1, . . . ,K. Figure 1 (panel (D)) depicts 126

the resulting blocks and folds for species Panstrongylus megistus. For each species, 127

blocks one through four were assigned to the training data, while blocks numbered five 128

(grey shade) were only used to obtain out-of-sample test errors. Allocation of blocks was 129

spatially random to avoid systematic bias of presence and background locations in any 130

of the folds, but stratified with respect to species presence such that the proportion of 131

presence and background points was approximately equal in all folds. The spatial 132

blocking for all species considered in our analyses are provided in the supplement (S1 133

File). Model performance was evaluated by the area under the receiver operator curve 134

(AUC), which measures the models ability to discriminate between presence and 135

background points. 136

Modelling 137

Let Ek ∈ R2 the extended hull of species k = 1, . . . ,K and 138

yk,t,i ∈ {0, 1} ∼ Bernoulli(πk,t,i), i = 1, . . . , nk the binary indicator of 139

presence/background for species k in year t ∈ {2000, . . . , 2016} at location si ∈ Ek (as 140

constructed by the TGB approach). The relative probability of occurrence πk,t,i is 141

estimated by a logistic generalised additive model (GAM) with linear predictor (1) 142

ηk,t,i = log

(
πk,t,i

1− πk,t,i

)
= β0 +

Pk∑
p=1

fk,p(xp,t,i) +GPk,i(`), i = 1, . . . , nk, (1)

where fk,p(xp,t,i) is the species specific, potentially non-linear, effect of the p-th 143

covariate estimated by a penalised thin-plate spline [54] and GPk,i(`) is a 144

two-dimensional, species specific Gaussian process (GP) with range parameter ` 145

evaluated at location si (the smoothness parameter was set to 1.5). The number of 146

covariates Pk can vary by species as some of them might not have enough unique values 147

within the spatial extent of the species to be relevant for analysis. Here, covariates were 148

only included if the number of unique values was at least twenty. The correlation 149

function of the GP was defined by C(x, x′) = ρ(||x− x′||), where 150

ρ(d) = (1 + d/`) exp(−d/`) is the simplified Matérn correlation function with range 151

parameter ` = maxij ||xi − xj || as suggested in [55] and implemented in [56]. 152

The model was estimated by optimising the penalised restricted maximum likelihood 153

(REML) criterion (2) 154

D(ψ) + γ(φ(ψ) + φ∗(ψ)) (2)

using a double shrinkage approach where ψ is a vector of all coefficients associated 155

with the smooth functions f and GP , D(ψ) is the model deviance and φ(·) and φ∗(·) 156

are range space and null space penalties of the model coefficients ψ [54, 57]. The first 157

penalty (range space) controls the smoothness of functions fk,p and GPk, while the 158

second penalty (null space) enables the removal of individual terms from the model 159

entirely. The γ parameter can be used to globally increase the penalty and thus to 160
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obtain smoother, sparser and therefore potentially more robust models. Practical 161

estimation was performed using techniques introduced in [58,59] to increase 162

computational speed and reduce memory requirements. 163

Six model specifications (Table 1) were considered for this analysis, varying by the 164

definition of covariate effects in Equation 1 and whether the global GP term GPk,i(`) 165

was included. For each species, the final model (out of the six candidate models in 166

Table 1) was selected based on its performance (AUC) on the test data (fold 5). Model 167

1 has no tuning parameters and was fit directly to the complete training data (folds 1-4). 168

Models 2 through 6 were first tuned with respect to the global penalty γ ∈ {1, . . . , 4} 169

based on 4-fold cross-validation on folds 1 through 4. Based on the value of γ that 170

yielded the highest average AUC, the models were refit on the complete training data. 171

All models were estimated using methods described in [60] to reduce run time and 172

memory load. 173

Table 1. Model specifications considered in the analysis.

