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Summary	21 

1. Epigenetics is increasingly recognised as an important molecular mechanism underlying 22 

phenotypic variation. To study DNA methylation in ecological and evolutionary contexts, epiRADseq 23 

is a cost-effective next-generation sequencing technique based on reduced representation sequencing 24 

of genomic regions surrounding non-/methylated sites. EpiRADseq for genome-wide methylation 25 

abundance and ddRADseq for genome-wide SNP genotyping follow very similar library and 26 

sequencing protocols, but to date these two types of dataset have been handled separately. Here we 27 

test the performance of using epiRADseq data to generate SNPs for population genomic analyses.  28 

 29 

2. We tested the robustness of using epiRADseq data for population genomics with two independent 30 

datasets: a newly generated single-end dataset for the European whitefish Coregonus lavaretus, and a 31 

re-analysis of publicly available, previously published paired-end data on corals. Using standard 32 

bioinformatic pipelines with a reference genome and without (i.e. de novo catalogue loci), we 33 

compared the number of SNPs retained, population genetic summary statistics, and population genetic 34 

structure between data drawn from ddRADseq and epiRADseq library preparations.  35 

 36 

3. We find that SNPs drawn from epiRADseq are similar in number to those drawn from ddRADseq, 37 

with a 55-83% of SNPs being identified by both methods. Genotyping error rate was <5% in both 38 

approaches. For summary statistics such as heterozygosity and nucleotide diversity, there is a strong 39 

correlation between methods (Spearman’s rho > 0.88). Furthermore, identical patterns of population 40 

genetic structure were recovered using SNPs from epiRADseq and ddRADseq approaches.  41 

 42 

4. We show that SNPs obtained from epiRADseq are highly similar to those from ddRADseq and are 43 

equivalent for estimating genetic diversity and population structure. This finding is particularly 44 

relevant to researchers interested in genetics and epigenetics on the same individuals because using a 45 

single epigenomic approach to generate two datasets greatly reduces the time and financial costs 46 

compared to using these techniques separately. It also efficiently enables correction of epigenetic 47 
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estimates with population genetic data. Many studies will benefit from a combinatorial approach with 48 

genetic and epigenetic markers and this demonstrates a single, efficient method to do so. 49 

 50 

Keywords: DNA methylation, epigenetics, RADseq, population genetics, single nucleotide 51 

polymorphism, genomics, molecular ecology 52 

  53 
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Introduction	54 

 55 

The advent of Next Generation Sequencing (NGS) has facilitated a revolution in ecology and 56 

evolution by enabling the integration of the two fields to better elucidate molecular patterns and 57 

mechanisms (Ekblom & Galindo, 2011). Technologically, an advance of NGS is not just reduced, per 58 

base pair costs of sequencing but that genomic techniques can be applied to so-called ‘non-model’ 59 

species or those without reference genomes or other genomic resources (Ekblom & Galindo, 2011). 60 

Among the many NGS techniques recently developed, genotyping by sequencing approaches, such as 61 

restriction site associated DNA sequencing (RADseq), have stood out for their versatility, low cost, 62 

and the amount of data generated (Davey et al. 2013; Andrews et al. 2016; Rowe, Renaut, & 63 

Guggisberg, 2016). Briefly, one or more restriction enzymes are used to digest the genome and only 64 

fragments in a specified range are retained for sequencing, resulting in genotypes from a 65 

representative portion of the genome for a variable number of individuals (Andrews et al. 2016). 66 

Double digest RADseq, or ddRADseq (Peterson et al. 2012), is one of the many varieties of 67 

genotyping by sequencing methods available and is particularly powerful because it allows a high 68 

degree of customisation in terms of the number of loci obtained and coverage per individual, and can 69 

be modified for different sequencing platforms (Puritz et al. 2014; Recknagel et al. 2016). ddRADseq 70 

is now an established tool for genotyping with NGS, to investigate many topics in ecology and 71 

evolution including population genetics, genetic mapping, parentage inference, genomics of 72 

adaptation, and phylogenomics using single nucleotide polymorphisms (SNPs) (Davey & Blaxter, 73 

2010; Andrews et al. 2016). SNPs focus on genetic mutations, but it is well recognised that other 74 

molecular processes in the genome such as gene regulation and methylation influence biodiversity.  75 

 The study of epigenetic processes, which cause change in gene expression without nucleotide 76 

mutation of the underlying genome sequence, is providing a new complexity in the genotype – 77 

phenotype map and in some cases a disconnect of genotype and phenotype (Feil & Fraga, 2012). The 78 

best understood epigenetic mechanism is DNA methylation, which involves the addition of a methyl 79 

group to cytosine, and in eukaryotes it occurs mainly in CpG dinucleotides (Metzger & Schulte, 80 
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2016).  Relevant for ecology and evolution, the field of ecological epigenetics aims to understand how 81 

