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Abstract: New ways of curbing the ability of bacteria to evolve spontaneous resistance could 10 
mitigate the looming antibiotic resistance crisis. Progress toward this goal requires a 
comprehensive understanding of the key factors that contribute to resistance evolvability. Here, 
we present a systematic approach to identify cellular functions that affect the evolvability of 
resistance. Using a robotic lab-evolution platform that keeps population size and selection 
pressure under tight control for hundreds of Escherichia coli populations evolving in parallel, we 15 
quantified the effects of a genome-wide selection of pre-existing gene deletions on resistance 
evolution. Initial resistance of strains with gene deletions differed by more than tenfold but 
converged toward a hard upper bound for resistance during the evolution experiment, reflecting a 
global pattern of diminishing returns epistasis. We identified specific cellular functions that 
drastically curtail the evolvability of resistance; beyond DNA repair, these include membrane 20 
transport, LPS biosynthesis, and chaperones. Perturbations of efflux pumps prevented resistance 
evolution completely or forced evolution on inferior mutational paths, not explored in the wild 
type. We show that strong negative epistasis generally underlies these phenomena. The identified 
functions provide new targets for adjuvants tailored to block evolutionary paths to resistance 
when combined with antibiotics. 25 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/738252doi: bioRxiv preprint 

https://doi.org/10.1101/738252


2 
 

Introduction 

Bacterial resistance to antibiotics has become a major public health concern and a vibrant field of 
research (1–3). Strategies for countering the spread of resistance include the discovery of entirely 
new antibiotics and drug combinations (4–6). Recent work has increasingly focused on novel 
treatment schemes that minimize selection for resistance using drug cycling or combinations that 5 
exploit physiological or evolutionary interactions between drugs (7–12). Truly sustainable drug 
treatments require novel strategies that anticipate the evolutionary potential of pathogens and 
funnel them toward less evolvable genotypes or evolutionary dead ends. To this end, it is 
promising to identify genetic factors and cellular mechanisms that do not immediately increase a 
pathogen’s resistance but rather determine its ability to evolve (13–16).  10 

The ability of different genotypes to spontaneously evolve drug resistance (here: “resistance 
evolvability”) can be determined by exposing them to equivalent selection pressures in evolution 
experiments and comparing the evolutionary outcomes (17). For a meaningful quantitative 
comparison, it is essential to control both the number of generations and the population size of 
the evolving genotypes (18, 19) – a characteristic which is achievable due to recent technological 15 
advances (20, 21). The outcome of such evolution experiments then depends on the key 
evolutionary determinants of the starting genotype, including its mutation rate and the 
distribution of fitness effects of resistance mutations.  

The idea of interfering with resistance evolvability by altering the rate of acquisition of 
resistance by mutation or horizontal gene transfer is promising and has been investigated in 20 
depth (13, 22–26). Efforts to alter evolvability by other means, while equally promising, have 
received less attention (16, 27). Genetic differences commonly affect the fitness effects of new 
mutations (28–31). Such epistatic interactions can alter the effects of resistance mutations in 
different genetic backgrounds and potentially block mutational paths to drug resistance. For 
example, the gene coding for the transcriptional regulator AmpR opens a key path to resistance 25 
in Pseudomonas, since only strains that carry the gene rapidly evolve ceftazidime resistance by 
overexpressing beta-lactamase (16). Similar perturbations to global regulators could alter 
resistance evolvability more generally, since they completely change the expression state of the 
cell, and thus enable selection on newly expressed genes. In fact, perturbing any cellular function 
that interacts with a resistance mechanism – be it by interfering with its regulation, protein 30 
folding, localization, function, or degradation – could affect the cell’s ability to evolve. To 
discover mechanisms that determine resistance evolvability, a systematic investigation of 
resistance evolution starting from a diverse set of defined genotypes is needed. 

Here, we report the discovery of targeted genetic perturbations that strongly affect antibiotic 
resistance evolution. We developed a robotic platform for high-throughput lab evolution, which 35 
tightly controls both population size and the selection pressure for drug resistance. Quantifying 
the evolvability of ~100 E. coli gene-deletion strains revealed a global trend of diminishing-
returns epistasis: Genotypes that were initially more sensitive evolve resistance faster and 
converge to the same limit of resistance as initially resistant ones. We identified several specific 
genes and cellular functions that drastically affect – and, in some cases, entirely prevent – 40 
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resistance evolution. These effects are largely due to epistatic interactions with common 
resistance mutations.  

Results 

An automated high-throughput evolution platform enables precise and reproducible 

measurements of resistance evolvability  5 

To quantify the dynamics of resistance evolution for many different genotypes and replicates, we 
developed an automated platform that monitors the growth of hundreds of bacterial cultures 
while tightly controlling conditions and key evolution parameters (Fig. 1, Methods). Similar to 
the “morbidostat” setup (21, 32), the antibiotic concentration of each culture is periodically 
adjusted to maintain high selection pressure for antibiotic resistance over weeks. Every 3 to 5 10 
hours, a dedicated robotic system dilutes and transfers cultures to new 96-well plates (Fig. 1A). 
In this transfer step, the volumes of medium, drug, and culture are individually tuned to keep 
each culture in exponential phase at 50% growth inhibition with defined population size right 
after the transfer (Fig. 1B-D, Methods). Keeping the cultures in exponential phase with vigorous 
shaking while continually adjusting the antibiotic concentration maintains a strong selection 15 
pressure, specifically for faster growth in the presence of the antibiotic and thus higher resistance 
(as measured by the IC50).  In this way, fair comparisons of resistance evolution between 
hundreds of bacterial populations of the same size that undergo the same number of generations 
and experience the same clearly defined selection pressure become possible. 