Model specification Covariate effect definition GP (global)
1

linear effects fk,p(xp) := βk,p · xp
No

2 Yes
3 fk,p(xp) :=

∑10
m=1Bp,m(xp)ψk,p,m, where Bp,m(xp)

and ψk,p,m are spline basis functions and coefficients

No
4 Yes
5 spatial (bivariate) varying coefficient model

fk,p(xp) := GPk,p(`) · xp
No

6 Yes

Implementation 174

All calculations were performed using the R language environment [61]. Thematic maps 175

were created using package tmap [62]. Data munging and pre-processing was performed 176

using packages dplyr [63] and tidyr [64]. Spatial cross-validation was set up using 177

package blockCV [65]. Package mgcv was used to fit the GAMs [56]. 178

Vectorial capacity of the mapped species 179

For each triatomine species that was mapped, information related to its importance in 180

transmitting T. cruzi to humans was collated. The prevalence of infection with the T. 181

cruzi parasite was calculated using the data from an existing repository [27]. Collections 182

of less than twenty individuals of a species were excluded and the mean prevalence was 183

calculated for all species where the remaining number of collections exceeded ten. 184

Relevant behavioural data for each vector species was extracted from the literature. 185

Results 186

Species Distribution 187

A total of 30 species were mapped. A summary for all species that were modelled is 188

provided in Table 2, including the specification of the model selected on training data as 189

well as the AUC of this model evaluated on test data (fold 5) and the AUC obtained on 190

the 20% randomly selected hold-out data (denoted by AUC∗). The former is an 191

indicator of the model’s transferability and ability to predict into new areas with 192

potentially unseen covariate values or combinations, within the area that was modelled 193
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(cf. Figure 1). The latter value indicates how well the model interpolates as indicated 194

by its ability to predict data points not used during model training and selection. 195

Maps for six example species, highlighting different genera, geographical ranges, 196

dominant vector status and behaviours, are given in Figure 2. These are Panstrongylus 197

geniculatus, Panstrongylus megistus, Triatoma barberi, Triatoma brasiliensis, Triatoma 198

infestans and Triatoma pseudomaculata. Maps (including 95% CI) for all species listed 199

in Table 2 are given in the supplement (S2 File, .gri file format). Respective 200

visualisations are available from S3 File. The AUC values were all well above the 0.5 201

random classification threshold (mean: 0.85, SD: 0.12), indicating the maps usefulness 202

to identify areas of higher probability of presence relative to background points. The 203

comparatively low AUC values for species T. brasiliensis and T. pseudomaculata could 204

be partially due to an overlap with many other species, thus making it difficult to 205

discriminate between presence and background. The AUC∗ values were on average 206

higher and had a lower variance (mean: 0.88, SD: 0.08) but generally consistent with 207

the AUC values obtained on the test data (fold 5). 208

Fig 2. Predicted relative probability of occurrence at every 5× 5 km pixel
within the respective extended hull of species occurrence.
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The map for T. brasiliensis highlights some regions with potentially suitable 209

habitats at the north and north-west of the extended hull, however, these regions were 210

rarely sampled, containing neither presence nor background points and should be 211

considered uncertain (cf. maps of lower and upper 95% confidence intervals in 212

supplement S3 File). T. infestans presence locations on the other hand are mostly 213

located close to the Andes with only a few background observations in the vicinity of 214

these locations. The predictive map (Figure 2, bottom left panel) indicates a high 215

probability of occurrence at high altitudes. This concurs with other studies that 216

reported T. infestans presence in high altitudes [66, 67], however, difficult access means 217

that the density of sampling points is often reduced in high altitude areas, which, in 218

turn, exhibit higher uncertainty in the predictions. 219

Vectorial capacity of the mapped species 220

The current state of knowledge on factors related to the capacity of each of the mapped 221

species to transmit T. cruzi to humans (vectorial capacity) is summarised in Table 3. 222

Specifically, mean infection prevalence, confirmation of human blood meals in natural 223

vector populations, and confirmation of colonisation or invasion of homes (including in 224

urban areas) are listed. Less information is available on the feeding-defecation interval 225

or defecation location for each species, and these values may be influenced by the 226

different experimental conditions used, so these variables are not included in Table 3 227

but sources of evidence are listed in File S4. The 30 most commonly reported species 228

mapped here encompass the five most important dominant vectors that frequently 229

colonise homes (P. megistus, R. prolixus, T. brasiliensis, T. dimidiata and T. infestans) 230

as well as species that often colonise peridomestic habitats such as chicken coops, rats 231

nests, boundary walls, wood piles, palm trees, and livestock housing. These species 232

encompass a range of mean T. cruzi infection prevalences from 0.8 % in T. sordida to 233