DNA methylation associates with patterns of population variation and influences phenotypic 82 

diversity, local adaptation, and plasticity in natural populations (Bossdorf, Richards, & Pigliucci, 83 

2008; Hu & Barrett, 2017). Until recently, epigenetic research in wild populations was conducted 84 

mainly using methylation-sensitive AFLPs (MS-AFLP) (e.g. Foust et al. 2016; Herrera et al. 2016), 85 

since they are cost-effective, easily applied to non-model organisms, and not computationally 86 

demanding (Schrey et al. 2013). However, they have several shortcomings (see review by Schrey et 87 

al. (2013)), the greatest of which is that they screen anonymous loci that then cannot be genome 88 

referenced nor compared across studies. Recently, the field has been invigorated by new methods that 89 

take advantage of NGS technology. One example is bisulfite sequencing, which comes in a number of 90 

variations (whole genome, reduced representation, target sequencing of specific gene regions) and has 91 

been shown to provide high resolution of the methylation landscape within genomes (Metzger & 92 

Schulte, 2016). However, this technique is expensive, can result in excessive DNA degradation, and 93 

requires a related reference genome for the species of interest, something that is still lacking for most 94 

non-model organisms (Leontiou et al. 2015; Metzger & Schulte, 2016).  95 

 EpiRADseq is a recently developed, reduced representation approach (Schield et al. 2016) to 96 

study DNA methylation variation in individuals. It is based on the established ddRADseq protocol 97 

(Peterson et al. 2012) and involves the digestion of the genome using two restriction enzymes, with 98 

one enzyme being methylation-sensitive. Therefore, a methylated locus will not be cut by the 99 

methylation-sensitive enzyme, will not be enriched by PCR nor sequenced, and thus no sequencing 100 

read is obtained in the data. If a locus is unmethylated, it will be cut in the same way as ddRADseq 101 

and therefore enriched by PCR and sequenced. Therefore, the number of overall reads for a locus is 102 

proportional to the level of (non-)methylation and differences in the methylation level between groups 103 

can be determined by the differences in number of reads per locus per sample (Schield et al. 2016). 104 

The advantages of this technique resemble those of all genomic reduced representation approaches 105 

such as RADseq: the possibility of sampling genome wide, no requirement for a reference genome, 106 

and the ability to map loci against a reference genome (if available) to determine to which genomic 107 

region they correspond (Andrews et al. 2016; Schield et al. 2016). 108 
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 Combining genetic and epigenetic analyses in the same study is to date underleveraged but 109 

particularly valuable for providing insight into the relationship between genetic and epigenetic 110 

variation and downstream effects of interest, such as phenotypic diversity (Hu & Barrett, 2017). For 111 

example, DNA methylation can explain phenotypic variation better than genetics (e.g. Richards, 112 

Schrey & Pigliucci, 2012), methylation pattern can be explained by genetic effects rather than by 113 

other variables of interest (Robertson et al. 2017), and population-level methylation analyses can 114 

provide insight to mechanisms of evolution (Gugger et al. 2016). To infer methylation and genomic 115 

polymorphism (SNPs) using separate NGS techniques for the same set of individuals is expensive, 116 

inefficient, and time consuming but is the approach that has been used to date (e.g. Dimond, 117 

Gamblewood, & Roberts, 2017). A combined molecular approach that allows for DNA methylation 118 

and genetic analyses would increase the efficiency of such approaches and increase the scope of 119 

possible research questions in this area and be of considerable value to this field of study.  120 

 Because epiRADseq is similar in molecular methodology to ddRADseq, in this study we 121 

test whether the SNPs recovered by epiRADseq can also be used for population genomics. If SNPs 122 

for population genetics can be reliably extracted from epiRADseq data then epigenetic and population 123 

genomic analyses can be conducted efficiently on the same samples using the same molecular 124 

technique, from DNA extraction through to library preparation and sequencing. We tested this using 125 

two independent examples from natural animal populations for which epiRADseq and ddRADseq 126 

data are available from the same individuals: a previously published dataset (Dimond et al. 2017) 127 

from a marine invertebrate, the corals of the genus Porites (genome size between 420 Mb and 1.14 128 

Gb) for which there is currently no reference genome; and a newly generated dataset from a 129 

vertebrate, the freshwater European whitefish Coregonus lavaretus (genome size 3.3 Gb) for which 130 

genome scaffolds are available. We ran analyses in parallel on epiRADseq and ddRADseq data to 131 

compare number of SNPs retained, summary statistics, and inferred population genetic structure. We 132 

conclude that epiRADseq data are appropriate for population genomics and suggest a bioinformatic 133 

pipeline for extracting SNPs. 134 

 135 
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Material	and	Methods		136 

2.1	Coral	data	source	137 

EpiRADseq was recently used in conjunction with ddRADseq by Dimond et al. (2017) to assess the 138 

population genetics and epigenetics of three morphospecies of coral Porites spp. from the Caribbean. 139 

