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Key points  

● Most comprehensive and unbiased assessment of prognostic biomarkers in MM 
resulting in a robust and parsimonious model. 

● Identification of PHF19 as the expression based biomarker most strongly associated 
with rapid progression in MM patients. 

 
Abstract 
While the past decade has seen meaningful improvements in clinical outcomes for multiple 
myeloma patients, a subset of patients do not benefit from current therapeutics for unclear 
reasons. Many gene expression-based models of risk have been developed, but each model 
uses a different combination of genes and often involve assaying many genes making them 
difficult to implement. We organized the Multiple Myeloma DREAM Challenge, a crowdsourced 
effort to develop models of rapid progression in newly diagnosed myeloma patients and to 
benchmark these against previously published models. This effort lead to more robust 
predictors and found that incorporating specific demographic and clinical features improved 
gene expression-based models of high risk. Furthermore, post challenge analysis identified a 
novel expression-based risk marker and histone modifier, PHF19, which featured prominently in 
several independent models. Lastly, we show that a simple four feature predictor composed of 
age, International Staging System stage (ISS), and expression of PHF19 and MMSET performs 
similarly to more complex models with many more gene expression features included. 
 
Introduction 
Multiple myeloma (MM) is a hematological malignancy of terminally differentiated plasma cells 

(PCs) that reside within the bone marrow1. It arises as a result of complex chromosomal 
translocations or aneuploidy with approximately 25,000-30,000 patients diagnosed annually in 
the United States2,3. The disease's clinical course depends on a complex interplay of molecular 
characteristics of the PCs and patient socio-demographic factors. While progress has been 
made with novel treatments extending the time to disease progression (and overall survival) for 
the majority of patients, a subset of 15%-20% of newly diagnosed MM patients are 
characterized by an aggressive disease course with rapid disease progression and poor overall 
survival regardless of initial treatment4–6. Accurately predicting which newly diagnosed patients 
are at high-risk is critical to designing studies that will lead to a better understanding of myeloma 
progression and facilitate the discovery of novel therapies that meet the needs of these patients. 
 
To date most MM risk models use patient demographic data, clinical laboratory results and 
cytogenetic assays to predict clinical outcome. High risk defining cytogenetic alterations typically 
include deletion of 17p and gain of 1q as well as t(14;16), t(14;20), and most commonly  t(4;14), 
which leads to juxtaposition of MMSET with the immunoglobulin heavy chain locus enhancer, 
resulting in overexpression of the MMSET oncogene4. While cytogenetic assays, in particular 
fluorescence in situ hybridization (FISH), are widely available, their risk prediction is sub-optimal 
and recently developed classifiers have used gene expression data to more accurately predict 
risk7–9. To investigate possible improvements to models of newly diagnosed myeloma 
progression, we organized the crowd sourced Multiple Myeloma DREAM Challenge, focusing 
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on predicting high-risk, defined as disease progression or death prior to 18 months from 
diagnosis. This benchmarking effort combined eight datasets, four which provided participants 
with clinical, cytogenetic, demographic and gene expression data to facilitate model 
development, and four hidden, independent data sets (N = 823 unique patient samples) for 
unbiased validation. Over 800 people participated in this Challenge, resulting in the submission 
of 171 predictive algorithms for objective evaluation. Several models submitted to the Challenge 
demonstrated improved accuracy over existing state-of-the-art, published models.  
 
Analysis of top performing methods identified high expression of PHF19, a histone 
methyltransferase, as the gene with the strongest association with myeloma progression, with 
greater predictive power than the expression level of the known high risk gene MMSET. We 
developed a four parameter model using age, ISS, and PHF19 and MMSET expression that 
performs as well as more complex models having many more gene features. The parsimony of 
this model should facilitate its translation to the clinic. Significantly, we showed that knock down 
of PHF19 shifts myeloma cell lines into a less proliferative state. To our knowledge, this is the 
first DREAM Challenge to both nominate and experimentally validate a candidate biomarker 
and, as such, demonstrates the biological and clinical impact of crowdsourced efforts. 
 