 20 
Fig. 1 High-throughput lab evolution with controlled population size and selection pressure leads to 
repeatable fast evolution of antibiotic resistance. A) Schematic of lab evolution protocol. 96-well plates are 
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shaken in an incubator, absorbance (OD) is measured every 10 to 15 min in a plate reader, and the cultures are 
diluted and transferred to new plates every 3 to5 h. At dilution, the volumes of culture, drug and medium are 
individually tuned based on the previous OD measurements, such that the OD after dilution and the growth rate is 
always close to the predetermined level (Methods). B) Schematic of dose-response curve in ancestral (gray line) and 
a resistant population (black line). At each dilution, the target antibiotic concentration ctarget is calculated assuming 5 
that the the effect of resistance is merely is equivalent to reducing the concentration by a factor, i.e. a mere 
horizontal shift of the semi-logarithmic dose-response curve (33). The growth rate since the last dilution and 
antibiotic concentration in the given well (gcurrent and ccurrent) then define the curve from which the new target 
concentration ctarget is calculated.  C) Background-subtracted OD values on log scale over the course of the 
experiment for all culture containing wells from a 96-well plate. The cultures are continuously in exponential phase. 10 
D) Growth rates fitted to the OD during the experiment. Values are normalized to the growth rate of the reference 
strain in no drug. In this case the reference strain is the parent strain of the Keio collection. E) Tetracycline 
concentration in the wells of the reference strain replicates during the experiment. The same replicate of the parent 
strain of the Keio collection is highlighted in black on all three plots (C-E). All values are from plate 1 of 
experiment M1 (Methods). 15 

 

This lab evolution platform yields a precise and reproducible real-time measure of the resistance 
increase for each culture. Typically, resistance is measured by determining the minimum 
concentration needed to stop growth (MIC) or the concentration needed to inhibit growth by a 
certain factor, e.g. 50% (IC50). In our automated platform a feedback loop continually adjusts the 20 
antibiotic concentration to maintain 50% growth inhibition, therefore the antibiotic concentration 
in each well is a direct estimate of the IC50 (Methods). Indeed, we validated that this “on-the-fly” 
measurement of the IC50 agrees well with a standard IC50 measurement in a drug concentration 
gradient after the evolution experiment (Fig. S1). The strong selection pressure leads to rapid 
evolution: resistance in the wild type strain increases by  20-30 fold within a week (Fig. 2, Fig. 25 
S4) (21). Despite the fundamental stochasticity of evolution, the observed resistance increase 
over time is usually reproducible for replicates starting from the same genotype (Fig. 1E), in line 
with previous reports (21, 33). Whole-genome sequencing of evolved E. coli strains confirmed 
that the genes that mutate during the experiment are also largely reproducible (Methods, Fig. 
S2). For example, in the presence of the antibiotic tetracycline, the genes marR, lon, and acrR 30 
are often mutated at the end of the experiment (Fig. S2, Data S1), as previously observed (34–
36). Typical evolved populations had three to four fixed mutations after ten days (Fig. S3). 
Taken together, our automated platform enables phenotypically and genotypically repeatable 
resistance evolution in high-throughput and is suitable for detecting perturbations that can alter 
resistance evolvability. 35 

 Antibiotic resistance evolution exhibits hallmark of diminishing returns epistasis  

To investigate how diverse cellular perturbations affect resistance evolvability, we selected 
strains with genetic perturbations in a broad range of cellular functions from a genome-wide 
gene-deletion library (37) (Fig. 2A). The selection included both genes that we hypothesized to 
affect resistance evolvability and diverse other genes that were included to identify any general 40 
trends (Methods). For  13 out of 98 selected genes, we hypothesized that the impaired function 
has an effect on evolvability through mutation rate; these functions include DNA-mismatch 
repair (38, 39), SOS response (13), and oxidative-stress response (23).  Further, we included 
deletions of known resistance genes such as drug efflux pumps (40), and porins (41, 42), together 
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with several other membrane-related functions (Fig. 2A).  Perturbations of functions that could 
systematically interfere with the expression and function of (yet unrecognized) resistance 
mechanisms were also included, in particular protein folding (43, 44), transcription factors, and 
membrane composition (Fig. 2A). The remaining 34 gene deletions were chosen to represent 
diverse cellular pathways that have negligible fitness costs and are expressed in rich medium (45, 5 
46). The former is crucial to avoid selecting primarily for suppressor mutations of the gene 
deletion rather than for drug resistance (Methods). This broad selection of genetically different 
strains enables the discovery of general trends of resistance evolution and of cellular functions 
that lead to deviations from these trends.  

We evolved the selected strains for tetracycline resistance and first identified general patterns 10 
that can explain the extent to which gene deletion strains evolved. A common pattern in 
evolution experiments is that identical beneficial mutations have weaker effects on fitter than on 
less fit backgrounds (29, 30). We observed a hallmark of such diminishing-returns epistasis at 
the level of drug resistance: Strains that were initially more sensitive underwent greater 
resistance increases during the experiment and effectively caught up with initially more resistant 15 
strains (Fig. 2B). Gene deletions often alter antibiotic resistance (33, 46); for tetracycline, the 
initial resistance levels of deletion strains varied by an order of magnitude (Fig. 2B). However, 
after 180 hours of evolution (about one hundred generations), these differences had largely 
evened out: Strains with an x-fold lower initial resistance (IC50) than the wild type tended to 
increase their resistance by x-fold more in the evolution experiment (Fig. 2B). This global pattern 20 
supports that there is a hard upper bound for spontaneous tetracycline resistance (“resistance 
limit”, Fig. 2B), which diminishes the possible resistance increases when approached. 
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Fig. 2 Resistance increases in diverse gene deletion strains reveal pattern of diminishing returns epistasis at 
the level of antibiotic resistance. A) Gene deletions chosen as ancestors for evolution experiments grouped by 
possible mechanism of evolvability alteration (large colored boxes) and specific cellular function (small boxes). B) 
Mean fold increase in resistance after 180 hours of evolution versus initial resistance for each deletion strain. The 5 
final and initial resistance measures for each replicate are the mean tetracycline concentrations over appropriate time 
intervals (12-24h for initial and 170-180h for final resistance). The line 𝑦𝑦 ∝ 𝑥𝑥−1 indicates where the points would lie 
if all experiments reached the same final resistance irrespective of initial resistance. C) Resistance change over time 
replicates of three strains highlighted in B). Temporal evolutions of the reference strain (ΔlacA) are shown in gray 
for comparison. This figure uses data from experiment M2 in B) and combines data from M2 and M3 in C) 10 
(Methods). 
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Perturbing efflux pumps drastically decreases resistance evolvability 

Can cells be forced to deviate from this general trend of seemingly inevitable resistance? Noting 
that many spontaneous tetracycline resistance mutations directly relate to the overexpression of 
efflux pumps (47, 48), we reasoned that perturbing the composition or regulation of these pumps 
may affect resistance evolvability. Compromising efflux pumps sensitizes bacteria to various 5 
drugs (46, 49). According to the diminishing returns pattern (Fig. 2A), bacteria with perturbed 
efflux pumps are thus farther away from the resistance limit, and should evolve resistance faster. 
Alternatively, disrupting efflux pumps could effectively block this mutational path to resistance 
and force evolution to seek a different – likely less accessible – path. To discriminate between 
these two scenarios, we tested how perturbations of efflux pumps affect resistance evolvability. 10 

