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Abstract

Numerous time-course gene expression datasets have been curated for studying the biological
dynamics that drive disease progression; and nearly as many methods have been proposed to analyse
them. However, barely any method exists that can appropriately model time-course data and at the
same time account for heterogeneity that entails many complex diseases. Most methods manage to
fulfil either one of those qualities, but not both. The lack of appropriate methods hinders our capa-
bility of understanding the disease process and pursuing preventive or curative treatments. Here, we
present a method that models time-course data in a personalised manner, i.e. for each case-control
pair individually, using Gaussian processes in order to identify differentially expressed genes (DEGs);
and combines the lists of DEGs on a pathway-level using a permutation-based empirical hypothesis
testing in order to overcome gene-level variability and inconsistencies prevalent to heterogeneous
datasets from complex diseases. Our method can be applied to study the time-course dynamics as
well as specific time-windows of heterogeneous diseases. We apply our personalised approach on
two longitudinal type 1 diabetes (T1D) datasets to determine perturbations that take place during
early prognosis of the disease as well as in time-windows before seroconversion and clinical onset of
T1D. By comparing to non-personalised methods, we demonstrate that our approach is biologically
motivated and can reveal more insights into progression of heterogeneous diseases. With its robust
capabilities of identifying immunologically interesting and disease-relevant pathways, our approach
could be useful for predicting certain events in the progression of heterogeneous diseases and even
biomarker identification.

Availability: The implemented code of our personalised approach will be available online upon
publication.

1 Introduction

With the increasing affordability of high-throughput technologies, such as microarray and RNA se-
quencing, genome-wide time-course gene expression data has become one of the most abundant and
routinely analysed type of data [Bar-Joseph et al., 2012] for studying and understanding the molec-
ular mechanisms underlying various complex diseases [Menche et al., 2017]. Encapsulating a wealth
of information regarding the prolonged or transient expressions of a large set of activated genes [Bar-
Joseph et al., 2012], time-course data also helps us understand and model the (multidimensional)
dynamics of complex biological systems or phenomena, such as disease progression [Bar-Joseph et al.,
2012; Androulakis et al., 2007; Wang et al., 2008]. It offers us the possibility of deciphering the un-
derlying pathophysiologies and systematic evolutions of human diseases [Androulakis et al., 2007]. A
prominent goal in such studies has been to identify genes whose expression levels systematically differ
between a case (e.g. disease) and a control (e.g. healthy) group, and can be classified as biomarkers
for diagnosis and prognosis of the disease.

For more than a decade, various methods have been introduced for modelling time-course data
to identify differentially expressed genes (DEGs). Nonetheless, modelling, interpreting and validat-
ing the gene expression patterns are continually met with major challenges. The challenges can be
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largely classified into two categories: (i) robustly modelling the dynamics of time-course data and
(ii) accounting for the heterogeneity of complex diseases.

Many methods have been proposed that deal with the most prominent limitations of modelling
gene expression time-course data. Some such limitations include non-uniform sampling [Bar-Joseph
et al., 2012; Bar-Joseph, 2004], too few sampling times, missing time points, few or no replicates
[Bar-Joseph, 2004], autocorrelation between successive time points [Bar-Joseph, 2004; Fischer et al.,
2007], and high-dimensionality with small sample sizes [Wang et al., 2008]. Some methods simplify
the modelling task by disregarding the dynamic nature and making the expression profiles “coarse-
grained” [Wang et al., 2008], such as cross-sectional analysis (i.e. direct time point-wise comparison
of samples) [Bar-Joseph et al., 2003] and simplification strategies [Wang et al., 2008; Erdal et al.,
2004; Kim and Kim, 2007]. However, these methods are suboptimal. Interpolation methods, such
as linear [Aach and Church, 2001] and B-spline (cubic spline) [Bar-Joseph et al., 2003; Storey et al.,
2005; Luan and Li, 2004], have been one of the first methods to be attempted for modelling the
dynamics of longitudinal data and using them for estimating gene expression levels at unobserved
time points [Bar-Joseph et al., 2003; Bar-Joseph, 2004; Fischer et al., 2007]. Even though they incor-
porate the continuous nature of the data, they may be subject to issues, such as overfitting. In fact,
B-spline-based methods require more than ten time points to produce reliable results [Bar-Joseph,
2004; Fischer et al., 2007], which makes it unsuitable for applications in many biological studies
[Wang et al., 2008].

Recently, linear mixed models (LMMs) and Gaussian processes (GPs) have become popular choices
for time-course data modelling due to their ability of modelling the correlational structure of the
data [Verbeke et al., 2010; Wolfinger et al., 2001; Trabzuni et al., 2014]; efficiently handling biological
replicates, while accounting for subject-specific variability; including time-invariant and time-varying
covariates; and determining the trends over time as well as taking into account the correlation that
exists between successive measurements [Kalaitzis and Lawrence, 2011]. Moreover, GP models offer
a robust way of estimating missing or unobserved values by providing confidence intervals along
the estimated curves of gene expression [Kalaitzis and Lawrence, 2011]. GP models can be used to
identify differential expression between multiple conditions [Äijö et al., 2012] or handle general exper-
imental designs [Cheng et al., 2019]. They can also be designed to be robust to outliers and employ
flexible model basis [Stegle et al., 2010]. GPs capture the underlying true signal and embedded noise
in a time-course gene-expression data in a non-linear manner, without imposing strong modelling
assumptions. In addition to answering whether a gene is differentially expressed across the whole
time-course, GP models have also been successfully applied for determining specific time-windows
when a gene is DE even when no or few observations are made in that time-window [Stegle et al.,
2010; Heinonen et al., 2014; Yang et al., 2016].

The traditional applications of these methods detect genes that exhibit different expression lev-
els between a case and a control group (DEGs) across the whole study population. Unfortunately,
in the case of heterogeneous data from complex diseases, only a few genes are usually found to be
DE across all or most cases because different genes with similar functionalities may be found to
be perturbed across cases, thus justifying the gene-level variability at a functional or pathway level
[Menche et al., 2017]. In fact, gene-level results from similar studies of heterogeneous diseases, such
as cancers [Segal et al., 2004; Drier et al., 2013], asthma, Huntington’s diseases [Menche et al., 2017],
rheumatoid arthritis, type 2 diabetes, schizophrenia [Jin et al., 2014], and Parkinson’s disease [Jin
et al., 2014; Menche et al., 2017], have often been found to be inconsistent. They show distressingly
little overlap between similar studies of the same disease [Subramanian et al., 2005; Segal et al., 2004;
Chen et al., 2013; Menche et al., 2017]. Due to these challenges, many methods that summarise the
results on a pathway-level have been developed, where the genes are unified under biological themes
that aid in a functional understanding of the results. This can be further improved by developing
personalised approaches for identifying enriched or disrupted pathways in complex diseases. Here,
personalised approach refers to such methods that do not assume that changes are consistent across
all study subjects but instead they identify biomarkers for each subject, e.g. by analysing each
case-control pair separately; and a pathway is an overarching term for a group of genes unified under
biological themes and are also referred to as gene sets in Subramanian et al. [2005].

Menche et al. [2017] introduced a framework for personalised gene expression analysis, where person-
alised perturbation profiles (PEEPs) are constructed per case subject by calculating a z-score with
reference to the control group and considering any gene with a z-score above an optimised threshold
to be part of the PEEP. Using a combinatorial model on the PEEPs, they strive to identify a single
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pool of disease-associated genes that can be used to accurately predict the disease status of each
subject. The method of Menche et al. [2017] thus accounts for heterogeneity. However, it is not
directly suitable for modelling time-course data.