EpiRADseq was used for differential methylation analysis and ddRADseq was used to estimate 140 

population structure between samples and to correct for the bias of epiRADseq in the methylation 141 

analysis, as a missing locus could either mean a lack of site due to mutation (a genetic factor) or due 142 

to methylation (an epigenetic factor) (Schield et al. 2016). They excluded from the dataset all 143 

epiRADseq loci that were missing in the ddRADseq dataset. However, they did not test the possibility 144 

of using epiRADseq to call SNPs for genetic analysis. 145 

 146 

2.2	Coral	data	processing	147 

The raw reads for ddRADseq and epiRADseq from Dimond et al. (2017) were downloaded from their 148 

repository (http://owl.fish.washington.edu/nightingales/Porites_spp/). The coral data comprised 48 149 

individuals prepared with both ddRADseq and epiRADseq methods, for a total of 96 samples split 150 

into 12 libraries, of which we focused on the 60 samples (30 ddRADseq and 30 epiRADseq) that were 151 

analysed in the Dimond et al. (2017) study.  152 

 The first 5 and 3 bp were trimmed with Trimmomatic from the forward and reverse reads to 153 

remove the enzyme cut site. Then, paired-end trimming was done with following settings: LEADING 154 

= 20, TRAILING = 20, MINLEN = 85. Reads were mapped against the genome of the coral symbiont 155 

Symbiodinium minutum, provided in the Supplementary information of Dimond et al. (2017), to 156 

remove symbiont reads from the de novo assembly, as was done by Dimond et al. (2017), using bwa 157 

mem (Li & Durbin, 2009). The retained coral reads were used for all further analyses. 158 

 A pseudo-reference genome of coral samples was created so that we could determine the 159 

number of common SNPs found in both the ddRADseq and epiRADseq datasets. This pseudo-160 

genome was assembled using Rainbow v.2.0.4 (Chong et al. 2012) with the cluster, divide, and merge 161 

functions with default parameters using the fastq files free of symbiont reads. CD-Hit v.4.7 (Fu et al. 162 
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2012) was then used with the cd-hit-est (at a 90% identity threshold) function for further filtering. 163 

ddRADseq and epiRADseq reads were mapped against this pseudo-genome using bwa mem with 164 

default settings and retained if mapping quality was >20. 165 

 If a sample had fewer than 200,000 reads in either the ddRADseq or epiRADseq dataset, it 166 

was removed from both so that the datasets had the same individuals. This excluded four samples and 167 

thus 52 samples (26 for ddRADseq and 26 for epiRADseq) were retained for analysis.  The 168 

ref_map.pl v.2.1 pipeline in Stacks (Catchen et al. 2013) was run for both ddRADseq and epiRADseq 169 

using default parameters. All the samples were considered as part of the same population for the 170 

Stacks pipeline. The dataset was then filtered with the following parameters from the populations 171 

program: -r = 1 (no missing data allowed, same as in Dimond et al. (2017)), --min_maf = 0.10 and --172 

max_obs_het = 0.6, --write_single_snp. 173 

 174 

2.3	Whitefish	data	generation	175 

Using existing tissue samples of Coregonus lavaretus from four Scottish loch populations preserved 176 

in ethanol (Crotti, Adams & Elmer, unpubl), DNA was extracted from fish fin clips for the ddRADseq 177 

and muscle tissue for the epiRADseq libraries using the NucleoSpin Tissue kit (Macherey-Nagel) 178 

following the manufacturers recommendations. The protocol used for the ddRADseq library 179 

preparation follows Jacobs et al. (2018). Briefly, 1 µg of genomic DNA per sample was double 180 

digested using the rare cutting enzyme PstI-HF (CATCAG recognition site) and the common cutting 181 

enzyme MspI (CCGG recognition site). Combinatorial barcoded Illumina adapters were then ligated 182 

to PstI-HF and MspI overhangs. Samples were size selected using a Pippin Prep (Sage Science) at a 183 

target range of 150-300 bp fragments. To enrich for the selected loci, we performed PCR 184 

amplification cycles with the following settings: 30 s at 98 °C, 9X (10 s 98 °C, 30 s 65 °C, 30 s 72 185 

°C), 5 min 72 °C. After PCR purification, the library was run on a 1.25% agarose gel stained with 186 

SYBR Safe (Life Technologies) to remove any adapter dimers and/or fragments outside the selected 187 

size range. DNA was excised manually, cleaned and quantified using the Qubit Fluorometer with the 188 

dsDNA BR Assay (Life Technologies) to ensure the final library concentration of >1 ng/µL.  189 
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 The protocol for the epiRADseq library was identical to the ddRADseq, except a methylation 190 

sensitive HpaII (CCGG recognition site; therefore, compatible with the same combinatorial barcodes 191 

and adapters) was used instead of the MspI restriction enzyme.  192 

The ddRADseq and epiRADseq libraries consisted of the same 43 samples each, including 193 

two technical replicates to estimate sequencing error (Mastretta-Yanes et al. 2015), and were 194 

sequenced on a single lane to 4 million reads per individual. NGS sequencing was carried out at 195 

