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Abstract Reconstructing brain connectivity at sufficient resolution for computational
models designed to study the biophysical mechanisms underlying cognitive processes
is extremely challenging. For such a purpose, a mesoconnectome that includes lami-
nar and cell-type specificity would be a major step forward. We analysed the ability
of gene expression patterns to predict cell-type and laminar specific projection pat-
terns and analyzed the biological context of the most predictive groups of genes.
To achieve our goal, we used publicly available volumetric gene expression and con-
nectivity data and pre-processed it for prediction by averaging across brain regions,
imputing missing values and rescaling. Afterwards, we predicted the strength of ax-
onal projections and their binary form using expression patterns of individual genes
and co-expression patterns of spatial gene modules.
For predicting projection strength, we found that ridge (L2-regularized) regression
had the highest cross-validated accuracy with a median r2 score of 0.54 which cor-
responded for binarized predictions to a median area under the ROC value of 0.89.
Next, we identified 200 spatial gene modules using the dictionary learning and sparse
coding approach. We found that these modules yielded predictions of comparable ac-
curacy, with a median r2 score of 0.51. Finally, a gene ontology enrichment analysis
of the most predictive gene groups resulted in significant annotations related to post-
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synaptic function.
Taken together, we have demonstrated a prediction pipeline that can be used to per-
form multimodal data integration to improve the accuracy of the predicted mesocon-
nectome and support other neuroscience use cases.

Keywords spatial gene co-expression, connectomics, machine learning, predictive
models, mouse brain, axonal projection, gene expression, ontology enrichment
analysis, regression, ridge regression, dictionary learning, sparse coding, roc
analysis, cellular resolved connectome

1 Introduction

A wiring diagram of the brain (connectome) is a necessary step in advancing modern
neuroscience for two main reasons. First, it assists computational neuroscience by
providing biologically plausible constraints on brain models and simulations (Choi
and Mihalas, 2019). Second, it bridges the gap between experimental data and com-
putational models by providing frameworks exposing its topology and other proper-
ties (Sanz-Leon et al., 2013; Ritter et al., 2013; Woodman et al., 2014). Examples of
connectome based projects are the Blue Brain or the Virtual Brain that aim to create
large scale cellular level models of the human brain (Markram, 2006; Markram et al.,
2011; Sanz Leon et al., 2013).
The meso-scale description of the connectome (mesoconnectome) is defined at the
level of anatomically distinct sub-areas within each brain region and is typically
described by the use of tract-tracing invasive techniques in animal studies, or post
mortem dissections in human studies (Kötter, 2007; Sporns et al., 2005; Highley
et al., 1999; Lanciego and Wouterlood, 2011). The whole brain coverage provided by
these techniques and the ability to delineate layer specific sub-areas make the meso-
connectome neither too coarse grained nor too spatially limited and thus suitable for
developing computational models of structural brain connectivity (Oh et al., 2014;
Knox et al., 2018; Betzel et al., 2015a,b).
It is difficult with tract-tracing techniques to get good whole brain coverage and
they are time consuming (Sporns, 2011). As an alternative to classical neuroanatomy,
genomic-based approaches have been used to describe the connectome for a number
of reasons (Fornito et al., 2019). First, it is possible to infer connectivity information
from genes based on the premise that postsynaptic structures have specific protein
profiles and that neurons connected through synapses have highly coupled gene ex-
pression patterns (Roy et al., 2018; Sperry, (1963). Second, the recent advances in
genome sequencing have resulted in gene expression data being high throughput, rel-
atively cheap and easy to obtain (Shendure and Ji, 2008).
These advantages have led to various studies linking genomic information and struc-
tural brain connectivity with computational approaches (Baruch et al., 2008; Kauf-
man et al., 2006; French and Pavlidis, 2011; French et al., 2011; Wolf et al., 2011).
In recent studies, a link has been established between gene expression and the mouse
mesoconnectome by building predictive models and associating gene co-expression
with network topology and structure (Rubinov et al., 2015; Fulcher and Fornito, 2014;
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Ji et al., 2014), resulting in computational frameworks for the mouse mesoconnec-
tome.
Despite the aforementioned advances, research in the field still faces a number of lim-
itations. Examples are the lack of cell-type specificity or synaptic density for describ-
ing specific neuronal populations in source and target brain areas that are connected
through axonal projections. Such descriptions have been provided at local microcir-
cuit level of the mouse brain but are limited to distinct brain areas such as the primary
visual cortex (Lee et al., 2016). Moreover, important cytoarchitectonic features of the
connectome such as the number of axonal fibers and the density of axonal arbor end-
ing can not be extracted from models describing it as a binary network of present or
absent projections between areas (Ji et al., 2014; Fulcher and Fornito, 2014).
In this work we use computational methods to measure the amount of information
about axonal projection patterns present in gene expression patterns of the mouse
brain and to associate them with factors related to the functional organization of
genes. We have developed a pipeline, which we primarily describe in the methods
section, that is available from a number of repositories. This paper is meant to de-
scribe the results we obtained with it and serve as a validation. The results section is
organized as follows. First, we provide models that predict the strength or presence of
axonal projection patterns given gene expression data, and we evaluate their perfor-
mance on layer and cell class specific projection patterns that cover the whole brain at
the mesoscale level. Second, we examine the relationship between the spatial pattern
of gene co-expression modules and projection patterns in order to explain the perfor-
mance of the predictive process. Third, we determine the ontological significance of
predictive groups of genes in order to assess the biological relevance and causality of
the predictive factors.