Pathway (gene set) enrichment analyses, such as Fisher’s exact test and GSEA [Subramanian et al.,
2005], are commonly applied to the gene-level results in order to obtain an understanding of the
results at the level of biological processes. Several specialised methods have also been proposed for
pathway-level analysis with two groups, such as module map [Segal et al., 2004], CORGs [Lee et al.,
2008], Pathifier [Drier et al., 2013], SPCA [Chen et al., 2008], and PARADIGM [Vaske et al., 2010].
However, only a few can be applied directly to time-course experiments. One such method is the uni-
fied statistical model for analysing time-course experiments at the pathway level using linear mixed
effects models [Wang et al., 2009]. This method directly identifies significant pathways expressed
over time by using random effects to model the heterogeneous correlations between the genes in the
pathway as well as other fixed and random effects. Unfortunately, these methods do not apply a
personalised approach for the modelling.

In this paper, we propose a method that models the time-course data in a personalised manner
using Gaussian processes and combines the lists of DEGs on a pathway level. Our method assumes
an experimental design where each case subject is matched with a carefully chosen control subject,
and the method uses a robust yet efficient method to detect DE genes for each individual with respect
to the matched control. Individual-specific gene-level results are summarised at pathway-level using
a permutation-based empirical hypothesis testing that is tailored for personalised DE analysis. To
study expression changes associated with particular time periods, such as time before disease onset,
we also extend the method to detect DEGs in specific time-windows.

We applied this method to two type 1 diabetes (T1D) microarray datasets from Kallionpää et al.
[2014]. There is growing evidence that T1D is a genetically heterogeneous disease [Atkinson et al.,
2014; Mukhopadhyay et al., 2018; Tuomi et al., 2014]. Therefore, in order to gain a robust un-
derstanding of the molecular mechanisms underlying this complex and heterogeneous disease, one
needs to apply a personalised approach on a pathway-level like the one presented here. We report
disruptions in pathways during the early progression of T1D (time-course analysis) as well as in the
6 months windows before seroconversion (autoantibody positivity) and clinical diagnosis of T1D. Se-
roconversion is the time of autoantibody presentation in T1D susceptible individuals and represents
the earliest (currently known) signs of disease progression. However, clinical diagnosis of T1D is
established at a very late stage of the disease when insulitis has persisted over a long period of time
Clark et al. [2017]; Pugliese [2017]; ∼ 80-90% of β-cells have been destroyed; and hyperglycemia is
achieved [Kallionpää et al., 2014; Clark et al., 2017]. Therefore, identifying relevant perturbations at
different stages of the disease can help in monitoring and perhaps predicting the significant events in
the disease progression. Our personalised approach was able to identify various disease-relevant and
interesting pathways from all three analyses, including those that illustrate the intrinsic mechanisms
of disease progression. We also compared the results of the proposed personalised approach from the
full time-course and time-window analyses with those of a population-wide method as well as the
original results from Kallionpää et al. [2014]. This method can be applied to other heterogeneous
diseases with a similar experimental design and also extended to non-paired case-control datasets.

2 Results

2.1 Overview of our personalised GP regression and pathway detec-
tion method

In this paper, we present a novel and personalised approach for identifying enriched pathways given
time-course observations from multiple two-sample (matched case-control) pairs. We apply our
method on gene expression microarray data, but the method can be applied to a variety of -omics or
other data types. Our method is demonstrated on gene expression time-course datasets with varying
number of case/control observations per pair and uneven sampling times (See Section 2.2). We per-
formed three types of analyses using the datasets described in Section 2.2: early disease progression
time-course (TC) analysis across the whole study period, time-series analysis within a window before
seroconversion (WSC), and time-series analysis within a window before T1D diagnosis (WT1D). We
compared the results obtained using our proposed personalised approach in each of the three anal-
yses with those obtained using a combined (non-personalised) method. Figure 1 gives a high-level
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Figure 1: Overview of the method: (a) The three analyses performed using two separate approaches.
Here, m is the number of case-control pairs. (b) A schematic illustration of our personalised approach
and a population-wide approach (combined method). In the personalised approach, we identify DEGs
independently for each case-control pair and combine results at the pathway level.

overview of our analyses and highlights the differences between the two approaches discussed in this
paper.

In our personalised approach, we examine each case-control pair and probe-set (i.e. a feature) sepa-
rately by fitting two models. In the first model, i.e. joint model, a GP regression model is fitted to all
samples from a case-control pair together (corresponds to the null hypothesis), whereas in the second
model, i.e. separate model, a case and a control are fitted separately (corresponds to the alternative
hypothesis). In the time-course analysis, we identified the differentially expressed (DE) probe-sets
for each case-control pair separately by quantifying the fitting for each model using BF-scores (see
Equation (6)). For the time-series analyses within a time-window, we derived a method for quantify-
ing differential expression of each probe-set in a specific time-window using KL-scores (see Equation
(13)). A probe-set was classified as DE when, in TC analysis, the BF-score is above 4 and, in time-
window analyses, the KL-score is above 250. We then map the probe-sets identified as DE from
each case-control pair to their corresponding gene names and proceed to perform pathway analysis.
Subsequently, we proceed to obtain an enrichment score (over all case-control pairs) for each pathway
from the pathway database, MSigDB [Subramanian et al., 2005; Liberzon et al., 2015] by using the
metric described in Equation (15). This is followed by a novel permutation test for identifying a set
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of enriched pathways.

Our personalised approach is significantly different from the combined method where we compute
the associated BF-scores and KL-scores per probe-set by pooling together all the cases and all the
controls to form a set of combined cases and controls (assuming gene expression difference is ho-
mogeneous across the whole study population). The enriched pathways are then identified using a
standard one-sided Fisher’s exact test.

We refer the reader to Section 3 for a detailed description of our personalised approach as well
as the combined method.

2.2 Data

The two microarray datasets used in this study were published by Kallionpää et al. [2014]. The raw
data (accession code: GSE30211) was downloaded from the GEO database and preprocessed using
the affy-package in R programming language. Robust multiarray averaging (RMA) normalisation
technique was applied on all the downloaded samples.

Dataset 1 comprised of six case-control pairs chosen from the sample series of seroconverted pro-
gressors, such that each pair was sampled before and after seroconversion. Dataset 2 comprised
of 15 case-control pairs chosen from the sample series of T1D progressors, such that each pair was
sampled till at least one month before T1D diagnosis. As subjects in Dataset 1 were sampled start-
ing before seroconversion, they were used for the early disease progression time-course (TC) and
window before seroconversion (WSC) analyses. Whereas, subjects in Dataset 2 were all sampled
after seroconversion and all case subjects progressed to clinical T1D. Hence, they were used for the
window before T1D (WT1D) analysis. Here, the case-control pair numbers were kept the same as in
Kallionpää et al. [2014] for both datasets for comparability.

We use the Molecular Signatures Database (MSigDB, v6.1), which is a collection of annotated gene
sets [Subramanian et al., 2005; Liberzon et al., 2015]. We performed pathway-level analyses using
16808 (of 17786) pathways from the collection.