Methods 
Datasets: The Challenge includes five microarray and three RNA-seq expression datasets, 
annotated with clinical characteristics such as gender, age, ISS, and cytogenetics (Table 1)9–14. 
In all datasets, the expression assay was performed on CD138+ PCs isolated from bone 
marrow aspirates or blood of newly diagnosed patients. Data were split into training and 
validation datasets (Table 1). 
 
Three institutes provided RNA-sequencing data. The Multiple Myeloma Research Foundation 
(MMRF) provided an additional training dataset from its publicly available CoMMpass study 
(release IA9). Collaborating with the Myeloma Genome Project / Dana Farber Cancer Institute 
(MGP-DFCI) access was provided to data from their clinical trial where patients were 
randomized into a standard treatment arm and an aggressive treatment arm that included 
autologous stem cell transplant (ASCT) and high dose therapy15. An additional dataset from the 
Oncology Research Information Exchange Network (ORIEN) was made available through a 
collaboration with Moffitt Cancer Center and M2Gen (See supplement for more details on 
datasets). 

 
    

 
ISS stage  

 Study 
EGA/GEO/Clin
ical Trial Id 

Median 
PFS 

Data Type 1 2 3 N 

Training 
Datasets 

Masaryk11 E-MTAB-4032 11.35 
Expression 
Array 

0.27 0.31 0.42 147 

MAQC-II10,14 GSE24080 25.47 
Expression 
Array 

0.53 0.26 0.21 559 

MMRF IA916 NCT01454297 12.59 RNA-seq 0.35 0.37 0.28 636 
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HOVON65/GMMG-HD49,17,18 GSE19784 18.3 
Expression 
Array 

0.43 0.27 0.31 282 

 
Total Training       1624 

Validation 
Datasets 

MRC-IX12,17–20 GSE15695 * 
Expression 
Array 

* * * 241 

Heidelberg21,22 E-MTAB-372 * Expression 
Array 

* * * 215 

Moffitt  * RNA-Seq * * * 74 

DFCI NCT01191060 * RNA-Seq * * 
* 

293 

 Total Validation       823 

Table 1: Data set descriptions. *: clinical data withheld per data provider request. 

 
Assessing Model Performance 
To identify top performing teams we employed two metrics to assess the accuracy of submitted 
models within a given validation cohort: the integrated area under the curve (iAUC) and 
balanced accuracy curve (BAC).  While the AUC is a widely accepted metric of prediction 
accuracy, it is sensitive to the specific time threshold used to differentiate high and low patient 
risk. The myeloma research community has not yet reached a consensus on the time point that 
best separates patients into risk groups, though there is a general agreement that it lies 
between 1 and 2 years for progression free survival (PFS). We therefore chose the more robust 
iAUC for the primary metric, with a sliding PFS threshold between 12 and 24 months at weekly 
increments. iAUCs computed in each validation cohort were combined into a weighted average 
(wiAUC) with each cohort iAUC weighted by the square of the number of high-risk patients. 
 
Using the wiAUC we computed the Bayes factor, K, to identify statistically tied top performing 
predictors (see supplemental Methods). Predictors with Kp< 3 are considered tied with the top 
scoring model and the weighted BAC (wBAC) was used as a tie-breaking metric in order to 
determine the final top performing model, with weighting by the square of the number of high 
risk patients in each dataset (see supplemental text). 
 
In vitro studies For Functional assessment of PHF19 

Studies to determine the functional importance of PHF19 were performed using standard 
assays and are described in the supplemental text. In brief, tetracycline inducible short hairpin 
RNA (TRIPZ shRNA) was used to knockdown PHF19 expression in two MM cell lines (JJN3 
and ARP1). A non-silencing scrambled TRIPZ shRNA was used as a control. PHF19 
knockdown (KD) after doxycycline induction was measured by quantitative real time polymerase 
chain reaction (qRT-PCR) and western blotting. Cell viability (Cell Titer Blue, Promega), cell 
cycle (Vybrant DyeCycle Stain, Thermo Scientific) and apoptosis (Annexin V, Biolegend) were 
assessed and differences between the PHF19 KD cells and control group were analyzed. 