2 Methods

We built a computational framework to measure the amount of information about
axonal projection patterns present in gene expression patterns of the mouse brain and
to associate it with factors related to the functional organization of genes. Here we
describe what data we used and how they were pre-processed as well the various
steps of the analysis.

2.1 Materials

2.1.1 Allen Mouse Brain Atlas

The gene expression data were obtained from the Allen Mouse Brain Atlas (AMBA)
dataset of the Allen Institute for Brain Science (table 1), (Lein et al., 2007). The in
situ hybridization (ISH) technique was used to quantify ∼20.000 genes over multi-
ple spatial locations from the brains of C57BL/6J (wild-type) mice which were male
and 56-day-old (P56). In this technique, a probe of complementary strand of RNA
labelled with fluorescent molecules binds with the RNA of dissected brain tissue.
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Given that binding happens in situ, the spatial location of the gene is marked and its
expression can be visualized through fluorescence microscopy (Amann and Fuchs,
2008). ISH constitutes a high throughput approach for quantifying expression ener-
gies of multiple genes in multiple spatial locations with up to 1 µm resolution (Lein
et al., 2007).
In the study that created the AMBA dataset (Lein et al., 2007), mRNA strands were
used together with fluorescence microscopy in order to visualize the gene expression
energy. The result of this analysis was a set of sagittal and coronal brain slice images
containing the expression energy of∼20000 and∼3300 individual genes respectively
(Lein et al., 2007). In our analysis, the coronal slices were selected because their in
plane resolution was higher.

2.1.2 Allen Mouse Brain Connectivity Atlas

The axonal projection data were obtained from the Allen Mouse Brain Connectivity
Atlas (AMBCA) dataset. These data were based on the anterograde tract-tracing tech-
nique that was used to quantify the strength of axonal projections within the brains
of P56 wild-type and transgenic cre-line mice. In anterograde tract-tracing, fluores-
cent molecules are injected to a source brain area and they reach target brain areas by
being transported along the axons and reaching the axonal terminals (Oh et al., 2014;
Harris et al., 2018).
The AMBCA dataset is comprised of ∼1400 anterograde tract-tracing experiments,
for which the projection density was quantified using two-photon microscopy. There
were 14 major transgenic cre-lines used that resulted in the expression of label ac-
cording to different laminar profiles and different cell classes within each cortical area
(Harris et al., 2014, 2018). The cre-lines together with the wild-type data constituted
the 15 tract-tracing categories processed in this study and in their raw form consisted
of brain slice images containing projection densities of multiple target brain areas at
1 µm resolution (Oh et al., 2014; Harris et al., 2018).