2.3 Identifying differentially expressed genes

Differentially expressed genes (DEGs) were identified in a direction-agnostic manner for pathway
level evaluation in all three analyses using both the personalised and combined approaches, as ex-
plained in Sections 2.1 and 3. In the personalised approach, DEG lists were identified for each
case-control pair independently, which resulted in an average of 895, 1127 and 1677 genes DE in
the TC, WSC and WT1D analyses, respectively. On average, 14% (TC: 13%, WSC: 13%, WT1D:
17%) of the DEGs overlapped between DEG lists of each case-control pair in the three analyses,
thereby demonstrating heterogeneity among case-control pairs. In the combined method, a DEG list
was identified by modelling all case-control pairs together for each analysis, which resulted in 436,
234, and 563 genes as DE in the TC, WSC and WT1D analyses, respectively. The overlap of DEGs
between the two approaches was significant in all analyses (p-value < 0.05 using Fisher’s exact test).

The personalised approach accounts for the heterogeneity between the pairs in time-course and
time-window analyses. Firstly, the differential expression of a gene in a case-control pair could be
attributed to any of its probe-sets regardless of the probe-set expressed in other pairs. Secondly, the
dynamics of gene expression and even the direction of regulation of a DEG is allowed to vary from
one case-control pair to another. It is not clear why certain genes behave inconsistently in different
individuals, but it could be due to the presence of certain other genes; or any deviation, regardless of
the direction, could result in disease-associated perturbation possibly because of the mechanism of
regulating the pathway [Menche et al., 2017]. Thirdly, even a gene that is not differentially regulated
in most of the case-control pairs can be relevant on the pathway-level. Finally, the GP modelling
was able to robustly interpolate over unobserved time points, which was especially important in
time-window analyses where sometimes only a few or no samples were available for determining dif-
ferential expression, as can be seen in Figures 2(a) and 2(b) as well as Supplementary Figures 1 and 2.

The combined method, on the other hand, is more stringent when identifying DEGs in time-course
as well as time-window analyses. For a gene to be identified as differentially expressed using this
method, one particular probe-set of the gene is usually required to be differentially expressed in
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Figure 2: Gene expression plots visualising the GP model fittings of the separate and joint models for the
six case-control pairs from Dataset 1. A red border around a plot signifies differential expression (DE)
in the time-course analysis and an orange shaded window signifies DE in the time-window analysis. Here,
pairs from Dataset 1 are prefixed with ‘SC-’. (a) Gene expression plots for PTPRN2. All profiles belong
to the same probe-set as all pairs, including the combined method, identified the same probe-set to have
the largest BF-score for PTPRN2. (b) Gene expression plots for HSPD1. The probe-set information
is marked for each pair since the profiles identified different probe-sets to have the largest BF-score for
HSPD1.
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almost all of the pairs. Furthermore, if a gene exhibits different temporal expression dynamics or
is regulated in opposite directions in different pairs, it is unlikely that this model will identify it as
differentially expressed or not.

To illustrate the above-mentioned traits, the expression of the genes encoding the only two au-
toantigens that were differentially expressed in the TC and WSC analyses, PTPRN2 and HSPD1,
from T1D pathway are shown in Figures 2(a) and 2(b). PTPRN2 encodes a major islet autoantigen
in T1D, which plays an important role in insulin secretion in response to glucose stimuli by accumu-
lating normal levels of insulin-containing vesicles and preventing its degradation [Lee, 2019]. HSPD1
is considered a pro- or anti-apoptotic regulator of apoptosis, depending on the circumstances [Aluk-
sanasuwan et al., 2017], whose high-levels have been associated with diabetes as well as increased
expression of inflammatory genes and release of pro-inflammatory cytokines [Blasi et al., 2012; Bellini
et al., 2017]. In the TC analysis using the personalised approach, case-control pairs 2, 7, 9 and 10 dif-
ferentially down-regulated only the PTPRN2 gene; pair 3 down-regulated only the HSPD1 gene; and
pair 8 down-regulated HSPD1, but up-regulated PTPRN2. Here, the pairs regulating HSPD1 differ-
entially express different probe-sets of the gene, whereas all pairs regulating PTPRN2 differentially
express the same probe-set. However, pair 8 up-regulated PTPRN2 when other pairs down-regulated
it. Coincidentally, pair 8 is the only pair that expressed both PTPRN2 and HSPD1 in this data and
it down-regulated HSPD1 while up-regulating PTPRN2, which may indicate correlation between
the two. On the other hand, the combined method found significance only in the PTPRN2 gene
since 5 of 6 case-control pairs differentially expressed the same probe-set. Moreover, Supplementary
Figures 1 and 2 show two examples, HLA DPB1 (probe-set: 11760799 x at) and IRF5 (probe-set:
11726687 a at), where the case-control pairs regulate the genes in inconsistent directions. Here, the
combined method identifies HLA DPB1 as DE, whereas IRF5 is classified as insignificant. The
personalised approach, however, identifies both of these genes as significant in all pairs.

2.4 Combined method vs personalised approach

Using the combined method, 52, 10 and 80 pathways were found to be significantly enriched with FDR
< 0.1 in the time-course analysis (TC) of Dataset 1, time-series analysis of 6 months time-window
before seroconversion using Dataset 1 (WSC) and time-series analysis of 6 month time-window
before diagnosis of clinical T1D using Dataset 2 (WT1D), respectively. Similarly, 124, 307 and
2550 pathways were found to be significantly enriched with FDR < 0.1 in the TC, WSC and WT1D
analyses, respectively, using the personalised approach (Figure 3(a), Supplementary Table 1). Of
these, 12, 1 and 38 enriched pathways overlapped between the two approaches in the TC, WSC and
WT1D analyses, respectively, which was found to be a significant amount (Fisher’s combined p-value
< 0.0001 obtained from p-values determined using Fisher’s exact test) (Figure 3(b)). Nonetheless,
the combined method was unable to identify most of the immunologically interesting and disease-
relevant pathways in all three analyses that were identified using the personalised approach.

Among the overlapping pathways, the most disease-relevant pathways were those related to MHC
classes I and II protein complexes, protein antigen binding and receptor activity. Where the person-
alised approach identified the relevance of these pathways in all three analyses, the combined method
identified them as significant only in the TC analysis. Moreover, the combined method failed to iden-
tify the overarching pathway, ‘antigen processing and presentation’, as significant, which was found
to be significant in all three analyses using the personalised approach. Additionally, other interesting
and relevant pathways that were identified by the personalised approach were not found using the
combined method in any of the analyses.

In particular, the combined method was also unable to identify one of the most basic pathways
related to immunological diseases, ‘immune response’, or any of its related pathways in any of the
analyses. In fact, the ‘Type 1 diabetes’ pathway was also not found as significant in any of the anal-
yses using the combined method. On the contrary, the personalised approach found the ‘immune
response’ pathway as highly significant in all three analyses and many related pathways in at least
one analysis. It also identified the T1D pathway as highly enriched in all three analyses.