Indeed, deleting the genes acrA or tolC, which code for components of the AcrA/B-TolC efflux 
pump, can essentially block resistance evolution. The most drastic effect occurred for ΔtolC in 
tetracycline, where we detected no increase in resistance in all seven replicates of the evolution 
experiment (Fig. 3B). This is striking because not only did this strain evolve under the same 
strong selection pressure for drug resistance at the same population size for the same number of 15 
generations as all other strains, but it was even five times more sensitive at the beginning of the 
evolution experiment (Fig. 3B) (50). We detected only one fixed mutation (a single base-pair 
substitution in the promoter of the yhdJ gene) in a single ΔtolC evolution replicate, corroborating 
the lack of adaptation; this idiosyncratic mutation appeared random and was unrelated to 
resistance (Data S1). Similarly, only one ΔacrA replicate out of five evolved tetracycline 20 
resistance, namely by overexpressing the homologous, rarely used AcrE/F-TolC pump, thus 
circumventing acrA loss (51, 52). The rapidity at which evolution found this alternative 
mutational path highlights the difficulty of perturbing resistance evolvability. The striking lack 
of resistance evolution for ΔtolC (Fig. 3B) likely reflects that TolC serves as an outer membrane 
channel for at least eight different efflux pumps (53), which can be disabled simultaneously. In 25 
sum, these results show how disrupting a specific cellular function can simultaneously sensitize 
cells to a drug and drastically slow resistance evolution.  

We hypothesized that interfering with the regulation of efflux pumps while preserving their 
structural integrity provides additional ways to manipulate resistance evolvability. Indeed, 
several genetic perturbations of efflux-pump regulation significantly altered the rate of resistance 30 
evolution. Specifically, deleting marA, coding for a key activator of efflux-pump expression (34, 
54) increases the initial sensitivity to tetracycline and slows subsequent resistance evolution, 
while not completely abolishing it (Fig. 3B). In contrast, deleting marR, coding for a repressor of 
marA (55) and therefore an indirect repressor of efflux pump expression, increases initial 
resistance but has no lasting effect on resistance (Fig. 2B), as expected from the diminishing 35 
returns pattern. Deleting acrR, coding for a repressor of the acrA/B operon and the mar regulon 
(56), shows increased initial sensitivity to tetracycline, likely because its coding region contains 
a MarA biding site that activates the acrA/B operon (57). Despite this initial sensitivity, 
resistance of the ΔacrR strain increases only modestly during the evolution experiment, by about 
15-fold compared to 25-fold in the ΔlacA reference strain. Thus, deleting acrR is another way to 40 
decrease acrA/B expression and thus limit the attainable resistance. Taken together, we identified 
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multiple cellular targets that slow resistance evolution by affecting efflux pumps, highlighting 
that even a single main mutational path to drug resistance can be targeted in several ways. 

 
Fig. 3 Perturbing multi-drug efflux pumps can drastically reduce the evolvability of tetracycline resistance. 
A) Schematic of AcrAB-TolC multidrug efflux pump in the membrane and genes that regulate it. Big arrows are 5 
genes, squares with pointing or blunt arrows are transcriptional activators or repressors respectively, and the Pacman 
shape is a protease.  The five most common mutation loci are marked by stars; amplification of a genome region is 
shown as stacked black lines representing copies of DNA. Each mutation locus has a pie chart near it where colored 
slices represent the proportion of evolved populations started from the reference strain (ΔlacA) which gained a 
mutation in that locus during the experiment. Slices of a darker shade of the gene color represent the proportion of 10 
samples with predicted loss of function mutations in that locus. B) Resistance (IC50) over time for evolution 
experiments started from the ΔtolC, ΔacrA, ΔacrR, ΔmarA strains. All these genes are directly involved in the most 
common path to resistance shown in A. Gray lines show resistance over time for replicate experiments of the 
reference strain (ΔlacA). 

 15 
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Perturbing chaperones, lipopolysaccharide biosynthesis, DNA repair, and other genes 

can slow or accelerate resistance evolution 

Beyond efflux pumps, we exposed additional cellular functions that slow resistance evolution 
when perturbed. In particular, deleting the gene for the Hsp70 chaperone DnaK (58)  
considerably slowed resistance evolution. The ΔdnaK strain evolved only 3-fold resistance while 5 
the reference strain reached more than 20-fold resistance gains in the same amount of time (Fig. 
4). Furthermore, the ΔdnaJ strain which harbors a deletion of DnaK’s co-chaperone also exhibits 
slowed resistance evolution, albeit less extreme than ΔdnaK (Fig. S5). This observation is 
consistent with the notion that chaperones play a key role in evolution by affecting the 
conversion of genetic to phenotypic variability (59, 60). Perturbing different steps of the LPS 10 
biosynthesis pathway (ΔlpcA and ΔlpxM) led to over 4 and 2-fold lower levels of final resistance 
respectively (Fig. 4 and Fig. S5). Deletion of tatC, a gene involved in protein transport across the 
membrane, significantly slows resistance evolution (Fig. 4). This effect is possibly due to a lower 
mutation rate as this gene is thought to play a role in stress-induced mutagenesis (61). The 
molecular mechanisms underlying the effects of these genes on resistance evolution are unclear, 15 
highlighting the difficulty of predicting such evolvability modifiers and the importance of our 
systematic approach to exposing them. Together, these results support that multiple independent 
cellular functions determine resistance evolvability; perturbing these functions often defers 
resistance – exactly what is coveted in the clinic. 

A few gene deletions also accelerate resistance evolution. Specifically, deleting decR, a regulator 20 
of cysteine detoxification (62), slightly accelerates resistance evolution even though it does not 
affect initial resistance (Fig. 4). We observed that a loss-of-function mutation in decR occurs 
reproducibly in the reference strain (Fig. 3A,  Data S1). This is intriguing since the decR deletion 
alone does not increase resistance and suggests that loss of decR function amplifies the effects of 
spontaneous resistance mutations. A more straightforward way of accelerating resistance 25 
evolution are perturbations of DNA repair (ΔmutL in Fig. 4) that lead to mutator phenotypes with 
100-fold increases in mutation rate (38). However, the effect is weak, suggesting that the 
occurrence of beneficial mutations is not rate-limiting for resistance evolution under our 
conditions. Overall, our observations support the notion that bacteria are more easily perturbed in 
ways that slow down resistance evolution rather than accelerate it. Importantly, this indicates a 30 
huge unexploited reservoir of candidate targets for choking resistance evolution. 