2.1.3 Allen Pre-processing pipeline

The brain slice images were processed using the informatics processing pipeline of
the Allen Institute for Brain Science (table 1). Specifically, they were registered and
aligned in the same reference space according to the Common Coordinate Frame-
work CCF v3.0 (table 1).
The end product was a 3D volumetric representation of both modalities that was cov-
ering the whole mouse brain in voxel form and was provided at 100 µm3 resolution
for the projection data and at 200 µm3 for the gene expression data. Each resolution
referred to the size of voxels in the 3D space and corresponded to a particular total
number of voxels in that space defined by x, y and z coordinates. The total number
of voxels was 132 x 80 x 114 in the 100 µm3 resolution and 67 x 41 x 58 in the 200
µm3 resolution. The last step in the informatics processing pipeline was the union-
ization process during which the volume of both data modalities was averaged over
anatomically distinct brain areas. As a result, 2D arrays were created whose rows cor-
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responded to brain areas and columns corresponded to tracing experiments or genes
respectively (Oh et al., 2014).

2.1.4 Data Acquisition

In our predictive workflow we used three sources of neuroanatomical data, namely
gene expression, wild-type tracing experiments and cre-line tracing experiments, that
were downloaded with the mouse connectivity cache (MCC) API (table 1).
We packaged and pre-processed the data as follows (figure 1). First, a number of
experiments corresponding to the expressions of genes or tracing experiments were
downloaded from the Allen Institute with the use of MCC. Second, the unionized
gene expression experiments were packed in a 2-dimensional array where rows cor-
respond to anatomical brain areas and columns correspond to individual genes. Third,
for each wild-type and cre-line tracing experiment, a matrix was created with rows
corresponding to brain areas and columns corresponding to individual injections as-
sociated with source brain areas. Finally, all tracing-related matrices were assembled
into one aggregate data structure together with tracing-related metadata such as the
cell-type and laminar specificity of injections, acronyms of source areas and injection
coordinates.

Fig. 1

2.2 Procedure

2.2.1 Pre-processing pipeline

We searched for not-a-number (NaN) values in the gene expression and axonal trac-
ing datasets and removed them with a 2-step procedure based on their frequency of
occurrence. Supplemental figure 1 documents that brain areas could be clustered in a
group with NaN values for less than 10% of the entries, and a group with NaN values
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for more than 80% of the entries. We removed 610 out of 1038 anatomical brain areas
defined by CCF v3.0 because they had a large fraction (> 80 %) of NaNs in either
the gene expression or the axonal tracing datasets. The remaining NaN values in the
Gene Expression dataset were imputed by taking the median value of the correspond-
ing gene for all non-NaN brain areas (figure 2).
For the tracing data, a sampling-based imputation approach was followed (figure 2).
To ensure that zero values would also have a chance of being used for imputing miss-
ing values, we stratified projection values per column (that is per tracing experiment)
into zero and non-zero values. For each missing value present in a column, one of
these groups was chosen with a probability proportional to its fraction in the non-
missing data and from the chosen group a random value was drawn to be used for the
imputation.
We subsequently rescaled both data modalities to obtain a proper range and distribu-
tion for use in the prediction procedure. First, a cube root transformation was applied
in order to decrease the skewness of gene expression, since relative changes in ex-
pression across genes are considered to be more important than absolute ones and
are usually less skewed (Ambrosius, 2007). This transformation was also applied to
the axonal tracing data, since absolute changes in projection strength across tracing
experiments are considered to be less important than relative ones. The cube root
transformation decreased the range of gene expression values from (0 - 70) to (0 -
4) and their skewness from (-2 - 16) to (-3 - 4). This transformation also decreased
the range of projection strength values from (0 - 427) to (0 - 7.5) and their skew-
ness from (4 - 20) to (1 - 10) (supplemental figure 3). Second, z-score transformation
was applied to both modalities in order to ensure that the regression-based predic-
tive models were trained faster (Friedman et al., 2009). The z-score was obtained by
subtracting the mean across areas and normalizing with the corresponding standard
deviation (figure 2):

z =
x−µ

σ
(1)
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(a) (b)

(c) (d)

(e) (f )

Fig. 2: The gene expression and wild-type axonal projection datasets during different pre-processing
steps. (a-b) Subset of the Gene Expression dataset containing sparse NaN values (a) and the same subset
after the median imputation (b). (c-d) Subset of the wild-type projection dataset containing sparse NaN
values (c) and the same subset after the sampling imputation (d). (e-f) Z-score transformation of the gene
expression dataset (e) and the wild-type projection strength dataset (f). The NaN values are shown in gray.
The non-NaN values have been cube-root transformed for clarity. In (a-d) the brain areas were chosen to
obtain examples with some NaN values present and examples without any NaN values.