2.5 Enriched pathways identified by the personalised approach

Several disease-relevant and intriguing pathways were identified as enriched using the personalised
approach in either all three analyses, only two analyses or uniquely in one analysis. In order to
establish relevance of these results, they were cross-validated with the results from the article that
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Figure 3: (a) Table listing the number of pathways identified as enriched (FDR < 0.1) in TC, WSC and
WT1D analyses using the personalised approach, combined method and Kallionpää et al. [2014] gene-
level results. (b) Table listing the number of enriched pathways overlapping between different approaches
in the TC, WSC and WT1D analyses (rows marked as ‘count’). A p-value, determined using Fisher’s
exact test, is also given for each overlap to show its significance (rows marked as ‘p-value’), where NS
refers to ‘not significant’ p-values (i.e. p-value > 0.05). Fisher’s combined p-value over all analyses per
comparison is given in the last column. (c) Venn diagram illustrating disease-relevant pathways specific
to a certain analysis or overlapping between analyses using the personalised approach. Here, pathways in
blue refer to those found enriched by the personalised approach, combined method as well as Kallionpää
et al. [2014]; green refer to those found enriched by the personalised approach and Kallionpää et al.
[2014]; and red refer to those found enriched by only the personalised approach; respectively. Full lists
of enriched pathways are found in Supplementary table 1.
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published Datasets 1 and 2, Kallionpää et al. [2014]. The differentially expressed lists of genes from
the analyses in the article corresponding to our TC, WSC and WT1D analyses were subjected to a
Fisher’s exact test using the pathways from the MSigDB [Subramanian et al., 2005; Liberzon et al.,
2015] database to ensure comparability. Their gene-level results identified 386, 432, and 824 path-
ways as enriched in the TC, WSC, and WT1D analyses, respectively (Figure 3(a)). These pathways
overlapped significantly (p-values < 0.0001 using Fisher’s exact test) with the enriched pathways
found by the personalised approach in all analyses as well as the enriched pathways identified in the
TC analysis using the combined method (p-value < 0.01), but overlapped insignificantly with the
results from time-window analyses using the combined method (Figure 3(b)). Essentially, Kallionpää
et al. [2014] were able to identify many of the significant pathways identified using the personalised
approach. However, Kallionpää et al. [2014] mostly identified only the overarching pathways, but
not the related pathways with more specialised functions. In some cases, they identified the signif-
icance of certain pathways in different analyses than the personalised approach. For instance, the
T1D as well as MHC classes I and II related pathways were found enriched (FDR < 0.05) in only
the WT1D analysis, whereas our method found it in all three analyses. The interesting pathways
discussed below that were identified using the personalised approach is illustrated in Figure 3(c) and
those identified by Kallionpää et al. [2014] and the combined method are highlighted with different
colours.

The personalised approach identified significant (FDR < 0.05) pathways related to immune response,
interferon-γ (IFNγ) signalling, regulation of inflammatory process to antigenic stimulus, chemokine
mediated signalling, and detection of other organism, in all three analyses suggesting their relevance
at all stages of the disease (see Supplementary Tables 1). Of these, Kallionpää et al. [2014] only
identified immune response and IFNγ signalling related pathways as enriched (FDR < 0.05) in all
analyses and detection of other organism pathway was found enriched (FDR < 0.05) in only the
WT1D analysis.

Multiple interesting overarching pathways were identified as enriched by the personalised approach
uniquely in the time-windows right before seroconversion and T1D diagnosis, which were also found
by Kallionpää et al. [2014] in at least one of the analyses. These include the pathways related to
cytokine mediated signalling, TNF signalling, regulation of dendritic cell (DC) differentiation, and
DC maturation. However, in contrast to Kallionpää et al. [2014] results, the personalised approach
was also able to highlight specific cytokine pathways that could be involved in the cytokine medi-
ated signalling as well as possible pathways necessary to regulate/conduct the immune response. In
particular, IL-2 and IL-10 related pathways were enriched along with immunoglobulin production,
and leukocyte mediated immunity.

Intriguingly, the personalised methods found several pathways that were uniquely enriched during
the early prognosis of T1D and in the 6 months window before T1D diagnosis. While IFNγ signalling
was found significant at all stages of the disease, interferon-α (IFNα) and interferon-β (IFNβ) sig-
nalling were enriched only in the TC and WT1D analyses using the personalised approach, whereas
Kallionpää et al. [2014] associate their relevance at all stages. Additionally, we found other T1D-
associated pathways, such as PD1 signalling, IL-1 receptor binding, regulation of IL-4 production
and positive regulation of B cell mediated immunity, to be enriched in the TC and WT1D analyses.
However, Kallionpää et al. [2014] were unable to detect them.

Furthermore, distinct disease-relevant pathways were determined as uniquely enriched before se-
roconversion, before T1D diagnosis or during the early stages of T1D progression using only the
personalised approach. Specifically, pathways related to natural killer cell-mediated cytotoxicity and
Fas signalling were found to be uniquely significant during the early stages of T1D progression and
before seroconversion, respectively. Most strikingly, pathways regulating the production of multiple
different pro- and anti-inflammatory cytokines, such as Interleukin-1, -1β, -2, -4, -5, -6, -10, -12, -21,
-22, as well as the related overarching pathways, were found enriched in the 6 months before clinical
onset of T1D, where more than half of the cytokine pathways were unique to this time-window.

2.6 Type 1 diabetes pathway

The type 1 diabetes pathway was found enriched in all three analyses using the personalised approach.
However, the combined method did not find it significant in any of the analyses and Kallionpää et al.
[2014] found its significance only in the late stages of the disease, i.e. window before clinical onset
of T1D. Figure 4 shows the genes that were identified as differentially expressed (BF-score > 4) in
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-

(a)

(b)

(c)

Figure 4: A comparative visualisation of the DEGs between the two approaches for the T1D pathway:
(a) TC analysis using Dataset1, (b) WSC analysis using Dataset 1 and (c) WT1D analysis using
Dataset 2. A coloured dot signifies that the gene is DE in the corresponding case-control pair. Here,
the HLA genes from MHC classes I and II are not marked individually, but grouped into their two major
classes for convenience; and a class is shown as DE in a case-control pair when at least one probe-set
from any HLA gene of the class was found DE in that pair. Also, pairs from Dataset 1 and Dataset
2 are prefixed with ‘SC-’ and ‘T1D-’, respectively.

each analysis per case-control pair (coloured dots). These figures clearly illustrate that only a small
fraction of the pathway’s genes are differentially expressed (DE) in most of the case-control pairs
and only a subset of these genes are DE in each child. Moreover, the subset of DE genes varies from
one pair to another. It is not clearly understood how the presence of certain genes influence that of
the other genes, therefore it is not easy to predict which genes in a pathway are selectively or neces-
sarily expressed. When the T1D pathway genes were functionally divided into 3 main sub-processes:
release and presentation of autoantigens; activation of CD4+, CD8+ T cells and macrophages; and
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apoptosis of β-cells, it was noticed that at least one gene from each sub-process was identified as DE
in each pair. Some pairs did not differentially express any of the (auto)antigen encoding genes, which
could indicate an environmental source of (auto)antigens instead of genetic. Similar phenomena may
be expected from most other pathways. As an additional example, IFNγ signalling pathway has
been depicted in Supplementary Figures 3 and 4.

The combined method identified only those genes as DE that were DE in almost all the pairs (Figure
4). Therefore, for a pathway to be recognised as enriched using the combined method, a significant
number of the genes in the pathway would need to be DE in most of the pairs, which may not be
how heterogeneous diseases, such as T1D, affects pathways.

3 Methods

3.1 Gaussian process regression

A Gaussian process is a generalisation of the Gaussian distribution. It can be seen as defining a
distribution over functions and inference taking place directly in the space of functions [Rasmussen
and Williams, 2006]. We denote X = (xt1 , xt2 , . . . , xtN )T ∈ RN as a vector of noisy measurements
for a particular probe-set, which were measured at N time points, T = (t1, t2, . . . , tN ). The GP is
defined as

f(t) ∼ GP (µ(t), k(t, t′)), (1)

which represents a distribution over function samples f(T ) = (f(t1), f(t2), . . . , f(tN )). Here, µ(t) is
the mean which we assume as zero and k(t, t′) is a positive semi-definite kernel function, which has
kernel parameters θ, i.e. k(t, t′|θ). We assume additive Gaussian observation noise ε, where Gaussian
observation is defined as

x = f(t) + ε, (2)

where ε ∼ N (0, σ2
ε ). Gaussian process regression modelling involves placing a Gaussian prior, f(T ) ∼

N (0,KT,T (θ)) over the true model, where the elements of the covariance matrix are defined by the
kernel [KT,T (θ)]i,j = k(ti, tj |θ). Here, we use the popular squared exponential kernel, which is
defined as

k(ti, tj |θ) = σ2
se exp

(
− (ti − tj)2

2`2se

)
, (3)

where `se is the length-scale parameter that controls the smoothness and σ2
se is the signal variance

of the kernel. Hence, the kernel parameters are θ = (`se, σ
2
se).