To test if our results are specific to tetracycline or more generally applicable, we performed a 
similar evolution experiment with chloramphenicol. Like tetracycline, chloramphenicol targets 
the ribosome but the details of this interaction differ considerably (63). Whereas the evolution of 
tetracycline resistance seemed to level off within seven days, for chloramphenicol, we observed 35 
a steady increase even after ten days (Fig. S4, S6), confirming previous reports (21). Many 
mutations that fixed during the experiment overlapped with those observed for tetracycline, with 
additional mutations related to the MdfA efflux pump (Fig. S2) as previously described (21, 33). 
Despite these differences, the effects of specific gene deletions on evolution in the two drugs 
were remarkably similar (Pearson’s correlation coefficient r=0.77, p<10-10). In particular, the 40 
perturbations with the strongest effects were common to both antibiotics: Mutator strains (ΔmutT 
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and ΔmutL) adapted faster while the ΔtolC, ΔdnaK, and ΔmarR strains adapted more slowly (Fig. 
S4). The accelerated evolution in mutator strains was clearer for chloramphenicol (Fig. S4). 
These results show that the effects of the cellular functions we identified are more general and do 
not just affect evolvability for one specific antibiotic in an idiosyncratic way, suggesting that 
hitting the same target can often modify resistance evolvability more broadly for different drugs.  5 

 
Fig. 4 Diverse cellular functions, including chaperones, LPS biosynthesis, and DNA repair, affect resistance 
evolution. Resistance (IC50) over time as in Fig. 3 for several strains with deletions of genes not immediately related 
to efflux pumps which have a considerable effect on resistance evolvability. ΔmutL and ΔdecR show slightly 
increased evolvability, ΔmutL presumably due to the increased mutation rate. ΔdnaK, ΔlpcA and ΔtatC, mutants in 10 
protein folding, LPS bioshynthesis and protein export respectively show decreased evolvability.      

Changes in evolvability are largely caused by epistatic interactions with common 

resistance mechanisms  

We hypothesized that many of the observed changes in evolvability are caused by epistasis 
between the gene deletions and common spontaneous resistance mutations. To test this 15 
hypothesis, we first combined our whole genome sequencing data for evolved strains with the 
resistance levels measured at the end of the evolution experiment. Based on these data, we built a 
simple linear regression model to estimate the benefit of each spontaneous resistance mutation 
(Methods). This model enabled us to identify deletion strains where these mutations fixed but 
had a different resistance benefit than expected (Fig. 5A). This analysis indicated magnitude 20 
epistasis, i.e. a quantitative change in the fitness effect of a mutation due to the presence of a 
different mutation (31), between the deletion and the acquired mutations: For example, in a 
∆dnaK background, the same resistance mutations increased resistance by considerably less than 
in other strains (Fig. 5A). In extreme cases where the gene deletion completely nullifies the 
benefit of resistance mutations, these mutations would not fix in the evolution experiment (as 25 
observed for the ∆tolC strain, Fig. 3B). Thus, the strongest epistatic effects are not detectable by 
this approach. 
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To extend this analysis to extreme cases like ∆tolC and corroborate the central role of epistasis in 
resistance evolvability, we directly quantified epistatic interactions between specific gene 
deletions and common resistance mutations. We isolated clones from the ΔlacA reference 
populations evolved in tetracycline and deleted genes that modified the rate of resistance 
evolution in our experiments. We then measured the IC50 of the ancestral, evolved, and newly 5 
modified strains (Fig. 5B, Methods). Deleting tolC rendered the evolved reference strains even 
more sensitive to tetracycline than the reference strain was at the beginning of the experiment 
(Fig. 5C). The deletion of dnaK and the deletion of lpcA also sensitized the resistant strains, 
albeit only partially (Fig. 5C). These results expose epistatic interactions between resistance 
mutations and gene deletions identified in our large-scale search for evolvability modifiers, 10 
which are consistent with their slower resistance evolution. More quantitatively, the extent of 
epistasis mirrored the observed differences in resistance evolvability for ΔtolC and ΔdnaK, 
respectively (Fig. 3 and 4). Together, these results highlight the potential of exploiting epistatic 
interactions for evolvability modification as a promising strategy to restrain resistance evolution. 

 15 
Fig. 5 Epistasis between gene deletions and resistance mutations likely underlies altered evolutionary 
dynamics of deletion strains. A) Measured vs. fitted log resistance increase for each sequenced evolved population. 
For the prediction, the five most common mutations were considered (Methods). The black circles represent control 
(ΔlacA) strains. ΔdecR, ΔlpcA and ΔdnaK samples are highlighted to show that their effects systematically deviate 
from predictions. B) The dose-response curves for four strains. Black circles, blue circles, black crosses and dark 20 
blue crosses represent the ancestral ΔlacA, the ancestral ΔtolC, a clone isolated form an evolved ΔlacA population 
and the same clone with tolC deleted. A hill function is fitted to all four sets of measurements. The value for IC50 – 
the concentration at which the growth is half of the maximum – is shown with dashed gray lines. C) Resistance level 
(IC50) of the ancestral ΔlacA (reference, gray), ΔdnaK (red), ΔtolC (blue) and ΔlpcA (yellow) strains, three different 
resistant (evolved from ΔlacA) clones, and strains where dnaK, tolC and lpcA are deleted on the background of the 25 
respective resistant clones (Methods). Circles are used for ancestral strains, and crosses, diamonds and plus signs are 
used for three resistant clones isolated from three different evolutionary replicates starting from the reference 
(ΔlacA) strain. Horizontal lines represent the mean resistance value of each strain. The resistance decrease brought 
about by deleting dnaK on the resistant background is greater than on the sensitive background, showing epistasis 
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between resistance mutations and dnaK. The same comparison is shown for the same resistant clones and lpcA and 
tolC deletions. Deleting tolC in the evolved strains brings their resistance to slightly below the initial resistance level 
of the reference strain. 

Discussion 

We presented a systematic analysis of the effects of targeted genetic perturbations on antibiotic 5 
resistance evolution. Using automated high-throughput evolution experiments, we identified 
general patterns guiding resistance evolution and specific cellular functions that affect resistance 
evolvability most drastically. We established a high-throughput experimental evolution platform 
that keeps hundreds of cultures in parallel in exponential phase under controlled selection 
pressure. This platform allows precise detection of adaptation rates over a wide dynamic range; it 10 
enables quantitative investigations of evolvability for diverse microbes, including the most 
worrisome pathogens, and other stressors than antibiotics. 