55.6 % in T. longipennis, although for 13 of the most commonly reported species there 234

was insufficient data to generate a reliable mean infection prevalence value. When 235

viewing the summaries in Table 3, it is important to note that not all regions or species 236

have been sampled or tested equally and a lack of published evidence for a specific 237

component of vectorial capacity cannot be taken as definitive evidence of its absence. 238

For example, no infections have been reported in Eratyrus mucronatus or Psammolestes 239

tertius, but only 28 and 143 individuals have been tested, respectively, compared to 240

335,467 T. sordida individuals. In addition to the five important dominant vectors, 241

there is evidence that many of the species mapped in this work are potential vectors of 242

T. cruzi. Almost all of the 28 species that have been found to be infected with T. cruzi 243

are known to invade homes, and at least 17 have been found to have fed on humans 244

(Table 3). The sources of evidence — 126 published articles in total — are given in 245

supplement File S4. 246

Data availability 247

Original data sources for the construction of species occurrence and background data 248

are publicly available from [26] and [27]. The predicted maps (rasters, i.e. the predicted 249

values for every pixel) for all 30 species in Table 2 as well as the respective lower and 250

upper bounds of the confidence intervals are available from [68] (S2 File). Visualisations 251

of these data, i.e. map images, are available from supplement S3 File). The code for the 252

analysis is available at https://github.com/adibender/chagas-vector-sdm. Since 253

the occurrence data and covariate data cannot be accessed programmatically, this code 254

provides full methodological details, but cannot be used to reproduce the entire analysis. 255
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Table 2. Summary table for all species considered in the analysis ordered
by number of presence observations.

species n presence
(test)

n background
(test)

Selected
model (γ)

AUC AUC∗

Triatoma infestans 2499 (430) 4458 (896) 5 (3) 0.96 0.97
Triatoma dimidiata* 1186 (154) 2883 (787) 6 (4) 0.97 0.93
Panstrongylus
megistus

968 (213) 3409 (827) 6 (1) 0.83 0.89

Triatoma
brasiliensis

820 (151) 1989 (346) 2 (1) 0.69 0.81

Triatoma sordida* 809 (139) 4919 (768) 5 (2) 0.83 0.89
Triatoma
pseudomaculata

804 (239) 3100 (687) 4 (1) 0.73 0.81

Triatoma barberi 455 (56) 2161 (612) 4 (1) 0.88 0.92
Triatoma mexicana 430 (44) 2046 (456) 6 (2) 0.92 0.96
Rhodnius prolixus 319 (42) 962 (229) 4 (2) 0.64 0.85
Panstrongylus
geniculatus

282 (39) 6425 (824) 3 (1) 0.87 0.82

Triatoma longipennis* 282 (25) 1974 (324) 2 (2) 0.97 0.95
Triatoma gerstaeckeri 280 (91) 2480 (482) 2 (1) 0.85 0.96
Triatoma protracta 269 (42) 2092 (212) 6 (1) 0.89 0.97
Triatoma
pallidipennis*

256 (15) 2286 (265) 2 (2) 0.96 0.96

Panstrongylus lutzi 136 (8) 2965 (609) 1 (–) 0.78 0.92
Rhodnius pictipes 130 (25) 3542 (940) 5 (1) 0.91 0.91
Triatoma rubida 126 (23) 1913 (388) 4 (1) 0.98 0.95
Rhodnius neglectus 122 (18) 3993 (655) 4 (1) 0.93 0.95
Triatoma mazzottii* 105 (7) 2531 (581) 4 (1) 0.8 –
Rhodnius pallescens 93 (21) 898 (202) 2 (1) 0.78 0.89
Triatoma guasayana* 92 (8) 2761 (493) 1 (–) 0.52 0.75
Triatoma rubrovaria 92 (11) 572 (227) 3 (1) 1.00 0.95
Rhodnius robustus 90 (22) 3395 (915) 4 (1) 0.97 0.94
Triatoma sanguisuga 89 (17) 701 (173) 5 (2) 1.00 0.92
Psammolestes tertius 75 (17) 3969 (825) 2 (3) 0.79 0.90
Eratyrus mucronatus* 67 (13) 2495 (656) 5 (4) 0.80 0.84
Triatoma maculata 65 (10) 907 (169) 5 (3) 0.8 0.80
Panstrongylus chinai 57 (7) 209 (53) 4 (1) 0.8 –
Rhodnius nasutus 56 (10) 2178 (423) 2 (1) 0.90 0.83
Panstrongylus
rufotuberculatus*