Given the observed data X, the measurement time points T and test time points T∗, we obtain
the posterior distribution f(T∗) | X ∼ N (µ∗,Σ∗) defined by

µ∗ =KT∗,T (KT,T + σ2
ε I)−1X

Σ∗ =KT∗,T∗ −KT∗,T (KT,T + σ2
ε I)−1KT,T∗ ,

(4)

where we denote KT,T = KT,T (θ) for brevity and KT∗,T = KT
T,T∗ encodes the cross-correlations

between measured and test time points.

3.2 Prior specification

The gene expression data is first centred to zero by subtracting the mean of the data for GP fitting.
This is done independently for the case, control and pooled (case and control) data. For the length-
scale (`se) parameter of the squared exponential kernel, we specify a Gaussian prior (µ = 30, σ2 = 6).
We chose the value of µ to correspond to 30 weeks which results in a small probability of short length
scales and provides a reasonable range of feasible length scales. The magnitude (σ2

se) parameter is
assigned a square root student-t prior (µ = 0, σ2 = 1 and ν = 20). The noise variance parameter is
assigned a scaled inverse chi-square prior (σ2 = 0.01 and ν = 1) to restrict it to smaller magnitudes.
We use the same (hyper)parameter priors for the case, control as well as joint GPs as explained later.

3.3 Marginal likelihood estimation using central composite design

We make use of the central composite design (CCD), which is a form of numerical integration
approximation for posterior prediction as proposed in Rue et al. [2009]; Vanhatalo et al. [2010], to
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approximate the marginal likelihood (ML). Computing the exact ML is computationally intractable
due to the marginalisation over the hyperparameters. Another approach to solving this problem,
would be to simply maximise the ML with respect to the hyperparameters. Such an approximation
is known as the type II maximum likelihood (ML-II) and can lead to overfitting [Rasmussen and
Williams, 2006], especially for small sample sizes common in biomedical studies. Moreover, in our
analysis, the ML-II approach failed to generate satisfactory estimates in many instances. CCD
assumes a split-Gaussian posterior for log-transformed hyperparameters and defines a set of R points
{θr}Rr=1 (fractional factorial design, the mode, and so-called star points along whitened axes) that
allow for estimating the curvature of the posterior distribution around its mode (see [Rue et al., 2009;
Vanhatalo et al., 2010]). We estimate the ML by using the R CCD points that are located around the
high-probability region of the posterior (which is the integrand in the ML integral) but by replacing
the split-Gaussian approximation used for posterior predictions with the exact product of likelihood
and prior. In other words, we take the weighted sum of the posterior probability evaluated at the R
points of the hyperparameter, which are weighted by the integration weights. For a model M with
data X, the estimated ML is given by

p(X|M) =

∫
p(X|M, θ)p(θ|M)dθ

≈ ΣRr=1p(X|M, θr)p(θr|M)∆r,

(5)

where p(X|M, θr) = N (0,KT,T (θr) + σ2
ε I) and ∆r is rth integration weight that corresponds to

the volume of hyperparameter space allocated to the rth point. The obtained estimated ML for
each model is then used to compute a Bayes factor score, which is used for model selection and for
identifying differentially expressed genes (DEGs) as discussed below.

3.4 Personalised approach to identifying DEGs in time-course anal-
ysis using ML ratio

To identify if a probe-set is differentially expressed between a matched case-control pair, we fit a
joint and separate model to the expression data and identify which model better explains the ob-
served data. The joint model involves fitting a Gaussian process over all the data points (i.e. case
and control data), whereas the separate model involves independently fitting a GP to only the data
points corresponding to the cases and fitting another GP to only the data points corresponding to
the control. After the fitting, model selection is performed to choose between the joint and separate
model. If the joint model is chosen, we conclude that the case and control expressions for the specific
probe-set comes from the same process and hence is not differentially expressed. Alternatively, if the
separate model is chosen, we conclude that the case and control expressions for the corresponding
probe-set comes from different processes and hence is differentially expressed. Assume two indepen-
dent models, MA and MB , which are fit to the case and control time-course of a particular probe-set,
xA and xB , respectively. Also, let a joint model, MS , be fit to the pooled data xS = (xA;xB).
A standard statistical test would compare models MA and MB (separate models) against the joint
model, MS . Hence, the null hypothesis would correspond to no differential expression and the alter-
nate hypothesis would correspond to the presence of differential expression [Stegle et al., 2010].

To perform model selection, we shall compute a Bayes factor score and specify a threshold for a
probe-set of a case-control pair to be differentially expressed. The Bayes factor score is calculated
as the log ratio of the marginal likelihoods of the separate and joint models,

BF-score = log
p(xA|MA)p(xB |MB)

p(xS |MS)
. (6)

This gives us a score for quantifying the differential expression of each probe-set. We use a thresh-
old of 4 (≈ 54.598 in the linear scale), which corresponds to strong evidence for rejecting the null
hypothesis as stated in [Kass and Raftery, 1995]. Probe-sets with BF-score greater than 4 are con-
sidered as differentially expressed. The BF-score in Equation (6) is computed for each probe-set and
case-control pair separately.

Finally, we map the probe-sets to their corresponding gene names. In case of multiple probe-sets
mapping to the same gene name, we choose the probe-set with largest BF-score to represent the
gene. This is done independently for each case-control pair, which allows the flexibility of choosing
different probe-sets between pairs to represent the same gene.
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3.5 Personalised approach to identifying DEGs in time-window anal-
yses using KL divergence

In addition to analysing the entire time-course, we also perform a complimentary analysis where
we focus on the time-window prior to a significant event (e.g. seroconversion and clinical onset of
T1D) to detect disruptions in the pathways. This approach could potentially be used to identify the
pathways that are affected before an important event in the prognosis of a disease and hence, can
have applications in predictive medicine. In this approach, we propose to detect significant genes
by comparing the expression levels of probe-sets between each case-control pair in a 26 week (i.e.
approx. 6 months) time-window prior to the seroconversion event and clinical disease onset. The
size of the time-window can be chosen as any appropriate duration. We compute the posterior mean
and variance of the latent variables of the Gaussian processes within the 26 week time-window,
as described in Equation (4), using the representative points of the hyperparameters. We then
compute the weighted sum for the mean and variance weighted on the approximative posterior and
the integration weights (standard CCD approach for posterior prediction),

p(f(T∗) | X,M) ≈
R∑
r=1

p(f(T∗) | X,M, θr)q(θr |M)∆r

=

R∑
r=1

N (f(T∗) | µr,Σr)q(θr |M)∆r, (7)

where µr and Σr are, as in Equation (4), evaluated with hyperparameter value θr; q(θr | M) is
the split-Gaussian approximative posterior; and T∗ defines a time discretisation for the 26 week time
interval (we use 26 time points, i.e. a resolution of one week). As prediction with each hyperparameter
value θr is Gaussian, the combined prediction as a weighted sum is also a Gaussian. Comparisons for
the time-window predictions between separate (comprising of separate GP fittings for the cases and
controls) and joint (single GP fitting the pooled case and control data points) models can be made
by comparing the distributions using the Kullback–Leibler (KL) divergence [Kullback and Leibler,
1951]. The Kullback-Leibler divergence for any two distributions, P and Q, can be defined as