2.2.2 Model construction pipeline

A separate prediction model was built for each cre-line or wild-type category as fol-
lows. First, the gene expression data were trained with either the random forest or
ridge regression method. Subsequently, model performance was validated with nested
3-fold cross-validation (Varma and Simon, 2006) and quantified by the r2 score be-
tween the measured and predicted projection patterns. The r2 score is defined as the
fraction of total variance of the measured patterns that can be explained by the pre-
dicted ones (Dodge, 2008):

r2 = 1− ∑i (yi− fi)
2

∑i (yi− ỹ)2 , (2)
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here y corresponds to a ground truth vector, ỹ corresponds to its mean and f corre-
sponds to the predicted version of the vector. Finally, the predicted projection patterns
with their optimal hyperparameter set were extracted as model outputs.
In the paragraphs below we describe the computational methods that we used for
building our models.

2.2.3 Ridge Regression

Ridge Regression (also referred to as Tikhonov regularization) is a form of penal-
ized linear regression commonly used in supervised machine learning and regression
statistics (Tikhonov and Arsenin, 1977; Friedman et al., 2009). Classical linear re-
gression fits a 2-dimensional array X to a vector y by estimating a coefficient vector
w that minimizes the residuals between the actual y and the predicted ŷ estimated as:
ŷ = Xw - b, where b is an intercept term.
The ordinary least squares method is used for optimizing the coefficient vector (Fried-
man et al., 2009):

ŵ = argmin||y−Xw−b||22 (3)

With the estimation of ŵ, new data Xnew can be given as input to the model for pre-
dicting or testing ynew:

ynew = Xnewŵ+b (4)

In cases of high dimensional data, where N > M, the dataset exhibits high variance
and thus noise which hinders the generalization performance of the trained model.
Ridge regression deals with the problem by constraining the size of the coefficients
(Friedman et al., 2009). This is done by adding the l2 norm of the coefficients, multi-
plied by a shrinkage parameter λ , to the objective function:

ŵ = argmin
w∈R

||y−Xw−b||22 +λ ||w||22 (5)

The greater the value of λ the greater the shrinkage of the coefficients towards zero
(Friedman et al., 2009). In our analysis we utilize ridge regression in order to fit gene
expression data to projection patterns of the tract-tracing data and predict unseen
patterns.

2.2.4 Random Forest Regressor

Random Forest Regressor is an ensemble method for performing regression tasks
(Dietterich, 2000; Breiman, 2001). The basic premise for ensemble methods is that
averaging reduces variance. Ensemble methods deal with high variability of predic-
tive results by utilizing multiple models to fit and predict data, while the final result is
derived by a majority voting in classification problems or by averaging in regression
problems across all models participating in the ensemble (Dietterich, 2000).
In Random Forest the ensemble is comprised of multiple decision trees (Breiman,
2001). A decision tree is a directed acyclic graph or tree in which non-terminal nodes
correspond to the rules of decision splits, edges correspond to each possible decision
and terminal nodes correspond to the final decisions. In regression trees the internal
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nodes correspond to value intervals and each leaf node corresponds to the average of
all training data belonging to the intervals described by its parental nodes. A decision
tree is constructed by fitting training data and is evaluated by new testing data that
are being assigned to a class or to values based on the decision splits of their features
implied by the tree (Tan et al., 2005).
One important property of the Random Forest method is that each decision tree gets
assigned a random subset of the dataset, a technique which is also referred to as bag-
ging (Dietterich, 2000). Moreover, each decision tree can use the whole feature set of
a dataset or select a random subset of it (Breiman, 2001).
In our analysis Random Forest Regressor is utilized as an ensemble alternative to
ridge regression in order to investigate differences in the predictive performance be-
tween different methods. Moreover according to literature, it constitutes a robust ap-
proach against data overfitting that occurs when the training data error is significantly
lower than the testing data error (Breiman, 2001).