 
Results 
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Top Challenge Models Outperform Baseline and Published Myeloma Predictors 
To develop and assess prognostic models of high-risk in MM, we assembled eight data sets 
totaling 2447 patients annotated with overall survival (OS) and progression-free survival (PFS; 
Table 1). We asked participants to predict whether a patient was high-risk as defined as disease 
progression or death prior between 12-24 months since diagnosis (see Methods). Participants 
developed prognostic models using clinical features (e.g., age, sex, International Staging 
System (ISS), and cytogenetic features) and gene expression utilizing four training datasets. 
Challenge participants submitted models to be evaluated against four validation cohorts 
sequestered in the cloud (Figure 1, Table 1, see supplement text). Model predictions were 
benchmarked against each other and comparator models (Table 2) using weighted-integrated 
AUC (wiAUC), with statistical ties resolved using weighted balanced accuracy (wBAC) (see 
methods and supplemental text).   
 

Model Reference Features 

Baseline Baseline Age and/or ISS 

UAMS-70 Shaughnessy et al 20077 Gene expression signature composed of 70 genes 

EMC-92 Kuiper et al 201223 Gene expression signature composed of 92 genes 

UAMS-70 extended This manuscript UAMS-70 with age and/or ISS 

EMC-92 extended This manuscript EMC-92 with age and/or ISS 

Table 2: Comparator modes. 

 
Of 42 finalized models submitted to the Challenge, 11 exceeded the performance of the age 
plus ISS baseline model (Figure 2, wiAUC=0.6207). The top-performing predictor, developed by 
researchers at the Genome Institute of Singapore (GIS), outperformed all Challenge participant 
models (wiAUC = 0.6721) as well as the published comparator models UAMS-70 
(wiAUC=0.6414) and EMC-92 (wiAUC=0.6042, Figure 2).  
 
Combining Clinical Features and Gene Expression Features Improves Myeloma Risk 
Prediction Accuracy 
After the Challenge submission period ended, Challenge organizers and top performing teams 
assessed which features had the largest impact on model performance. ISS was the most 
important model feature in GIS’s top-performing model as measured by the mean decrease in 
Gini coefficient (see methods). A DNA repair signature previously associated with poor 
prognosis24 was the second most important feature, while age ranked third (supplemental 
Figure 1).  
 
To assess whether age and/or ISS explained the difference in model performance between the 
top-performing model and published comparator models, we extended the UAMS-707 and EMC-
9223 models to include age and/or ISS and assessed their performance (Figure 2; see 
Supplemental Methods). The addition of these clinical features improved performance of both 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/737122doi: bioRxiv preprint 

https://doi.org/10.1101/737122
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

published models: EMC-92 wiAUC= from 0.6042 versus EMC-92+age+ISS wiAUC=0.658 and 
UAMS-70 wiAUC=0.6414 versus UAMS-70+ISS wiAUC=0.6667 as has been suggested 
previously13,25. Adding ISS to the UAMS-70 model  improved its accuracy such that it was tied 
with the top-performing model (i.e., its Bayes factor K < 3; Figure 2a-b). 
 
Top-Performing Challenge Methods Identify PHF19 as a Novel Myeloma High Risk 
Biomarker 
The top-performing model implemented a wisdom of the crowd approach, utilizing clinical 
features and published myeloma signatures that summarize the expression of gene sets. The 
second-place SUGO model instead included individual genes as features, utilizing a univariate-
based feature selection approach to identify genes to include in their  model. In each of the four 
training datasets the SUGO team computed each gene’s effect size, z, via the concordance 
index between overall survival and the gene’s expression. These effect sizes were combined 
across training sets using Stouffer’s method26 without weighting to yield a single meta-z per 
gene. The meta concordance index was calculated using two expression normalization 
procedures, with one nominating PHF19 as the most important gene and the second identifying 
CDKN3 (See Supplement Methods).  
 