DKL(P||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx, (8)

where p and q are the corresponding densities. To examine the expression level of a probe-set in the
time-window, we compare the predictive distributions (Equation (7)) for the joint model against the
separate model in the time-window, by calculating a continuous score obtained using the symmetric
KL divergence,

1

2
DKL(P||Q) +

1

2
DKL(Q||P). (9)

Therefore, to compute the symmetric KL divergence between the separate and joint model, we assume
two multivariate normal distributions: one for the separate model, represented by M0 (previously
denoted by MA and MB); and one for the joint model, represented by M1 (previously denoted by
MS) with dimension equal to twice the number of weeks in the time-window. In the separate model,
M0, let µcase∗ and Σcase∗ be the predictive mean and covariance matrix (from Equation (7)) for the
case GP with the test points taken weekly from the first to the last week of the combined data points.
Similarly, for the control GP (of theM0 model) and joint GP (theM1 model), we have µcontrol∗ and
Σcontrol∗ as well as µjoint∗ and Σjoint∗ , respectively. For the separate model, the predictive distribution
can be written as the following multivariate normal distribution:

M0 = N
(
µ0
∗ =

[
µcase∗
µcontrol∗

]
,Σ0
∗ =

[
Σcase∗ 0

0 Σcontrol∗

])
. (10)

Similarly, the predictive distribution for the joint model can also be written as the following multi-
variate normal distribution:

M1 = N
(
µ1
∗ =

[
µjoint∗

µjoint∗

]
,Σ1
∗ =

[
Σjoint∗ 0

0 Σjoint∗

])
. (11)

The Kullback-Leibler divergence for any two multivariate normal distributions, say M0 and M1,
can be computed directly from the formula [Duchi, 2007]

DKL (M0||M1) =
1

2

(
tr(Σ1

∗
−1Σ0

∗) + (µ1
∗ − µ0

∗)
TΣ1−1

∗ (µ1
∗ − µ0

∗)− k + ln

(
det Σ1

∗

det Σ0
∗

))
, (12)
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where µ0
∗ and Σ0

∗ are the parameters of M0, and µ1
∗ and Σ1

∗ are the parameters of M1, as discussed
above. Also, k is the dimension of the multivariate Gaussian, which in our case is 2 × 26 (weeks);
tr(·) refers to the trace of the matrix; and det refers to the determinant of the matrix.

The symmetric KL divergence gives a KL-score for each probe-set. We specify a threshold for this
KL-score such that probe-sets with a KL-score higher than the specified threshold are considered to
be differentially expressed. The KL-score can be written as:

KL-score =
1

2
(DKL (M0||M1) +DKL (M1||M0)) . (13)

KL-scores do not have a similar interpretation as the Bayes factor. Hence, we empirically set a
threshold to identify differential expression prior to an event by taking the mode of the KL-scores
of the probe-sets (from all the case-control pairs), which have a BF-score computed from Equation
(6) in the range of +/ − 1 of the chosen BF-score threshold (in our case, BF-scores in the range 3
to 5 as the threshold is set to 4). The objective of this is to find an appropriate KL-score threshold
from the probe-sets that are borderline differentially expressed (or not) according to the BF-scores
computed from the whole time-course analysis. Note, however, that a specific value for the threshold
is not critical as the pathway level enrichment analysis automatically balances liberal or stringent
threshold values.

Lastly, we map the DE probe-sets to their corresponding genes, as explained in Section 3.4. However,
in the case of multiple probe-sets mapping to the same gene name, we choose the probe-set with the
largest KL-score to represent the gene.

3.6 Pathway analysis for personalised differential gene expression
results

We propose an empirical hypothesis testing method that can identify statistically enriched pathways
from differential probe-set expression analysis results that are computed for all case-control pairs
separately as described above in Section 3.4 and Section 3.5 as well as mapped to their corresponding
gene names. We define an overall enrichment score for each pathway using the DE genes from each
case-control pair using a statistic we call as the adjusted geometric mean. Our enrichment analysis
uses the number of DE genes from each case-control pair that overlap a given pathway. To account
for the fact that a higher number of DE genes in a case-control pair leads to a higher probability of
overlap with a pathway, we divide the raw number of DE genes from a case-control pair in a pathway
by the total number of DE genes in a case-control pair. Hence, we compute the scaled pathway
overlap fi,j for the jth case-control pair and ith pathway as

fi,j =
overlapi,j

diff. exp. genesj
+ α, (14)

where overlapi,j refers to the number of DE genes in the jth case-control pair that belongs to the

ith pathway, diff. exp. genesj refers to the number of DE genes in the jth case-control pair (assumed

to be larger than 0 for all j), and α is a small constant (α = 10−6 in our analysis). Assuming m
case-control pairs, we define an adjusted geometric mean for the ith pathway as

adj. geo. meani =

(
m∏
j=1

fi,j

) 1
m

. (15)

The adjusted geometric mean ensures that no case-control pair dominates the overall enrichment
score and helps to take into account the different number of DE genes from each case-control pair.

After the adjusted geometric mean scores for each pathway are computed, we identify the statis-
tically enriched pathways by performing a permutation test and obtain p-values for each pathway.
Let S ∈ RG×m denote a matrix that stores the BF- or KL-scores from Equations (6) and (13) (where
G corresponds to the total number of probe-sets and m is the number of case-control pairs) such that
Sg,j contains the BF- or KL-scores for the gth probe-set and the jth case-control pair. Our permuta-
tion strategy reorders the probe-set labels of the rows, which retains the possible correlations among
the scores for the probe-sets across the case-control pairs. In other words, we fix the matrix S and
shuffle just the associated probe-sets such that each row is randomly assigned a probe-set. After the
reordering (shuffling), the probe-sets are again assigned to genes using the same strategy by taking
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the maximum BF- or KL-scores, and the enrichment scores (adjusted geometric mean scores) are
computed as above. This process of probe-set label shuffling and computing enrichment scores is
repeated 100,000 times to get the permutation distribution that is used to compute the p-values. The
permutation distribution acts as the null distribution from which we empirically compute the p-value
for a pathway. After this, FDR correction is performed using the Benjamini-Hochberg procedure
[Benjamini and Hochberg, 1995] to obtain the set of enriched pathways.

3.7 The combined method

We compare our personalised pathway enrichment results with two standard approaches. In the first
comparison, we imitate the standard approach of performing DE analysis at the population level
and pathway analysis to act as a comparison with our personalised approach. We combine the gene
expressions from all the cases and all the controls to obtain a single case-control set of readings,
and then compute a list of differentially expressed probe-sets as described above. In this combined
method, we again fit two different models. In the first model, we fit two separate GPs, one to case
and one to control samples, which we call the separate model for the combined method. The second
model involves fitting a single GP to the pooled data of all cases and controls, which we call the joint
model for the combined method. The probe-sets are again mapped to their corresponding genes and
in case of multiple probe-sets mapping to a single gene name, we choose the probe-set with the high-
est BF-score as introduced above. Also, in the rare case that multiple gene names map to a single
probe-set, we simply assign the gene name that occurs most often in the annotation database. We
perform one-sided Fisher’s exact test to compute p-values [Huang et al., 2009] in order to evaluate
the enrichment of each pathway.