2.2.5 Dictionary Decomposition

Parallel to the predictive pipeline, the gene expression data were decomposed into
transcriptional networks represented by spatial gene modules and coefficients. The
Dictionary Learning and Sparse Coding method was used for decomposition, in which
a data array is being represented by a linear combination of sparse but non-orthogonal
modules or dictionaries and their coefficients (Mairal et al., 2010; Li et al., 2017). In
dictionary learning both the coefficients and dictionaries are obtained by minimizing
the deviation from the data under a L1 constraint on the coefficients (atoms) and non-
negativity constraints on the elements of both the dictionaries and the coefficients:

(D,a) = argmin
1
2
||X−Da||22,

||a||1 ≤ λ , ||a||> 0, Di, j > 0, ∀i, j ∈ N
(6)

In our analysis the data array corresponded to the gene expression matrix, atoms
corresponded to the coefficients of individual genes to each module and dictionaries
corresponded to the spatial gene modules of the mouse brain.
There are multiple reasons to perform this gene expression decomposition. First, it
allows us to visually inspect various gene co-expression patterns in the mouse brain.
Second, it is a way to reduce redundancy since genes belonging to the same co-
expression network have a putatively similar function across the brain (Langfelder
and Horvath, 2008). Last but not least, it allows us to test multiple hypotheses re-
garding the effects of gene expression in predicting structural connectivity patterns.
Specifically, the modification of atoms or gene coefficients can lead to altered gene
expression patterns which can then be given to our models for predicting altered pro-
jection patterns.

2.2.6 Internal Model Validation

For an internal evaluation of our predictive models, a technique called nested k-fold
cross-validation was applied to the dataset. Before discussing the technique, it is im-
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portant to first describe the classical k-fold cross-validation, from which the nested
version was developed as a way to reduce bias (Varma and Simon, 2006).
A k-fold cross-validation (also referred to as k-fold CV) is a technique for measuring
how well does a supervised machine learning-based model perform on new or unseen
data, also referred to as generalization performance (Bishop, 2006).
In the k-fold CV method, the dataset is partitioned into k disjoint subsets of approx-
imately equal size. D corresponds to the dataset and D1,D2, ..,Dk are its disjoint
subsets (Kohavi, 1995).
For i=1,..,k:

1. Di is used as the testing set and D\Di is used as the training set.
2. D\Di constructs a classification/regression model using any relevant algorithm.
3. Di is tested using the trained model.
4. scorei is estimated as the score of the model for Di, given any metric of interest

(e.g. r2).

score =
∑

k
i=1 scorei

k
, (7)

After the procedure has been completed for all k-folds, then the total cross-validation
score is estimated according to eq. 7, where k is the total number of folds and scorei
is the respective score per fold. The final score is the average over all folds (Kohavi,
1995).
Classical cross-validation is biased since both model performance evaluation and hy-
perparameter optimization can only be tested simultaneously on the same folds, and
there is no independent set to test both factors separately. Nested cross-validation
deals with the issue by nesting each training fold with internal training and testing
folds and applying k-fold cross-validation to them (figure 3), (Varma and Simon,
2006). Internal testing folds are used for validating a hyperparameter set and their
average predictive score (i.e. r2) is the criterion for selecting the most optimal one
(figure 3, eq. 2), while external testing folds validate the generalization performance
of a model. Since each external testing fold validates a model whose hyperparameter
set has been selected from other folds, the aforementioned bias is avoided (figure 3,
eq. 7).
Furthermore, the overall stability of the trained models can be tested by comparing
the overlap of the hyperparameters selected across all external training folds. If the
overlap was more than 80%, we considered the model to be stable and we trained the
model on the complete dataset with the most frequently selected hyperparameter set.
In this case, new data were being tested on the new complete model If the overlap
was between 60% and 80% we considered the model to be moderately instable and
we tested new data by averaging their predictions over all folds. If the overlap was
less than 60% we considered the model to be unstable and we removed it from our
set.
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Fig. 3: Schematic describing the structure of the nested cross-validation method.

2.2.7 Post-hoc binarization

We have provided a post-hoc approach to analyze and visualize binary projection
patterns in the mouse brain, primarily for facilitating comparison to previous studies
(Ji et al., 2014). Since projection strength needed to be binarized, the binarization
threshold was found by maximizing the area under the “receiver operating character-
istic (ROC)” curve (auROC) value (Fawcett, 2006).
For the ROC analysis, classification scores are converted to binary patterns based on
a threshold and the accuracy score between measured and predicted binary patterns
is estimated as the ratio between the true positive rate (TPR) and the false positive
rate (FPR) (eq. 8).