Glasgow Polyomics facility on the Illumina NextSeq 500 platform with 75 bp paired end reads. 196 

 197 

2.4	Whitefish	data	processing	198 

EpiRADseq and ddRADseq data were analysed separately using the same approaches. Samples with 199 

fewer than 350 K reads in one dataset were excluded from both datasets. The filtering steps applied to 200 

the whitefish data were similar as used in the coral data, but with some modifications because the 201 

whitefish data were analysed as single end. First, raw reads were demultiplexed with process_radtags 202 

in Stacks v.2.1 (Catchen et al. 2013) and only forward reads were retained. Trimmomatic (Bolger et 203 

al. 2014) was used to trim reads with following settings: HEADCROP = 5 (to remove enzyme cutting 204 

site), LEADING = 20, TRAILING = 20, MINLEN = 60. Reads were then mapped to an unpublished 205 

draft genome of the lake whitefish Coregonus clupeaformis (L. Bernatchez, pers comm) using bwa 206 

mem v.0.7.17 with default settings and retained if mapping quality was > 20 with samtools v.1.7 (Li et 207 

al. 2009). In Stacks, the ref_map.pl script was used to assemble reads into stacks and call loci, and the 208 

population module was used to call SNPs.  209 

 To assess the sensitivity of SNP calling to missing data for epiRADseq data, we created three 210 

different datasets for both the ddRADseq and epiRADseq reads, which varied according to the 211 

proportion of individuals per population the locus had to be in to be retained (-r parameter): 0.667, 212 

0.75, or 1. The other filtering parameters were kept constant: -p = 2, --max_obs_het = 0.6, --min_maf 213 

= 0.10, --write_single_snp. The three datasets are hereafter referred to as the -r 67, -r 75, and -r 100 214 

datasets. This assessment was done only for the whitefish data, as with the coral data we focused on 215 

comparing our results to the original paper (Dimond et al. 2017).  216 
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We tested the effect of allele dropout (ADO) on genetic estimates derived from epiRADseq 217 

data, because methylated loci are not sequenced (Schield et al. 2016). To do so we estimated genetic 218 

diversity for each individual for both ddRADseq and epiRADseq data in Stacks with following 219 

parameters: -p 23 (each individual was considered a population), --max_obs_het = 0.6, --min_maf = 220 

0.10. We then compared these estimates using a paired Wilcoxon signed rank test. 221 

 222 

2.5	Whitefish	and	coral	data	analysis	223 

For both the whitefish and coral data we recorded the total number of SNPs retained by ddRADseq 224 

and epiRADseq datasets. Summary statistics of genetic diversity (expected heterozygosity, observed 225 

heterozygosity, and nucleotide diversity) per locus calculated by the population module of Stacks for 226 

the ddRADseq and epiRADseq datasets were compared using Spearman correlation in the R 227 

environment (R Core Team, 2018).  228 

 To compare estimates of population structure between the ddRADseq and epiRADseq 229 

datasets, we used the R package adegenet v.2.1.1 (Jombart, 2008) to run a Discriminant Analysis of 230 

Principal Components (DAPC) (Jombart et al. 2010), which uses k-means clustering and the Bayesian 231 

information criterion to identify the most likely number of genetic clusters in the dataset. The 232 

xvalDAPC function was used to determine the number of PCs to be retained by the DAPC analysis. 233 

The divergence estimate between the inferred clusters was calculated using Weir and Cockerham Fst 234 

(Weir & Cockerham, 1984) implemented in the R package hierfstat v.0.04 (Goudet, 2005). For the 235 

coral analysis we additionally ran the DAPC on the set of SNPs used by Dimond et al. (2017), which 236 

they made available in the supplementary information of their article, to compare our results to the 237 

original study. 238 

 239 

2.6	Genotyping	error	rate	240 

To estimate genotyping error rate for the whitefish data we used two approaches: 1) we computed a 241 

matrix of genetic distances between individuals using the function dist.gene in the R package ape 242 

v.5.2 (Paradis & Schielp, 2018), following Dimond et al. (2017); 2) we used the R script published by 243 
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Mastretta-Yanes et al. (2015), where the number of SNP mismatches is counted and calculated as the 244 

ratio over all compared loci (Recknagel et al. 2015). Replicated samples were compared at six-fold 245 

coverage. Technical replicates were not included in the coral dataset so genotyping error was not 246 

quantified. 247 

 248 

 249 

Results	250 

 251 

3.1	Coral	data	filtering		252 

The 30 ddRADseq samples had a total of 213 M raw reads and the 30 epiRADseq samples a total of 253 