In the second comparison, we compare our personalised approach to the results published in [Kallionpää
et al., 2014] that correspond to our TC, WSC and WT1D analyses. Briefly, Kallionpää et al. [2014]
used the rank-product method [Breitling et al., 2004] to identify DE genes. The rank-product al-
gorithm is a rank-statistics based technique for identifying DEGs, where a truly significant gene is
expected to appear at the top of independently ranked lists of genes per replicate experiment (e.g.
per case) in increasing or decreasing order and score a small geometric mean rank. It is a technique
derived from biological reasoning. However, it does not account for the heterogeneity of the disease
and it is not suitable for the dynamic analysis of time-course data. For TC analysis, expression
values were first normalised for each case-control pair using the z-score and case-wise minimum as
well as maximum values are used to identify down- or up-regulated probe-sets. For time-window
analyses, in each window (WSC or WT1D), per probe-set fold changes between cases and matched
controls were calculated using linear inter-/extrapolation and then used for rank-product analysis.
See Kallionpää et al. [2014] for further details. In order to keep the pathway level results from
[Kallionpää et al., 2014] and our approaches comparable, we performed one-sided Fisher’s exact test
(as explained above for combined method) on the gene-level results from all three analyses presented
in [Kallionpää et al., 2014] using the pathway information from MSigDB [Subramanian et al., 2005;
Liberzon et al., 2015].

4 Discussion

The results of this paper demonstrate that a personalised approach of identifying differentially ex-
pressed genes (DEGs) and summarising them on a pathway-level can reveal more insight into the
progression of heterogeneous diseases, such as type 1 diabetes (T1D), than commonly used non-
personalised approaches that assume differences between cases and controls to be consistent across
the whole study population, such as the combined method presented in this paper. Even though a
significant number of pathways identified by the two approaches overlapped, the combined method
was unable to identify the significance of most of the disease-relevant and interesting pathways that
were identified by the personalised approach in all the analyses. The combined model identified
DEGs in a strict manner that may also be biologically unrealistic, which probably impeded its abil-
ity to pinpoint most of the disease-relevant and intriguing pathways.

For validation, the results from the personalised approach were compared to that of the results
from Kallionpää et al. [2014], who analysed the same datasets using a rank product algorithm intro-
duced by Breitling et al. [2004] for identifying DEGs, which cannot account for neither the dynamics
of the time-course data nor the heterogeneity. Moreover, they estimated unobserved values in time-
window analyses via linear inter-/extrapolation, where we applied Gaussian process modelling, which
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is known to be more robust. Significant number of pathways identified as enriched by the person-
alised approach overlapped with the Kallionpää et al. [2014] results. However, while Kallionpää et al.
[2014] identified mostly the overarching pathways as enriched, the personalised approach recognised
significance of the overarching pathways as well as more specialised pathways that illustrate the
intrinsic mechanisms by which the disease develops.

Below, we discuss some of the interesting pathways found enriched by the personalised approach
and explore their relevance in terms of T1D as well as the stages of the disease they were found
enriched in.

Considering that T1D is a complex autoimmune disease characterised by insulitis, the chronic in-
flammation of the pancreatic islets of Langerhans caused by autoreactive CD4+ and CD8+ T cells
[Clark et al., 2017; Bending et al., 2012; Peakman, 2013; Pugliese, 2017], pathways related to immune
response are expected to be enriched along with the T1D pathway. While these particular pathways
were not found enriched using the combined model, it did identify interesting and relevant pathways
in the TC analysis that largely fall under, but not include, the overarching ‘antigen processing and
presentation’ pathway. These were the pathways involving MHC class protein and dendritic cell
(DC) maturation. Even though these pathways are highly relevant in the context of the disease,
they mostly represent only the initiating events in the development of the disease: release of au-
toantigens; their uptake by antigen presenting cells (APCs), such as DCs, for antigen presentation in
a complex with MHC class proteins [Bending et al., 2012]; and migration of DCs to pancreatic lymph
nodes (pLN) to activate β-cell specific autoreactive T cells [Bending et al., 2012; Clark et al., 2017],
known as DC maturation [Mbongue et al., 2017]. Meanwhile, other important and disease-relevant
pathways are underrepresented using the combined model.

The personalised approach also finds the above-mentioned pathways enriched in its analyses, includ-
ing immune response related and T1D pathways, along with many other disease-relevant pathways.
In all the analyses, our approach identifies the pathways related to IFNγ signalling and chemokine-
mediated signalling as enriched. IFNγ is produced by autoreactive CD4+ and CD8+ T cells [Driver
et al., 2017] and is believed to play a key role in driving the autoimmune pathogenesis of T1D [Yi
et al., 2012; Driver et al., 2017; Souto et al., 2014; Peakman, 2013; Clark et al., 2017; Bending et al.,
2012; Borish et al., 2003], even though it is not considered solely a pro-inflammatory cytokine [Driver
et al., 2017]. IFNγ also results in local up-regulation of chemotactic cues that induce immune cell
migration to the islets, for instance via chemokine mediated signalling, where β-cells produce cer-
tain chemokines that can accelerate or block T1D progression [Clark et al., 2017]. Fascinatingly,
our approach also identified a pathway, ‘detection of other organism’, which connotes an existing
postulation that environmental factors, such as microbial infections, can trigger the disease process
leading to T1D in genetically susceptible individuals [Clark et al., 2017; Bending et al., 2012; Knip
and Simell, 2012].

One of the most interesting questions that are asked in T1D studies is regarding the changes that
transpire in the time-window leading up to life-changing events, such as seroconversion and clinical
onset of T1D. Using the personalised approach, multiple immunologically relevant pathways were
revealed to be uniquely enriched in both the time-windows of interest, such as TNF signalling, where
TNF-α has been linked to the development of T1D [Lee et al., 2005; Bending et al., 2012; Clark
et al., 2017; Souto et al., 2014; Borish et al., 2003]; DC differentiation and maturation [Mbongue
et al., 2017; Souto et al., 2014]; and cytokine-mediated signalling [Bending et al., 2012; Clark et al.,
2017; Peakman, 2013], which acts like an all-encompassing, but vague, pathway for all cytokines.
The method was able to determine additional relevant pathways in these two time-windows that
were not identifiable by Kallionpää et al. [2014] results: immunoglobulin production as well as IL-
2 and IL-10 regulating pathways. In fact, it is the increase in production of islet autoantibodies
or immunoglobulin that marks the seroconversion event in the life of an individual susceptible to
T1D [Kallionpää et al., 2014]. Meanwhile, enrichment of IL-2 and IL-10 signalling pathways before
seroconversion indicates the possible anti-inflammatory processes that occur to resist the progres-
sion of the disease. IL-10 is an anti-inflammatory cytokine secreted primarily by Tregs and β-cell
autoantigen recognising CD4+ T cells [Peakman, 2013]. It inhibits the production of multiple pro-
inflammatory cytokines, including IFNγ, TNF-α, IL-5, IL-1β, etc. [Borish et al., 2003], and is only
marginally less prevalent in T1D patients studied at the time of diagnosis than in healthy subjects
[Peakman, 2013]. IL-2 is a cytokine that can lead to prevention or pathogenesis of the disease de-
pending on its own concentration, the concentrations of other local cytokines [Hulme et al., 2012;
Hartemann and Bourron, 2012; Pérol et al., 2016] and polymorphisms in the genes of its pathway
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[Peakman, 2013]. In low dose, IL-2 signalling is believed to rescue insulin secretion [Hartemann
and Bourron, 2012; Pérol et al., 2016]. However, it may result in accelerated autoimmune tissue
destruction in the time-window before diagnosis due to the enriched regulation of IL-1 signalling in
that time-window as it enhances IL-2 production [Borish et al., 2003; Hartemann and Bourron, 2012].