T PR =
T P
P

=
Positives classified correctly

Total number of Positives

FPR =
FP
N

=
Positives classified incorrectly

Total number of Negatives

ROCscore =
T PR
FPR

(8)

Positives and Negatives correspond to the samples from the positive and negative
class respectively. It is important to mention that the terms positive and negative are
conventions used to characterize binary classes in classification problems. In our case
for instance, the positive and negative classes would correspond to the presence and
absence of strong projections from a source area, respectively.
The strength of ROC analysis lies in the application of approximately all possible
thresholds in the range 0-1, leading to a curve of approximately all possible TPR and
FPR values (figure 4). The auROC is estimated as the integral of the area under the
curve that represents the potential quality of classification performance under various
thresholds and also reveals the optimal threshold as the point on the curve furthest
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away from a 45 degree line which represents the performance of a random classifica-
tion (figure 4). The importance of such a line is that the actual performance quality is
visible by comparing the height difference between the line and the curve: the higher
the curve from the line is, the more non-random and thus significant the actual per-
formance is considered to be (Fawcett, 2006).
In order to apply ROC analysis on our continuous data, predicted patterns have to
be converted to classification scores and a second threshold is needed to convert the
measured projection patterns to binary ones. This is achieved by setting up an exter-
nal threshold set, different from the internal one used in ROC analysis. Moreover, the
predicted patterns are transformed to classification scores with the standard logistic
sigmoid function: f (x) = 1

1+e(−x)

Therefore, for each external threshold in the set, the optimal auROC is estimated as
the output of ROC analysis between the measured patterns binarized from the thresh-
old and the predicted patterns that are converted to scores. The selected threshold is
the one with the maximum optimal auROC value.
The Multi-ROC curve analysis in figure 4 is an example of the optimal threshold
selection technique. The data corresponded to a Nr5a1-Cre tracing experiment, ex-
pressed in layer 4 and injected in the ventromedial hypothalamic nucleus (VMH). In
that example, the external threshold selected was the 76th percentile of the measured
data and corresponded to the curve with the maximum auROC value of 0.95. More-
over, the optimal internal threshold of the selected curve was 0.69 and was applied to
the predicted data after the sigmoid transformation.

Fig. 4: Multi-ROC curve between measured and predicted projection patterns of the Nr5a1-Cre tracing
experiment. The ROC curves correspond to multiple curves induced by applying multiple thresholds to the
measured data.

2.2.8 Gene Enrichment Analysis

We used gene ontology (GO) enrichment analysis. This analysis is commonly used in
the bioinformatics field for investigating the biological relevance of groups of genes
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(Rivals et al., 2007). In particular, the hypergeometric test that utilizes the hypergeo-
metric distribution (Rice, 2007), was applied for estimating the statistical significance
of the number of genes with a particular annotation being amongst the most predic-
tive genes in our procedure, relative to the occurrence of genes with this annotation in
similarly sized groups drawn randomly from the entire gene set (Rivals et al., 2007).
We integrated GO enrichment analysis with our predictive workflow in a number of
steps. First, we selected groups of genes with high coefficient scores in the predic-
tion process (Results section, subsections 3.1 and 3.2) or genes with high coefficient
scores in spatial gene modules of interest (Results section, subsection 3.4). Second,
the hypergeometric test was applied to each selected gene group. Third, annotations
for which the hypergeometric test returned a p-value lower than 0.05, were consid-
ered significant and were collected in a table.
The ontology annotations and the gene set for the randomly drawn subsets were taken
from the org.Mm.eg.db database that was downloaded from the Bioconductor open
source bioinformatics software (table 1) and contains genome-wide annotation for
the mouse species.

2.2.9 Link to Mouse Connectivity Models

We linked our predictive workflow to the Mouse Connectivity Models (MCM) tool
provided by the Allen Institute for Brain Science (Knox et al., 2018). The MCM
tool comprises a set of approaches, based on penalized regression, for constructing
connectivity matrices on a volumetric scale of 100 µm3 or on a regionalized scale
of structural brain areas. These tools enabled us to integrate the 1397 tract tracing
experiments into one connectivity matrix and analyze the differences in projection
patterns from different laminar profiles.