Resistance-enabling genes like tolC, dnaK, lpcA, which drastically slow resistance evolution 
when deleted (Fig. 3 and 4), are candidate drug targets for a new strategy in which antibiotics are 
combined with compounds that do not lead to immediate synergy but slow down, or perhaps 15 
even prevent, resistance evolution in the long term. Antisense oligomers (phosphorodiamidate 
morpholino oligomers, PPMOs) are a promising way to inhibit the expression of a broad range of 
targets (64) – an approach that has been successfully used for genes encoding efflux pumps and 
leads to antibiotic hyper-sensitivity (50). Targeting efflux pumps would also be possible with 
efflux-pump-inhibiting molecules (65–67) or phages which require TolC for entry (68). TolC, 20 
which has received considerable attention (50, 69, 70) is a particularly interesting target in this 
context: A TolC-inhibitor would strongly synergize with antibiotics like tetracycline and 
chloramphenicol (50) while at the same time slowing resistance evolution. Thus, this strategy 
may solve the catch-22 that the coveted synergistic drug combinations tend to accelerate 
resistance evolution (71). Discovering inhibitors of the newly identified evolvability modifiers 25 
could reinvigorate old drugs and, at the same time, put their use on a sustainable future 
trajectory. 

The detailed molecular mechanisms behind the altered evolutionary dynamics of ΔdnaK, ΔlpcA, 
ΔtatC and ΔdecR remain unclear. Chaperones such as DnaK were famously proposed to affect 
evolution by buffering the phenotypic effects of mutations (43, 60, 72). However, there is also 30 
evidence that chaperones may enhance the phenotypic effects of spontaneous mutations (73). In 
the case of efflux-pump related resistance, a possible link is that TolC is a predicted client of 
DnaK (74). In addition to sensitizing bacteria to antibiotics, perturbing membrane composition 
via LPS biosynthesis could also influence membrane permeability for antibiotics and thus 
interfere with the effects of resistance mutations. However, there is evidence that just perturbing 35 
the assembled LPS layer does not change efflux pump activity (75). The mechanisms underlying 
the faster adaptation of the ΔdecR strain (Fig. 4) and the frequency of spontaneous mutations in 
this locus remain to be elucidated. DecR was recently shown to be a repressor of only one 
operon, which is involved in L-cysteine detoxification (62); decR is upregulated by MarA and 
TolC is involved in L-cysteine transport (76). Therefore, the resistance mutations affecting these 40 
genes may also affect DecR and L-cysteine levels, introducing a cost or sensitivity, which can in 
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turn be alleviated by specific mutations in this regulator. Elucidating the molecular mechanisms 
underlying evolvability modification is an exciting future challenge. 

Even when resistance-enabling genes like tolC or dnaK are deleted, evolution might ultimately 
find ways to increase resistance, but this can take orders of magnitude longer. A powerful 
application would be to combine an antibiotic with inhibitors for several of the key resistance-5 
enabling genes identified using the approach presented here. In this way, even less-common 
paths to resistance could be blocked. The probability of circumventing these blocks by mutation 
may become prohibitively low. Thus, in practice these combinations could be a key step toward 
finally casting Ehrlich’s elusive “magic bullets” after trying for over 100 years. This work lays 
the foundation for realizing this vision in the future by extending our approach to the genome-10 
wide scale, to other drugs, and to other organisms, in particular to the most relevant pathogenic 
microbes. 
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Supplementary Material 
 

Materials and Methods 
Strains, media, reagents and antibiotics 
Cultures were grown in LB medium from Sigma Aldrich (#L3022). For PCR reactions GoTaq 5 
G2 DNA Polymerase (Promega #M7845) or Q5 high fidelity Polymerase (New England Biolabs 
#M0491S) were used. 
All strains originated from isolated clones (plated on solid LB, picked, regrown overnight in LB 
and frozen in 15% glycerol) from the Keio collection (Baba et al., 2006) with kanamycin cassette 
included in the locus of the deleted gene. 10 

Tetracycline stock solutions of 7mg/ml or 10mg/ml were prepared by diluting tetracycline 
hydrochloride powder (Sigma Aldrich # T7660) in 83% ethanol at room temperature. 
Chloramphenicol stocks of 10mg/ml were prepared by diluting powder (Sigma Aldrich #C0378) 
in 99% ethanol. Kanamycin stock was made from kanamycin sulfate powder (Sigma Aldrich 
#K4000). All antibiotic stocks were stored at -20°C. 15 

 
Whole-genome sequencing analysis 
Whole genome sequencing was performed for 380 samples altogether as listed in Data S1. For 
all evolved population samples, the ancestral clone was also sequenced and its mutations 
analyzed Data S1), to distinguish clearly between mutations acquired before and during the 20 
experiment. Genomic DNA was purified directly from thawed glycerol stocks using the 
GenElute 96 Well Tissue Genomic DNA Purification Kit (Sigma-Aldrich # G1N9604). Library 
preparation, multiplexing, and sequencing were performed by LGC Genomics GmbH. The 
samples were sequenced on an Illumina NextSeq500 V2 (paired-end sequencing, 150bp read 
length, ~230-fold coverage on average, but ranging from ~70- to ~800-fold due to the 25 
multiplexing protocol). Sequencing data were analyzed using Breseq (74) (Version 0.32.0). 
Reads were aligned to the deposited Keio parent reference (Accession: CP009273) using 
Bowtie2. The mutations identified by Breseq were manually inspected for false positives; all 
validated mutations are listed in Data S1. Even though the samples were expected to be 
heterogeneous (they were not isolated clones), the “clonal” mode of Breseq was used. Therefore, 30 
the mutations detected only represent fixed mutations. Amplifications were noted if the coverage 
of a multi-genic region exceeded twice the average coverage of that sample. Since an IS insertion 
in the lon promoter region was often among the “unassigned new junction evidence” but at very 
high frequency, this type of mutation was assumed to be fixed if the frequency exceeded 90%. 
For each evolved sample, we validated that the intended gene deletion is present. If any reads in 35 
the deletion locus were present, which would suggest cross-contamination with another strain, 
the sample was excluded from the analysis, as indicated in Data S1.  
 
Automated experimental evolution 
The selected deletion strains from the Keio collection (37) as listed in Table S1 were all streaked 40 
for single colonies and clonal cultures frozen with 15% glycerol at -80°C. The glycerol stocks 
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were used to assemble the starting 96-well plates for the evolution experiment. Each plate had at 
least 12 empty wells, which were filled with sterile growth medium, and handled like all other 
wells throughout the experiment to monitor cross-contamination. Replicates of the same 
ancestor, if on the same plate, were placed far from each other to avoid cross-contamination 
which would not be detected by genotyping. Every plate contained at least two replicates (and 5 
usually more) of the control strain (either the BW25113 parent strain of the Keio collection or 
the ΔlacA strain). The ΔlacA strain was used as reference in later experiments instead of the 
BW25113 to ensure that any difference between the strains is not due to the presence or absence 
of the kanamycin cassette. 
 10 