156 M raw reads (Table 1). After filtering with Trimmomatic, the ddRADseq samples retained 205 M 254 

reads, and the epiRADseq samples retained 149 M reads. Mapping against the pseudo-genome 255 

created from the ddRADseqs reads (418,401 contigs), retained 142 M reads for the ddRADseq and 256 

102 M reads for the epiRADseq samples.  257 

 The Stacks pipeline generated a catalogue of 285,987 loci for the ddRADseq dataset, with a 258 

mean effective per sample coverage of 64.9x, and 164,411 loci for the epiRADseq dataset, with an 259 

effective per sample mean coverage of 75.7x.  The average number of loci per individual was 58,896 260 

for the ddRADseq and 33,843 for the epiRADseq catalogues. 261 

 262 

3.2	Coral	data	analyses	263 

The population filtering generated datasets of 1,046 SNPs and 819 SNPs for ddRADseq and 264 

epiRADseq respectively (Fig. 1a). The number of SNPs retained in our study is slightly lower to those 265 

used by the original study (1,113 SNPs from ddRADseq, also assessed here). By mapping reads to a 266 

reference assembly, we could calculate the number of SNPs that overlapped between the two datasets. 267 

In total 676 SNPs overlapped, which corresponds to 83% of SNPs in the epiRADseq and 65% of 268 

SNPs in the ddRADseq datasets. 269 
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 DAPC analyses of the epiRADseq and ddRADseq datasets recovered the same three clusters 270 

as were inferred from the original study from Dimond et al. using ddRADseq (Fig. 2). Our Fst 271 

estimates between clusters ranged from 0.24 to 0.26, while the estimates of Dimond et al. were 0.19 to 272 

0.21 (Fig 2a,b,c). The proportion of variation explained by the discriminant functions was similar in 273 

all three datasets (Fig. 2). When comparing estimates of genetic diversity, we recovered strong 274 

Spearman’s σ correlation for all three summary statistics between the ddRADseq and the epiRADseq 275 

datasets (Fig. 3). 276 

 277 

3.3	Whitefish	sequencing	results	and	data	filtering		278 

The whitefish ddRADseq library generated a total of 524 M reads and the epiRADseq library 279 

generated 554 M reads (Table 1). After demultiplexing with process_radtags and filtering with 280 

Trimmomatic, the ddRADseq library retained 118 M reads, while the epiRADseq library retained 227 281 

M reads. After mapping to the reference genome, the ddRADseq library retained 40 M reads, while 282 

the epiRADseq library retained 120 M reads (Table 1). Excluding the samples with fewer than 350 K 283 

reads left a total of 23 samples plus two technical replicates in the epiRADseqs dataset and 23 284 

samples plus two technical replicates in the ddRADseq dataset. 285 

 The Stacks pipeline produced a catalogue of 355,491 loci for the ddRADseq library, with a 286 

mean effective per sample coverage of 12.7x, and of 321,324 loci for the epiRADseq library, with a 287 

mean effective per sample coverage of 36x.  The average number of loci per individual was 108,127 288 

and 110,614 for the ddRADseq and epiRADseq respectively. 289 

 290 

 291 

3.4	Genotyping	error	rate	292 

The SNP genotyping error rate in the whitefish dataset was lower for epiRADseq for both analysis 293 

approaches. The dist.gene approach recovered a mean error rate of 6% (± standard deviation 0.6%) 294 

for the ddRADseq, and of 3% (± 0.5%) for the epiRADseq, while the Mastretta-Yanes et al. approach 295 

estimated a mean error of 5% (± 0.3%) for the ddRADseq and of 3% (± 0.4%) for the epiRADseq.  296 
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 297 

3.5	Whitefish	data	analysis	298 

The number of SNPs retained was very similar for those generated with the epiRADseq method and 299 

the ddRADseq method and decreased with increasing filtering stringency (Fig. 1); for the epiRADseq 300 

generated data we recovered 6971, 6686, and 5546 SNPs in the -r 67, -r 75, and -r 100 datasets 301 

respectively, while for the ddRADseq generated data we recovered 7289, 6988, and 5277 SNPs in the 302 

three datasets respectively. A total of 4518 SNPs were shared between the two -r 67 datasets, 4294 303 

SNPs were shared between the two -r 75 datasets, and 2978 SNPs were shared between the -r 100 304 

datasets. 305 

 The estimates of heterozygosity and nucleotide diversity inferred from ddRADseq and 306 

epiRADseq derived SNPs were highly correlated, with Spearman’s correlations of 88.5 to 92.8% 307 