55 (13) 3262 (608) 3 (3) 0.66 0.61

Summary table for thirty species for which predictive maps were created, ordered by
number of occurrence observations. Species highlighted in bold are shown in Figure 2,
maps of all 30 species (including 95% CI) are given in the supplement (S2 File and S3
File). Asterisks (*) mark species for which the block width wk used to construct spatial
blocking was smaller than a preliminary estimation of the range of spatial
auto-correlation, thus estimated AUC values might be overoptimistic in these cases.
Column “Selected model” indicates the model specification that was selected based on
its performance on the training data and refers to the model specifications defined in
Table 1. If applicable, γ indicates the value of the selected global penalty multiplier (cf.
Eq. (2)). The reported AUC value was calculated on the test data set (fold 5 in Figure
1). The AUC∗ value was calculated on the 20% hold-out data (not spatially blocked).
Entries “–” indicate that there were not enough observations and/or unique predicted
values in the hold-out data for calculation.
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Table 3. Infection prevalence and behaviour of selected species.

Species Mean percent
infected (n)

Human
blood
meals

Colonises
homes

Invades
home

Urban
areas

Eratyrus mucronatus NIF - yes yes -
Panstrongylus chinai yes - yes yes -
Panstrongylus
geniculatus

7.6 (46) yes - yes yes

Panstrongylus lutzi 6.8 (27) yes - yes -
Panstrongylus
megistus

8.3 (261) yes yes yes yes

Panstrongylus
rufotuberculatus

yes - yes yes -

Psammolestes tertius NIF - - - -
Rhodnius nasutus 8.5 (73) - - yes -
Rhodnius neglectus 4.0 (120) yes - yes yes
Rhodnius pallescens yes yes - yes -
Rhodnius prolixus 9.0 (10) yes yes yes -
Rhodnius pictipes 24.6 (36) yes - yes yes
Rhodnius robustus 25.9 (19) - - yes -
Triatoma barberi yes - yes yes yes
Triatoma brasiliensis 3.2 (918) yes yes yes -
Triatoma dimidiata 28.9 (24) yes yes yes -.
Triatoma
gerstaeckeri

yes yes yes yes -

Triatoma guasayana yes yes - yes -
Triatoma infestans 27.6 (61) yes yes yes -
Triatoma longipennis 55.6 (14) - yes yes yes
Triatoma maculata 18.4 (18) yes - yes yes
Triatoma mazzottii yes - - yes -
Triatoma mexicana yes - - yes -
Triatoma
pallidipennis

4.8 (17) yes yes yes yes

Triatoma protracta yes - yes yes yes
Triatoma
pseudomaculata

2.7 (988) yes yes yes yes

Triatoma rubida yes - yes yes yes
Triatoma rubrovaria 3.1 (17) - - yes yes
Triatoma sanguisuga yes yes - yes yes
Triatoma sordida 0.8 (1407) yes yes yes yes

The mean infection prevalence is given together with the number of triatomine
collections that contributed to the mean. If there were insufficient data to calculate the
mean, i.e. fewer than 10 collections of ≥ 20 individuals, then records of infected
individuals (yes) or no infections found (NIF) are noted. Instances where there was no
evidence for a particular behaviour are denoted by “-” .
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Discussion 256

This study models the contemporary geospatial distributions of the thirty most 257

commonly reported triatomine species and putative vectors of the T. cruzi parasite to 258

humans. Our approach allows the distributions of these different species to be 259

compared, and to be overlaid, which increases our understanding of the community of 260

vector species at different locations in the current intervention era. 261

Our aim was to consider the most commonly reported species in Latin America. To 262

provide policy makers, stakeholders and researchers with relevant information, we 263

included all species for which distribution maps could be reasonably estimated. 264