The automated evolution protocol was carried out four times using a Tecan Freedom Evo 150 
liquid-handling platform. The specific differences between the runs of the experiment are given 
in Table S2. The 200µl cultures were kept in LB rich medium in 96-well plates (Nunc, 
transparent flat-bottom) in a shaking incubator (Liconic Storex, 30°C, >95% humidity, 720rpm). 
Continual shaking and rich growth medium ensured that the cultures were homogeneous and not 15 
under oxygen or nutrient limitation. Every 10 to 15min, each plate was transferred to a plate 
reader (Tecan Infinite F500) using a robotic manipulator arm (RoMa) and the absorbance (OD at 
600 nm) was measured. Every 3-5h, the cultures were transferred to new plates. They were not 
diluted in the same plates to avoid biofilm formation and due to large errors in volumes left in 
the wells after pipetting out most of the culture. The new plate was filled in three steps. First, 20 
pure LB medium (𝑣𝑣med) was pipetted, then medium with antibiotic (𝑣𝑣ab) and last the culture 
(𝑣𝑣culture) from the previous plate. Each culture had its own dedicated 200 µl disposable tip, 
which was washed in ethanol after every dilution. LB medium and antibiotic stock were multi-
pipetted into the new plates using 1000 µl tips. All tips were exchanged once a day. The 
reservoirs with media had lids that were taken off using the RoMa arm just before usage. 25 

Every day of the experiment, the penultimate plates of that day were left in the incubator to grow 
out: the next day 70µl of 50% glycerol was added to each well and the plates frozen at -80°C. 
Fresh antibiotic stocks and medium reservoirs were provided. There were always two 
concentrations of antibiotic stocks available, approximately 10-fold apart, the protocol always 
only chose one of the available stocks to pipette from. The concentrations of the antibiotic stocks 30 
were chosen each day depending on how resistant the populations had become. 
Every 3 to 5 hours the cultures from each plate were transferred to new plates using the Air LiHa 
robotic pipetting head. The appropriate volumes of culture, medium and antibiotic to use were 
calculated at each dilution step and for each culture using a custom Python script based on the 
OD values obtained since the last dilution. The growth rate was obtained from 18 consecutive 35 
OD measurements by obtaining the slope of the least-squares linear fit (numpy.polyfit 
function) to the log2 of those background subtracted OD values which were between 0.01-0.1. 
All growth rates were normalized to the growth rate of the reference strain in the absence of 
antibiotic (1.7 doublings per hour). The volumes were calculated separately for each well using 
the last OD measurement (𝑑𝑑), normalized fitted growth rate (𝑔𝑔current), concentration of 40 
antibiotic stock (𝑐𝑐stock), current antibiotic concentration in the well (𝑐𝑐current) and Hill coefficient 
of the dose response curve 𝑛𝑛TET = 1.8,  𝑛𝑛CHL = 2.4 (33) in order to reach the target OD 
(𝑑𝑑target = 0.01), growth rate (𝑔𝑔target = 0.5) and total volume (𝑣𝑣total = 200) according the 
equations:  
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𝑉𝑉culture = 𝑉𝑉total ∙ 𝑑𝑑target/𝑑𝑑 

𝑐𝑐target = 𝑐𝑐current �
𝑔𝑔current

1 − 𝑔𝑔current
�
1
𝑛𝑛

 

𝑉𝑉ab = (𝑣𝑣total ∙ 𝑐𝑐target − 𝑏𝑏 ∙ 𝑐𝑐current)/𝑐𝑐stock 

𝑉𝑉med = 𝑉𝑉total − 𝑉𝑉culture − 𝑉𝑉ab 
We took several precautions to deal with atypical input values. If the concentration 𝑐𝑐current is 5 
zero, 𝑐𝑐target is set to a default concentration of 0.1 µg/ml for tetracycline and 0.5 µg/ml for 
chloramphenicol, which are values lower than the IC50 of the most sensitive strains in our 
selection. If the sum of squared residuals from the fit to obtain the growth rate is greater than 0.8, 
which was empirically chosen to reflect a failed growth rate fit, then 𝑐𝑐target is set to 𝑐𝑐current. If 
the measured normalized growth rate is larger than 0.9, it is set to 0.9 to avoid very large or 10 
undefined values for 𝑐𝑐target due to the sigmoidal shape of the dose-response curve. If the 
calculated volume 𝑉𝑉ab is smaller than 5µl, 𝑉𝑉ab  is set to zero (only medium is used to dilute the 
culture) and concentrations are updated accordingly. 𝑉𝑉culture is capped at 140µl, to assure 
accurate aspiration from the small 200µl culture. There were two available reservoirs of 
antibiotic stocks, the higher concentration was only used if, for the lower stock 15 
concentration 𝑉𝑉ab > 𝑉𝑉total − 𝑉𝑉culture. 
 
Resistance measure 
The “on-the fly” resistance (IC50) measure for a particular culture is the antibiotic concentration 
in the well at that time. The concentration was updated at every dilution. For all plots of 20 
resistance over time (Fig. 2-4) and all “initial” and “final” resistance measures, only those time 
points where the growth rate after that particular dilution was close to half-inhibited (between 0.3 
and 0.7 of the maximum growth rate of the reference strain) were considered. 
 
Regression model of mutational effects 25 

The regression model has two major assumptions. First, different mutations in the same locus 
provide the same resistance benefit and second, the effects of mutations on resistance are 
additive on a log scale, i.e. each mutation brings a fixed relative resistance increase irrespective 
of which other mutations are present. Assuming this is true, the log resistance y can be expressed 
as a linear model: 30 

𝑦⃗𝑦 = 𝑏𝑏0 + 𝑏𝑏�⃗ ∙ 𝑥⃗𝑥 + 𝜖𝜖, 

where 𝑦⃗𝑦 is the log of the increase in resistance observed for the individual evolving 
populations, 𝑏𝑏0 is a fitted coefficient corresponding to the resistance increase common to all 
evolved populations not predicted by the five most common mutations,  𝑏𝑏�⃗  is the vector of fitted 
coefficients which correspond to the effects of the individual mutations, 𝑥⃗𝑥 is a vector of 1s or 0s 35 
determining the presence or absence of that particular mutation in the given evolved population.  
Mutations from all sequenced samples evolved in tetracycline which passed contamination and 
quality control were included in the analysis Data S1. The function fitlm (Matlab R2016b) was 
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used. The predicting variables were the presence and absence of mutations in the five most 
commonly hit genes (marR, lon, efflux-pump amplification, acrR, decR), the fit parameters were 
the multiplicative effects of mutations in those loci, and the response variable was the log 
resistance increase over the course of the experiment. The predicted mutational effects of the five 
most common mutations are given in Table S3. 5 