(Table 2). When looking at the genetic diversity estimates per individual, which would be impacted 308 

by allele dropout, we observed no reduction in expected heterozygosity (V = 58, p-value = 0.45) or 309 

nucleotide diversity (V = 82, p-value = 0.31) for the epiRADseq data. 310 

 The results of the population genetic structure analysis with DAPC were consistent across 311 

filtering stringencies and datasets (Fig. 4), with the four populations being grouped into two genetic 312 

clusters separating on axis 1 (and so displayed on one axis of variation instead of the two shown for 313 

the corals). Fst divergence between the two clusters was identical between methods for the -r 67 and -314 

r 75 datasets at Fst = 0.23, and it was negligibly higher for the ddRADseq in the -r 100 datasets at 315 

0.24 and 0.25 (Fig. 4). 316 

 317 

Discussion		318 

Here we used two independent natural animal population datasets to show that epiRADseq data can 319 

be used to derive SNPs for population genomic analyses. We compared SNP number, estimates of 320 

summary statistics, and inference of population structure between ddRADseq and epiRADseq 321 

methods in a newly generated dataset of European whitefish and a previously published dataset on 322 
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corals. Overall, we find strong agreement for all of the above metrics between epiRADseq and 323 

ddRADseq protocols, meaning that epiRADseq data give equivalent results to the well-established 324 

method of ddRADseq-derived SNPs. The implication is that a single dataset can be used for 325 

epigenetic analyses and for inference of population structure. This is not only efficient but also 326 

valuable studies on the association between epigenetic and genetic diversity and their impact on 327 

phenotype. 328 

Here we used previously published data and new data when comparing the epiRADseq and 329 

ddRADseq generated SNPs, which allows us to demonstrate the robustness of the molecular methods 330 

and of the bioinformatics pipelines independently. The coral dataset was drawn from Dimond et al. 331 

(2017), where they investigated population structure between three morphospecies of coral with 332 

ddRADseq and looked at the relationship between DNA methylation and environmental factors. The 333 

number of SNPs in our datasets is slightly lower than those used in the Dimond et al. (2017) study; we 334 

recovered 1,046 SNPs for ddRADseq and 819 SNPs for epiRADseq while they previous study 335 

retained 1,113 SNPs from ddRADseq. This is likely because different bioinformatic pipelines applied 336 

as they used Pyrad (Eaton, 2014) while we used Stacks (Catchen et al. 2013).  337 

Our genetic diversity, differentiation, and population structure results of the coral data, 338 

derived from SNPs from their epiRADseq data, are consistent with those obtained by Dimond et al. 339 

(2017). The Fst estimates between the three population genetic clusters are slightly higher in our study 340 

(approximately 20% in excess of the previously published values). This is likely caused by the 341 

different loci being retained by the Stacks vs Pyrad pipelines, consistent with Pante et al. (2015) 342 

reporting a locus overlap of less than 50% between methods. However, Fst results are rarely strictly 343 

comparable across studies and instead are relative to the markers used (Hartl & Clark, 2007) and 344 

therefore these deviations can be considered irrelevant. These explorations and comparisons of our 345 

pipeline on the coral dataset demonstrate the appropriateness of the pipelines we applied and that the 346 

baseline genetic information is comparable across studies. 347 

For the coral dataset, the number of loci in the ddRADseq catalogue was 43% higher than in 348 

the epiRADseq catalogue (285,987 vs 164,411) and resulted in a higher number of SNPs in the final 349 

ddRADseq dataset. This is expected due to the loci sampling bias of epiRADseq, as loci that are 350 
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methylated are not sequenced (Schield et al. 2016). However, we show that there is negligible effect 351 

on the resulting summary and differentiation statistics and the epiRADseq SNPs are therefore 352 

equivalent to the ddRADseq SNPs. 353 

 We explored the effect of different filtering levels on the SNP retention of epiRADseq and 354 

ddRADseq derived SNPs from the whitefish data. We did not explore this with the coral data as we 355 

were more interested in comparing estimates of population structure between epiRADseq and the 356 

previously published estimates derived from ddRADseq. As expected, the -r 67 and -r 75 ddRADseq 357 

datasets had more SNPs than the respective epiRADseq datasets, but the epiRADseq -r 100 dataset 358 

had more SNPs than the ddRADseq -r 100 dataset. This is probably due to the higher coverage of the 359 

epiRADseq reads (85 M reads for 25 individuals in the epiRADseq vs 32 M reads for 25 individuals 360 

in the ddRADseq), which resulted in more SNPs being retained in the most stringently filtered 361 

dataset.  362 

 We find an agreement between ddRADseq and epiRADseq analyses of population structure 363 

in the whitefish data, as both methods recover two clusters in our dataset of four sampled and closely 364 

related populations. The -r filtering had some impact on the correlation of the summary statistics 365 

between ddRADseq and epiRADseq, with the correlation increasing from as low as 88% up to 92% as 366 

the filtering became more stringent. This is expected because of the -r parameter in Stacks, which 367 

influences the number of individuals in a population a locus must be present to be retained in the 368 

dataset. In the -r 67 and -r 75 datasets, it is not required for the locus to be present in the same set of 369 

individuals (i.e. in two-thirds or three-quarters of all individuals in a population, respectively), while 370 

in the -r 100 datasets this restriction is complete so all retained SNPs have to be shared across all 371 

individuals. We did not explore further filtering in our analyses, but previous work (e.g. Paris, 372 