We replicated this analysis in both the training and validation expression datasets using PFS in 
place of OS to increase statistical power. We also weighted studies according to their number of 
high risk patients when applying Stouffer’s method. This univariate analysis also found 
previously described myeloma risk genes MMSET and CKS1B with large values in the tail of the 
meta-z distribution (Figure 3a), validating this approach. The meta-z values of these genes were 
surpassed by PHF19, the top-ranked gene regardless of normalization procedure (not shown) in 
both the training and validation datasets (Figure 3a). 
 
Given that PHF19’s association with progression was replicated in  the validation datasets, we 
next asked whether it could improve the performance of the GIS model which did not include 
single genes. The GIS model uses penalized logistic regression over features ranked and 
selected based on mean decrease in Gini coefficient calculated via a random forest (see 
Supplemental Methods). We added PHF19 expression into this feature selection process and 
found that it ranked higher than all other features, except ISS and a previously-published DNA 
repair signature24(supplemental Figure 2). 
 
Incorporating PHF19 and MMSET expression with Age and ISS Identifies a Simple Model 
of High Risk MM 
Given that both PHF19 and MMSET are histone modifiers playing a role in H3K36 methylation 
we checked whether their expression is correlated (Figure 3b). Expression of MMSET and 
PHF19 do not appear to have an association. As has previously been shown, MMSET 
expression is clearly affected by the t(4;14) translocation with the immunoglobulin enhancer 
driving high MMSET expression, but expression of PHF19 is not correlated. However, 
subsetting by t(4;14) reveals a modest linear relationship between MMSET and PHF19 
expression in samples lacking the translocation (r = 0.423) while there is no such relationship in 
the t(4;14) positive samples (r = -0.067). 
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Given the impact of PHF19 on model performance and MMSET’s status as a reported myeloma 
risk marker, we checked to see if a model composed of age, ISS, PHF19 and MMSET could 
perform as well as one using the features of the top-performing extended comparator model 
(UAMS-70 plus age plus ISS). We constructed a Cox proportional-hazards model of the two 
feature sets and found that the four parameter model (wiAUC=0.693) out-performed the UAMS-
70-based model in the validation cohort (wiAUC=0.667; Figure 3c) placing it on par with the 
winning algorithm.  
 
Knockdown of PHF19 Leads to Decreased Proliferation through Cell Cycle Arrest in 
Multiple Myeloma Cell Lines 

To determine whether PHF19 is functionally important for the malignant growth of MM cells, we 
used lentiviral-expressed shRNA directed against PHF19. We transduced JJN3 and ARP1 MM 
cell lines with a shRNA targeting PHF19 or a scrambled control shRNA and selected out 
transduced cells. shRNA induced cells showed knockdown (KD) of >90% PHF19 RNA and 
protein relative to the control after 72 hrs and 168 hrs for the JJN3 and ARP1 cell lines, 
respectively (Figure 4a and 4b). KD of PHF19 led to significant inhibition of proliferation in the 
JJN3 and ARP1 MM cell lines compared to scrambled shRNA control (Figure 4c-d)  confirming 
the recent finding of PHF19’s effect on proliferation in MM cell lines27. To identify the 
mechanism of growth inhibition, we performed cell cycle analysis and observed a significant 
arrest of MM cells in the G0/G1 stage with PHF19 KD compared to the scrambled control 
shRNA (Supplemental Figure 3a). This was seen consistently in both cell lines examined 
(Supplemental Figure 3b). We further investigated the effect of PHF19 KD on apoptosis and 
necrosis, but did not find significant differences at the examined time points (Supplemental 
Figure 3c-e). These results demonstrate that PHF19 is functionally relevant in MM and that 
reduction of PHF19 leads to a decrease in cell proliferation via cell cycle arrest. 

 
Discussion 
In the course of the crowd sourced Multiple Myeloma DREAM Challenge we benchmarked 171 
prediction models and found that the accuracy of gene expression-based models benefited from 
the addition of clinical data, specifically: age and ISS improved AUC-based metrics by 
approximately 6% while an indicator of whether a patient received an ASCT improved the metric 
by roughly 5%. As such, expression-based patient stratification efforts should incorporate age 
and ISS, and possibly include an ASCT indicator for any post hoc analysis. 
 