 
Generation of double deletion mutants 
Before introducing the kanamycin cassette into the evolved ΔlacA::kanR strains to produce 
double-deletion mutants, clones were picked from LB agar plates with 25 µg/ml kanamycin-
sulfate and 10 µg/ml tetracycline hydrochloride and their growth rates were compared with the 10 
evolved strain. The growth rate was determined in a dose-response assay as explained in “Dose-
response measurements”. Clones with resistance level similar to the evolved population were 
subjected to P1-phage transduction (for dnaK and tolC deletion) or lambda-red recombineering 
(for lpcA deletion). 
Prior to the P1-phage transduction, the FRT-flanked kanamycin cassette has been removed from 15 
the evolved ΔlacA strains with the plasmid pCP20 and selection on LB agar with 100 µg/ml 
ampicillin and with 25 µg/ml kanamycin. Afterwards the double- deletion mutants were created 
by transferring the respective alleles (ΔdnaK, ΔtolC, ΔlpcA and ΔlacA) from the Keio collection 
into ΔlacA evolved strain using the standard P1-phage transduction protocol (75). The genotype 
was verified after P1 transduction with PCR (Table S4). 20 

 
To delete the lpcA gene in the evolved ΔlacA strains, the chromosomal gene lpcA was targeted 
with lambda-red mediated homologous recombination, due to inefficient P1 infection of the 
ΔlpcA strain. A PCR product containing the kanamycin cassette flanked by FLP recognition 
target sites and 50 base pairs homologies to adjacent chromosomal sequences, as described 25 
elsewhere (37)(Table S4), and 20 bp homology to the plasmid pKD13, were amplified using Q5-
HF-polymerase (NEB). The PCR product was purified using a standardized PCR clean-up kit 
(Promega #A9282) and electroporated into evolved E. coli BW2511 ΔlacA::kanR with the 
recombineering plasmid pSIM19. The transformed cells were selected for kanamycin (25 µg/ml) 
and the presence of the PCR product was confirmed by colony PCR (Table S4) 30 

 
Dose-response assay 
Strains were grown overnight at 30°C in LB broth without any antibiotics for 20 hours. The 
growth rate of the double- and single-gene deletion mutants with and without tetracycline were 
determined at OD600 using the Biotek plate reader Synergy H1. The overnight culture was diluted 35 
1:1000 in all assays. The cell growth was observed for 25 hours at 30°C. 
The Hill function fits were obtained by fitting the function  

𝑦𝑦 =
𝑔𝑔0

1 + � 𝑥𝑥𝑐𝑐0
�
𝑛𝑛 
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to the growth rate measurements using the function fit (Matlab R2016b). g0 is the fitted 
maximum growthrate (or the growth rate without drug), c0 is the fitted IC50 and n is the fitted 
dose sensitivity (33).  
 
Growth rate fits 5 

Unless specified otherwise, growth rates are determined as the slopes of a linear fit to the log2 
background subtracted OD values. Only those OD values which lie between 0.015 and 0.1 (after 
background subtraction) and only the time window from when the values first cross 0.015 until 
they reach 0.2 were considered. The function fit (Matlab R2016b) was used. 
 10 
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Fig. S1. Antibiotic concentration in well during evolution experiment agrees with 
conventional IC50 measurement. 
The concentration of tetracycline in the well at the end of the experiment for many wells is 
plotted against the fitted IC50 values from measuring the growth rate of the same populations in 5 
a wide range of tetracycline concentrations (Methods). Pearson’s correlation coefficient 
calculated from the log values of the two measurements is given in the title of the plot. 
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Fig. S2. Mutations reproducibly occur in a small number of loci during evolution in 
tetracycline and chloramphenicol. 
A) Counts and types of fixed mutations found in populations evolved in tetracycline grouped by 
gene locus where they occurred. Only genes which were hit at least twice in our dataset are 5 
shown. The label “pumps” denotes an amplification of the region of the acrA/B  operon 
identified from a more than two-fold increase in coverage compared to the mean (Methods). The 
label “several” denotes an amplification of a different region spanning several genes. The five 
most common mutations represent 84% of the total mutations identified. B) The same chart as in 
A) for mutations identified in populations evolved in chloramphenicol. 10 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/738252doi: bioRxiv preprint 

https://doi.org/10.1101/738252


27 
 

 

Fig. S3.Number of identified fixed mutations in evolved populations  
A) Histogram of the number of mutations detected in each evolved sample. The gray bars 
represent the number of mutations found in reference strains: the Keio parent strains or the 
ΔlacA strain. The typical number of fixed mutations for reference strains is 3 or 4. Since the 5 
selection sent for sequencing was biased toward slowly evolving strains, the overall counts are 
biased to fewer mutations. B) The same chart as in A) for the counts of mutations identified in 
populations evolved in chloramphenicol. 
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Fig. S4. Strain specific changes in tetracycline and chloramphenicol evolvability are 
correlated.  
A) Fold increases in resistance normalized to the mean fold increase in resistance for the 
reference strain (ΔlacA) shown in black. The correlation coefficient is given in the title of the 5 
plot. B-E) Examples of resistance increase over time for chloramphenicol for strains highlighted 
in the upper left plot. The apparent plateauing of the resistance for ΔmutT is due to the fact that 
the concentration needed to keep the strains inhibited simply reached the maximum stock 
concentration used on that day. 
  10 
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Fig. S5 Resistance increases over time in tetracycline for additional ancestral strains. 
Resistance (as measured by the antibiotic concentration in the well) over time for all deletion strains for which more 
than 3 evolutionary replicates in tetracycline were done and which were not shown in Figures 2-4.  5 
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Fig. S6 Resistance increases over time in chloramphenicol for additional ancestral strains. 
Resistance (as measured by the antibiotic concentration in the well) over time in chloramphenicol, but for all strains 
for which more than two replicates were done successfully (i.e. no cross-contamination was found). 5 
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Experiment  Deletion strains from the Keio collection 

M1 – 
Tetracycline, 
short (120h) 
experiment 

ΔacrA, ΔacrR, ΔahpC, ΔampG, ΔatpF, ΔazoR, ΔcedA, ΔcodB, ΔcspE, ΔcysA, 
Δdam, ΔdedD, ΔdinB, ΔdnaK, Δfis, ΔfrdA, Δfur, ΔgalT, Δhda, ΔhisI, Δhns, 
ΔhslU, ΔhtpG, ΔhupA, ΔilvA, ΔkdpE, Δlon, ΔlpcA, Δlpp, ΔlpxM, ΔmarR, 
ΔmdtC, ΔmutL, ΔmutT, Δndh, parent, ΔpolB, ΔppiD, ΔproQ, ΔrecA, ΔrelA, 
ΔrfaG, Δrng, ΔrpoS, ΔrpsF, ΔseqA, ΔsodB, ΔtatC, ΔtolC, ΔumuC, ΔyccV 