Stevens, & Catchen, 2017; O’Leary et al. 2018; Linck & Battey, 2019) highlights the importance of 373 

fine-tuning the SNP-calling pipeline to suit the researcher’s needs and the specificity of each dataset. 374 

However, with regard to the use of SNPs from epiRADseq it is important to consider that 375 

comparability across different datasets is not what matters; here that is done to evidence the method. 376 

Instead each of these stringencies and datasets would be valid. Overall, these results suggest that 377 

allowing some missing data (i.e. –r of 67% or 75%) will not bias genetic analyses conducted with 378 
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SNPs from epiRADseq data, consistent with what has already been shown previously with ddRADseq 379 

(Shafer et al. 2017). 380 

We tested whether allele drop out (ADO) due to locus methylation (Schield et al., 2016) had 381 

an effect when using epiRADseq derived SNPs for genetic analyses. It has been shown through 382 

simulations (Gautier et al. 2013) and observed in empirical studies (Luca et al. 2011) that ADO leads 383 

to an underestimation of expected heterozygosity and nucleotide diversity. This could be a concern 384 

for epiRADseq derived SNPs because, by design, a methylated locus is not cut with epiRADseq and 385 

therefore will be absent from the dataset. However, we found no difference between ddRADseq and 386 

epiRADseq genetic diversity estimates per individual, suggesting ADO is not a particular concern in 387 

epiRADseq data.  388 

Genotyping error in NGS techniques is due to several factors, including sequencing errors, 389 

assembly errors and missing data and will be influenced by coverage (Mastretta-Yanes et al. 2015). 390 

Using technical replicates is a way to estimate this error, which can then be moderated by fine-tuning 391 

the bioinformatic pipeline. We find that the SNP genotyping error rate is low and very similar 392 

between ddRADseq and epiRADseq libraries, ranging between 3 and 6% according to the calculation 393 

method used. Mastretta-Yanes et al. (2015) found SNP error rates between 2.4 and 5.8% using the 394 

Stacks pipeline on Illumina-based RAD sequencing. Recknagel et al. (2015), using a similar lab 395 

protocol to that used for the whitefish libraries here but sequenced on an Ion Proton platform, 396 

recovered genotyping errors of 1.8-2.2%. Dimond et al. (2017) used the ddRADseq and epiRADseq 397 

samples as technical replicates, as they were sequenced on the same lanes, and recovered a mean 398 

genotyping error rate of 3.6% (standard deviation 3.1%). Therefore, genotyping error rates in the 399 

whitefish libraries are consistent with those found by previous studies and are very similar between 400 

the ddRADseq and epiRADseq approaches. 401 

When looking at the results of the coral and whitefish data together, we find agreement when 402 

estimating population structure either with ddRADseq or with epiRADseq. However, the percentage 403 

of SNPs shared between ddRADseq and epiRADseq was higher in the coral data (83% vs 55-65%). 404 

This could be due to the difference in genome complexity and genome size of the two organisms 405 

studied. Salmonids have undergone an extra whole genome duplication compared to other teleosts 406 
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(Macqueen & Johnston, 2014) and members of the genus Coregonus have an estimated genome size 407 

of 3.3 Gb (Gregory, 2018). Members of the coral order Scleractinia, to which the coral genus Porites 408 

spp. belong, have genomes ranging from 420 Mb to 1.14 Gb (Gregory, 2018). Smaller genomes 409 

generate fewer RAD loci, which are then more likely to be found across sequencing libraries at a 410 

given coverage (see Recknagel et al. 2015 for detailed quantifications). Furthermore, DNA 411 

methylation levels and patterns differ between the organisms studied here and may have an impact. 412 

Most of the CpG sites (~80%) in vertebrate genomes are methylated, with the unmethylated sites 413 

forming regions known as CpG islands, which are usually located near gene promoters (Metzger & 414 

Schulte, 2016). In contrast, most of the methylation in invertebrates occurs specifically in CpG sites 415 

within gene bodies (Dixon, Bay, & Matz, 2014). The methylation level of CpG sites in the 416 

scleractinian coral Stylophora pistillata is around 7% (Liew et al. 2018), a stark contrast to the 417 

methylation level of vertebrates. Differences in methylation between organisms might influence the 418 

number of fragments that are cut during digestion with HpaII and therefore affect the number of loci 419 

sequenced. We did not explore the genomic location of the SNPs used here, but with appropriate 420 

reference genome annotation information that is possible and would be very informative. 421 

In addition to EpiRADseq (Schield et al. 2015), other methylation-sensitive techniques have 422 

been developed to take advantage of the basic RADseq methodologies. MethylRAD (Wang et al. 423 