Our results identify increased number of pathways enriched in the window before T1D onset as
compared to the window before seroconversion, demonstrating the mayhem that precedes a clinical
diagnosis. Especially, the number of cytokine regulating pathways were increased manifold, where
more than half were unique to this time-window. Along with anti-inflammatory cytokines, such as
IL-10 and IL-4 [Qiao et al., 2016; Borish et al., 2003; Souto et al., 2014], many pro-inflammatory cy-
tokine regulating pathways were enriched, such as IL-1, IL-1β, IL-5 [Borish et al., 2003], IL-6 [Souto
et al., 2014; Borish et al., 2003], IL-12 [Mbongue et al., 2017], IL-21 [Bending et al., 2012; Clark
et al., 2017; Li et al., 2014], IL-22 [Borish et al., 2003], IFNγ, TNF-α. In the absence of IFNγ and
TNF-α, cytokines IL-2, IL-1β and IL-6 are considered anti-inflammatory [Souto et al., 2014; Clark
et al., 2017; Bending et al., 2012; Hartemann and Bourron, 2012; Pérol et al., 2016; Borish et al.,
2003], but in their presence, these cytokines aggravate the inflammatory disease pattern, which is
probably the case in the time time-window before T1D diagnosis.

Some of the pathways that were found enriched in the time-window before T1D diagnosis were
also found enriched during the early stages of T1D progression using the personalised approach,
possibly indicating that key players from late stages of the disease may already be detected at the
early stages. These included both pro- and anti-inflammatory pathways, such as those of IL-1 and
IL-4 as well as IFNα and PD-1 signalling. IL-1 is a pro-inflammatory cytokine that enhances the
production of IL-2, encourages B cell proliferation, and increases immunoglobulin production [Bor-
ish et al., 2003; Hartemann and Bourron, 2012]; whereas IL-4 is an anti-inflammatory Th2 cytokine
that inhibits autoimmunity by down-regulating the production of pro-inflammatory cytokines, such
as IL-1, IL-6 and TNF-α [Borish et al., 2003; Souto et al., 2014; Qiao et al., 2016]. Through mice
studies, IFNα and PD-1 signalling pathways have been established as important contributors to T1D
pathogenesis from an early stage of the disease [Marro et al., 2017; Li et al., 2008; Mbongue et al.,
2017; Martinov et al., 2016]. Where up-regulation of IFNα in pLN is an initiator of the pathogenesis
[Li et al., 2008], up-regulation of programmed cell death protein 1 (PD-1) signalling prevents T1D
and promotes self-tolerance by suppressing the expansion and infiltration of autoreactive T cells in
the pancreas [Granados et al., 2017; Martinov et al., 2016; Mbongue et al., 2017]. In fact, blocking
IFNα signalling before clinical T1D onset has been shown to prevent β-cell apoptosis or even abort
T1D progression [Marro et al., 2017]. Additionally, PD-1 pathway has been proposed as a target for
novel therapy for preventing and modulating autoimmunity [Granados et al., 2017].

Fascinatingly, natural killer (NK) cell mediated cytotoxicity pathway was found to be uniquely
enriched during the early stages of T1D. NK cells are believed to be involved in multiple steps of
the immune-mediated attack causing T1D as they are known to interact with antigen-presenting T
cells, secrete pro-inflammatory cytokines and induce apoptosis in the target cells [Rodacki et al.,
2006; Qin et al., 2011]. Similarly, Fas signalling pathway was found to be uniquely enriched be-
fore seroconversion. Since it is one of the pathways mediated by autoreactive CD8+ T cells that
is directly involved in the destruction of β-cells [Bending et al., 2012; Clark et al., 2017; Mbongue
et al., 2017], it demonstrates that β-cell killing can be observed much before the clinical onset of T1D.

Even though the personalised approach is able to identify many immunologically- and disease-relevant
pathways, it has scope for further development. The current implementation assumes Gaussian dis-
tributed data; it may be possible to improve the accuracy of differential gene expression detection
for data sets that have notably non-Gaussian characteristics either by using a different likelihood
model or by performing appropriate transformations. In addition, the proposed approach has been
implemented for a matched case-control setting. However, with small modifications to the model,
it could be extended to a non-matched case-control setting, where each case is compared to all the
controls in the dataset.
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Pérol, L., Lindner, J., Caudana, P., Nunez, N., Baeyens, A., Valle, A., Sedlik, C., Loirat, D., Boyer, O., Créange,

A., Cohen, J., Rogner, U., Yamanouchi, J., Marchant, M., Leber, X., Scharenberg, M., Gagnerault, M., Mallone,

R., Battaglia, M., Santamaria, P., Hartemann, A., Traggiai, E., and Piaggio, E. (2016). Loss of immune tolerance

to IL-2 in type 1 diabetes. Nat Commun, 7(1), 13027.

Pugliese, A. (2017). Autoreactive t cells in type 1 diabetes. J Clin Investigation, 127(8), 2881–2891.

Qiao, Y.-c., Shen, J., He, L., Hong, X.-z., Tian, F., Pan, Y.-h., Liang, L., Zhang, X.-x., and Zhao, H.-l. (2016).

Changes of regulatory t cells and of proinflammatory and immunosuppressive cytokines in patients with type 2

diabetes mellitus: a systematic review and meta-analysis. Journal of diabetes research, 2016.

Qin, H., Lee, I.-F., Panagiotopoulos, C., Wang, X., Chu, A. D., Utz, P. J., Priatel, J. J., and Tan, R. (2011). Natural

killer cells from children with type 1 diabetes have defects in nkg2d-dependent function and signaling. Diabetes,

60(3), 857–866.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian process for machine learning. MIT press.

Rodacki, M., Milech, A., and de Oliveira, J. E. P. (2006). Nk cells and type 1 diabetes. Journal of Immunology

Research, 13(2-4), 101–107.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate bayesian inference for latent gaussian models by using

integrated nested laplace approximations. Journal of the royal statistical society: Series b (statistical method-

ology), 71(2), 319–392.

Segal, E., Friedman, N., Koller, D., and Regev, A. (2004). A module map showing conditional activity of expression

modules in cancer. Nature genetics, 36(10), 1090.

Souto, G., Celso, Q., Abreu, M., Costa, F., and Mesquita, R. (2014). Pro-inflammatory, th1, th2, th17 cytokines

and dendritic cells: A cross-sectional study in chronic periodontitis. Plos One, 9(3), e91636.

Stegle, O., Denby, K. J., Cooke, E. J., Wild, D. L., Ghahramani, Z., and Borgwardt, K. M. (2010). A robust

bayesian two-sample test for detecting intervals of differential gene expression in microarray time series. Journal

of Computational Biology, 17(3), 355–367.

Storey, J. D., Xiao, W., Leek, J. T., Tompkins, R. G., and Davis, R. W. (2005). Significance analysis of time course

microarray experiments. Proceedings of the National Academy of Sciences, 102(36), 12837–12842.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy,

S. L., Golub, T. R., Lander, E. S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach

for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43),

15545–15550.

Trabzuni, D., (UKBEC), U. K. B. E. C., and Thomson, P. C. (2014). Analysis of gene expression data using

a linear mixed model/finite mixture model approach: application to regional differences in the human brain.

Bioinformatics, 30(11), 1555–1561.

Tuomi, T., Santoro, N., Caprio, S., Cai, M., Weng, J., and Groop, L. (2014). The many faces of diabetes: a disease

with increasing heterogeneity. The Lancet, 383(9922), 1084–1094.
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