Additionally, we show for the first time that expression of PHF19 is a stronger predictor of MM 
progression than the expression level of the high risk marker MMSET, which is particularly 
overexpressed in patients with the high risk translocation t(4;14). This strong association was 
likely missed in earlier studies given that PHF19 expression is not associated with any 
cytogenetic feature while several therapeutic advances over the last 20 years have made it 
difficult to model outcome across multiple studies from different periods. Furthermore, PHF19 
has not been found to be significantly mutated in sequencing-based studies28,29, suggesting that 
its overexpression is not directly related to genomic alterations within the PHF19 gene. We also 
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show that a simple four feature predictor composed of age, ISS, and expression of PHF19 and 
MMSET performs similarly to more complex models with many more gene expression features 
included (Supplemental Figure 4). This simplicity may allow the model to be more easily 
adopted in a clinical setting where only two genes would need to be measured. 
 
Apart from its prognostic value, we show that PHF19 has functional importance in MM. 
Knockdown of PHF19 led to a significant reduction of growth and cell cycle arrest ex-vivo, 
suggesting that PHF19 may play a role in transitioning cells into a highly proliferative state in 
MM. PHF19 has been shown to be a major modulator of histone methylation thereby regulating 
transcriptional chromatin activity30. PHF19 directly recruits the polycomb repressive complex 2 
(PRC2) via binding to H3K36me3 and leads to activation of enhancer of zeste homolog 1 and 2 
(EZH1/EZH2) as enzymatic subunits of PRC2, thereby resulting in tri-methylation of H3K2731,32. 
This process has been shown to enforce gene repression and is known to promote tumor 
growth in a variety of cancers33. While MMSET has also been shown to regulate histone 
methylation, its role as an epigenetic modulator is less well understood. Some reports have 
suggested that MMSET leads to transcriptional repression through generation of H4K20me34, 
H3K27me335 or H3K36me335, while other studies show that MMSET enhances transcription 
through generation of H4K20me236 and H3K36me235. In contrast to MMSET, PHF19 expression 
is present in all MM subgroups and is preferentially overexpressed in high risk MM. These 
results are indicative of a strong correlation between increased histone methylation, in particular 
H3k27 trimethylation, and disease aggressiveness. Further work will be necessary to elucidate 
the mechanisms of PHF19 in MM biology and any interplay with MMSET. 
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Figure Legends 
 
Figure 1 Challenge Model Submission Architecture: training datasets are fully available to 
challenge participants (left), while validation datasets are sequestered in the cloud (right). 
Containerized models are submitted to cloud, ran on training datasets and risk predictions are 
scored. 
 
Figure 2 Challenge Performance: A) Box plots show distributions of bootstrapped model 
performances for each team. Comparator models are shown with text marked in blue for 
baseline models, green for published models and red for published models extended to include 
clinical features. The dashed red line indicates the median of the best performing comparator 
model. Barplots to the right show the tie-breaking metric, wBAC, for each model. Amongst 
statistically tied models, GIS has the highest wBAC and was declared the top-performer. 
Asterisk indicates internal collaborator’s comparator model. B) Kaplan-Meier curve of UAMS-70 
comparator model with and without age and ISS added.  
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Figure 3 PHF19 compared to other Myeloma classifiers and Features: A) Two dimensional 
histogram of PFS concordance index-based univariate effect sizes (z) in training and validation 
cohorts where colors represent the number of genes in a given hexagonal bin. PHF19 and well-
known myeloma genes noted. B)  PHF19 and MMSET expression in relation to t(4;14). C) A 
simple four feature model performs as well as UAMS-70 combined with age and ISS. 
 
 
Figure 4. PHF19 knock down leads to decreased cell: Knockdown of PHF19 was performed in 
the JJN3 and ARP1 MM cell lines using inducible shRNA. A) PHF19 knockdown, relative to 
scrambled shRNA control, was confirmed using qRT-PCR and B) western blotting. C-D) Cell 
proliferation was significantly decreased in MM cells with PHF19 knockdown compared to 
scrambled control for JJN3 and ARP1 cell lines. 
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