2015) is based on the 2b-RAD methodology (Wang et al. 2012) and employs methylation sensitive 424 

Mrr-like enzymes that, like IIB restriction enzymes, cut upstream and downstream of the recognition 425 

site if it is methylated. Instead, enzymes used for ddRADseq and epiRADseq only cut downstream of 426 

the recognition site. Like epiRADseq, this technique does not provide base-pair resolution of 427 

methylation but provides methylation information by comparing locus read depth across samples to 428 

infer abundance. Given its similarity to 2b-RAD, we suspect that MethylRAD could also be used for 429 

extracting SNPs for genetic analyses as well, although thorough testing should be carried out. 430 

BsRADseq (Trucchi et al. 2016) combines RADseq with bisulfite sequencing, providing a base pair-431 

resolution of DNA methylation, similarly to RRBS. We also believe this technique could be used for 432 

both genetic and epigenetic analyses, but again we recommend testing to explicitly compare the 433 

genotype datasets. 434 
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 Here, we showed that the recently developed epiRADseq approach for the study of DNA 435 

methylation variation can also be used for generating SNPs for population genetic analyses, using 436 

both reference-based and de novo approaches. Sequencing only an epiRADseq library halves the cost 437 

in time, consumables, and sequencing compared to sequencing ddRADseq for SNPs and epiRADseq 438 

for methylation abundance. This combination provides informative biological data for population 439 

genomics and differential methylation, which is a topic of growing interest in molecular ecology and 440 

evolution for its heritable and non-heritable effects (Hu & Barrett, 2017). 441 

 442 
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Tables	596 

 597 

Table 1. Number of samples in the libraries, and number of reads retained (in millions, M) after each 598 

step. Retained reads is the number after demultiplexing and Trimmomatic. BAM records refers to the 599 

number of reads retained after mapping to (pseudo)reference draft genome. Catalogue loci are the 600 

total loci inferred from Stacks, whether variable or not. 601 

 602 

 N individuals  Total reads 

(millions) 

Retained reads 

(millions) 

Bam records 

(millions) 

Catalogue 

loci 

Coral ddRAD 30 213 205 142 285,987 

Coral EpiRAD 30 156 149 102 164,411 

Whitefish 

ddRAD 

43 524  118 40 
 

355,491 

Whitefish 

EpiRAD 

43 554  227 120 
 

321,324 

 603 

 604 
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 606 

Table 2. Spearman’s correlation between coral and whitefish epiRADseq and ddRADseq estimates of 607 

expected heterozygosity (He), observed heterozygosity (Ho), and nucleotide diversity (Pi) for -r 67, -r 608 

75, and -r 100 datasets. Number of sites corresponds to the SNPs shared between epiRADseq and 609 

ddRADseq datasets, for which the correlation was calculated. 610 

 611 

 Stacks 

filtering	

Number of 

sites 

He 

	

Ho	 Pi	

Whitefish -r 67	 4518 0.904 0.885 0.896 

 -r 75	 4294 0.911 0.889 0.903 

 -r 100	 2978 0.928 0.906 0.919 

Coral -r 100 676 0.988 0.972 0.988 

 612 
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Figures	615 

	616 

 617 

 618 

Figure 1. The number of SNPs retained by the ddRADseq and epiRADseq datasets for a) the coral 619 

data and b) whitefish data. Three datasets were created for the whitefish data, differing in the 620 

percentage of individuals that must possess a particular locus for it to be included (-r parameter of the 621 

population program from the Stacks pipeline). 622 
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 624 

 625 

Figure 2. Results of the coral DAPC analyses of the a) SNPs used by Dimond et al. (2017), b) SNPs 626 

from the re-called ddRADseq dataset, and c) SNPs from the epiRADseq dataset. The analysis was 627 

based on five retained principal components, as suggested by the cross-validation of DAPC. These 628 

PCs were then summarised with two discriminant functions and percent variance captured appears on 629 

the axes. The numbers on arrows are Weir and Cockerham Fst values between the clusters. 630 
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 633 

 634 

Figure 3. Correlation of a) expected heterozygosity, b) observed heterozygosity, and c) nucleotide 635 

diversity, between ddRADseq (y axis) and epiRADseq (x axis) estimates for the coral data. Each dot 636 

represents a genomic site from the “sumstats.tsv” file of the Stacks pipeline that was shared between 637 

the ddRADseq and the epiRADseq datasets. 638 
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 640 

 641 

 642 

Figure 4. Results of the European whitefish DAPC analyses at three different filtering stringencies (-r 643 

67, -r 75, -r 100). The analysis was based on five retained principal components, as suggested by the 644 

cross-validation of DAPC. These PCs were then summarised on one discriminant function, as only 645 

two genetic clusters are observed. The numbers above arrows represent Weir and Cockerham Fst 646 

values between the two identified clusters. 647 
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