However, as can be seen from Table 2, the training (and test) data for many species 265

contained fewer than 300 or even fewer than than 150 presence observations reported 266

since the year 2000. For some of these species, the test fold (cf. Table 2) only contained 267

a few presence locations, sometimes concentrated in a few blocks, i.e., within a small 268

geographical area. AUC values will thus tend to be less robust and potentially over- or 269

under optimistic as sample size decreases. One should therefore be particularly cautious 270

when interpreting results of species with few presence data points and always take into 271

account the uncertainty of the estimates as presented in the supplement (S3 File). 272

There are locally important species for which maps could not be produced because they 273

are only found within areas where the relevant surveillance records are not publicly 274

available or because their range is limited so only small numbers of observations exist. 275

For example, Rhodnius ecuadoriensis is an important vector in Ecuador [69] but the 276

databases used in this study only provided 11 and 23 records, respectively, for known 277

collection dates after the year 2000. 278

Earlier studies [19,20,22,23,25], most notably [24], have modelled the distributions 279

of some of these species but only in specific regions, states or countries. Additionally, 280

comparisons with the previous work are limited because of differences in methodology, 281

data sets and spatial extent under consideration. Only visual comparison is possible in 282

most cases because the predicted values generated by other studies are not openly 283

available, precluding quantitative assessment of the different versions. In general, our 284

respective predicted maps show very good agreement with respect to regions that 285

highlight higher vs. lower probabilities of occurrence, but often differ with respect to 286

the spatial extent of the region modelled. 287

The maps generated by this study should be considered in the context of the 288

behaviour and vectorial capacity of each species. Summaries of the available evidence 289

are provided here and show that most of these species are potentially important vectors 290

of T. cruzi to humans. Each of the indicators of vectorial capacity summarised at a 291

species level by this study may vary within the range of the species, as well as between 292

species [70,71]. It is therefore important to map spatial variation in these 293

characteristics, as well as in the species themselves, in order to identify where regions of 294

vectorial transmission risk are likely to exist. 295
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Supporting information 296

S1 File. Presence/background data and spatial blocking. 297

This file contains one figure for each species contained in Table 2. In each figure, the 298

left panel shows raw presence absence data constructed as described in Figure 1, panels 299

(A) through (C). Panel (D) shows the spatial allocation of blocks that define training 300

(folds 1-4) and test (fold 5) data. The figures are published in [72] and available from 301

https://figshare.com/s/f027db53093230373fa5. 302

S2 File Predicted 5× 5 km resolution maps (raw). 303

Files in .gri format that contain the predicted relative probability of occurrence for 304

30 traitomine species (Chagas vectors). The files consist of the predicted probabilities 305

(predicted-maps-tgb.gri) and the respective lower (predicted-cil-tgb.gri) and 306

upper (predcited-ciu-tgb.gri) confidence intervals. Each layer in the raster brick 307

represents one species. The files are published in [68] and available from 308

https://figshare.com/s/78e2c83427772ddd6cc9. 309

The data can be read into R using command raster::brick. For example: 310

# read in predcitions for all 30 species 311

pred_maps <- raster::brick("predicted-maps-tgb.grd") 312

# visualise prediction for species Panstrongylus megistus 313

sp::plot(pred_maps[["Panstrongylus.megistus"]]) 314

S3 File. Predicted 5× 5 km resolution maps (visualisation). 315

This file contains one figure for each species contained in Table 2 depicting the 316

predicted relative probabilities of occurrence for each species. In each figure, the left 317

and right panel show the lower and upper bound of the 95% confidence interval, 318

respectively. The middle panel the expected value. The file is published in [73] and 319

available from https://figshare.com/s/ffeeb36f30dc6c128819. 320

S4 File. Sources of evidence for variables linked to vectorial capacity. 321

This file contains the full information summarised in Table 3 together with citations 322

for the sources of evidence used. The file is available from 323

https://figshare.com/s/3dd02aa5a969aefb08ad. 324
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