M2 – 
Tetracycline 

ΔacrA, ΔacrR, Δacs, ΔadhE, ΔagaR, ΔahpC, Δamn, ΔampG, ΔastC, ΔatpF, 
ΔazoR, ΔbolA, ΔcaiC, ΔcedA, ΔchbB, ΔcodB, ΔcpdA, ΔcspE, ΔcysA, Δdam, 
ΔdedD, ΔdinB, ΔdnaK, ΔfdnH, Δfis, ΔfrdA, ΔfumA, Δfur, ΔgalF, ΔgalT, ΔgltB, 
Δhda, ΔhelD, ΔhisI, Δhns, ΔhslU, ΔhtpG, ΔhupA, ΔilvA, ΔiscR, ΔkdpE, ΔlacA, 
Δlon, ΔlpcA, Δlpp, ΔlpxM, ΔltaE, ΔlysS, ΔmanX, ΔmarR, ΔmdtC, ΔmutL, 
ΔmutT, Δndh, ΔnfnB, ΔnudE, ΔnuoG, ΔompA, ΔompR, Δpepb, ΔphoB, ΔpldB, 
ΔpntB, ΔpolB, ΔppiD, ΔproQ, ΔpurA, ΔpyrB, ΔrcsB, ΔrecA, ΔrelA, ΔrfaG, Δrna, 
Δrng, Δrob, ΔrpiA, ΔrplA, ΔrpoS, Δrpoz, ΔrpsF, ΔrsuA, ΔsdhA, ΔseqA, ΔsmpA, 
ΔsodB, Δsra, ΔstpA, ΔtatC, Δtig, ΔtktA, ΔtktB, ΔtnaB, ΔtolC, Δtrxa, ΔtufA, 
ΔulaA, ΔumuC, ΔyccV, ΔyfgA 

M3 – 
Tetracycline 
(fewer strains in 
more replicates) 

ΔacrA, ΔacrE, ΔacrR, Δcmr, ΔdedD, ΔdnaJ, ΔdnaK, ΔemrB, Δfis, ΔgalT, Δhda, 
ΔhslU, ΔhtpG, ΔlacA, Δlon, ΔlpcA, Δlpp, ΔlpxM, ΔmarA, ΔmarR, ΔmdtC, 
ΔmdtE, ΔmutL, ΔompF, ΔrecA, ΔseqA, ΔtatC, Δtig, ΔtktA, ΔtolC, ΔdecR 

M4 - 
Chloramphenicol 

acrA, ΔacrB, ΔacrR, Δacs, ΔadhE, ΔagaR, ΔahpC, Δamn, ΔampG, ΔastC, 
ΔatpF, ΔazoR, ΔbolA, ΔcaiC, ΔcedA, ΔchbB, Δcmr, ΔcodB, ΔcpdA, ΔcspE, 
ΔcysA, Δdam, ΔdedD, ΔdinB, ΔdnaJ, ΔdnaK, ΔfdnH, Δfis, ΔfrdA, ΔfumA, Δfur, 
ΔgalF, ΔgalT, ΔgltB, Δhda, ΔhelD, ΔhisI, Δhns, ΔhslU, ΔhtpG, ΔhupA, ΔilvA, 
ΔiscR, ΔkdpE, ΔlacA, Δlon, ΔlpcA, Δlpp, ΔlpxM, ΔltaE, ΔlysS, ΔmanX, ΔmarA, 
ΔmarR, Δmdh, ΔmdtC, ΔmutL, ΔmutT, Δndh, ΔnfnB, ΔnudE, ΔnuoG, ΔompA, 
ΔompF, ΔompR, Δpepb, ΔphoB, ΔpldB, ΔpntB, ΔpolB, ΔppiD, ΔproQ, ΔpurA, 
ΔpyrB, ΔrcsB, ΔrecA, ΔrelA, ΔrfaG, Δrna, Δrng, Δrob, ΔrpiA, ΔrplA, ΔrpoS, 
Δrpoz, ΔrpsF, ΔrsuA, ΔsdhA, ΔseqA, ΔsmpA, ΔsodB, Δsra, ΔstpA, ΔtatC, Δtig, 
ΔtktB, ΔtnaB, ΔtolC, Δtrxa, ΔtufA, ΔulaA, ΔumuC, ΔyccV, ΔyfgA 

 
Table S1 Lists of strains used in evolution experiments. 
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 M1 M2 M3 M4 

Antibiotic Tetracycline Tetracycline Tetracycline Chloramphenico
l 

Number of different strains 51 99 31 104 

Replicates per strain 3 3 8-12 3 

Control strain Keio parent ΔlacA ΔlacA ΔlacA 

Replicates of control 10 22 11 23 

Medium LB LB+50µg/ml 
kanamycin 

LB+50µg/ml 
kanamycin 

LB+50µg/ml 
kanamycin 

 
Table S1 Differences between instances of the automatized evolution experiments. 
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 Estimate Standard 
error 

t-statistic p-value 

b0  1.348 0.198 6.82 2.55*10-10 
b1 (marR) 1.154 0.180 6.42 2.00*10-9 
b2 (lon) 1.144 0.180 6.35 2.81*10-9 
b4 (pumps) 0.2657 0.197 1.35 0.180 
b5 (acrR) 0.3587 0.197 1.82 0.071 
b6 (decR) 0.8096 0.181 4.48 1.55*10-5 
 
Table S2 Estimates of the resistance contributions of the 5 most common mutations based on linear regression 
model. 
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Oligo
ID 

locus  Forward (5‘ to 3‘) Reverse (5‘-3‘) 

Priemer pairs for genotype verification after P1 transduction 

23,24 lacA GGTTCCTTACTGGCATTG GCTGGAAGTGGTTATTCTG 

25,26 tolC CGCGCTAAATACTGCTTC GTTGCCTTACGTTCAGACG 

27,28 dnaK CACAACCACATGATGACC CCTAGATGAATGCACGGG 

Primer pair for construction of ΔlpcA::kanR 

21,22 lpcA CGGTACACTGCATTTTGTCTATTACATTTA
TGCTGAAGGATATCCTCATGattccggggatc
cgtcgacc 

GTAAACGTCTTATCCGGCCTACGCCAGACT
TACTTAACCATCTCTTTTTCtgtaggctggagct
gcttcg 

Primer pair for colony PCR 

35,36 lpcA CGGTACACTGCATTTTGTCT GGCGTAAACGTCTTATCCGG 
 
Table S3 Primer pairs used for construction and verification of double deletion strains.  
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Data S1. (separate file) 
Descriptions of all fixed mutations found in ancestral and evolved clones. 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/738252doi: bioRxiv preprint 

https://doi.org/10.1101/738252