Table 1: Hyperlinks for websites, tool descriptions and format descriptions related to our analysis. See
main text for details.

Allen Institute https://alleninstitute.org/

CC documentation https://allensdk.readthedocs.io/en/latest/connectivity.html

CCF v3.0 http://help.brain-map.org/display/mouseconnectivity/Documentation

MCC use case https://alleninstitute.github.io/AllenSDK/_static/examples/nb/mouse_connectivity.html

NIfTI https://nifti.nimh.nih.gov/

JSON https://en.wikipedia.org/wiki/JSON

SBA https://scalablebrainatlas.incf.org/composer-dev/?template=ABA_v3

Bioconductor software http://bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html

Repository of our Code
on the HBP Collaboratory https://collab.humanbrainproject.eu/#/collab/8650/nav/65518

Repository of our Code
on Github https://github.com/ntimonid/Connectomic-Composition-Predictor-CCP-
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3 Results

We downloaded the unionized label intensities from the Allen Mouse Brain Connec-
tivity Atlas repository (see Methods, download date = 1-07-2018) of viral tracing
experiments corresponding to 1397 distinct injection sites, of which the majority (n =
498) was in wild-type subjects and the remainder were made in 14 different cre-lines
of transgenic animals. Unionized means that the label intensity is averaged across
all voxels belonging to a particular brain region. Here we use the common coor-
dinate framework (CCF v3.0) to assign each voxel to a brain region. In addition,
we downloaded the corresponding unionized gene expression data. The data were
pre-processed to remove regions with poor quality data, impute missing values and
rescale values to an appropriate range for fitting (see Methods).

3.1 Prediction of continuous projection strength based on gene expression patterns

We explored various fitting procedures (see Methods) for predicting the connection
strength (label intensity) from the gene expression data. The two supervised learn-
ing methods used for fitting the data were random forest and ridge regression, while
the performance was measured using the r2 score which represents the fraction of
total variance accounted for by the model. Across all injection sites, irrespective of
subject type, ridge regression based predictions yielded a median r2 of 0.54 with an
interquartile range of 0.178. Random forest based predictions yielded a median r2

score of 0.42, which was lower than the one for the ridge regression based predic-
tions (Figure 5). As an example, the data presented shown in Figure 6 were obtained
using nested 3-fold cross-validation of ridge regression.
Variation in performance was analyzed across experiments of different tract-tracing
categories. When the performance was partitioned according to transgenic cre-line
and wild-type, the performance of wild-type was approximately in the center of the
fit range based on transgenic animals. As the number of injections in each transgenic
cre-line was much lower than available wild-type data (n = 12 to 125 for transgenic
versus n = 498 for wild-type) this variation can be most likely attributed to experimen-
tal variability, rather than the specific properties of a transgenic line. Our statistical
tests indicated that the difference was not statistically significant (p = 0.004 for 100
random permutations per cre-line, 14000 permutations in total, with the same distri-
bution in set size as the cre-lines).
Predictions of projection patterns with the ridge regression-based models trained on
gene expression data were significant. The ridge regression models trained with ac-
tual gene expression patterns outperformed in every case surrogate models, that were
created by randomly distributing the expression intensity of each gene across ar-
eas (for three representative cases see figure 5). This process was repeated 25 times
for each cre-line and wild-type tracing experiment. The predictive models that were
trained with the surrogate data, also referred to as surrogate models, had a median r2

score of -0.005 and an interquartile range of 0.007 over all tracing experiments.
All of the ridge regression models outperformed the null models, that were incorpo-
rated into the analysis as an additional control (figure 5). The null models predicted
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unseen projection patterns by averaging values of the seen ones and thus did not ac-
count for variability across brain areas. A model was considered inaccurate when it
was outperformed by those null models. The null models had a median of -0.003 and
an interquartile range of 0.005 over all tracing experiments.
Predictions with low r2 values can be expected when multiple projection patterns
with a noisy subset need to be predicted simultaneously. Specifically, the models were
trained to fit multiple tracing experiments belonging to a particular tracing category
(i.e. wild-type mice) with the same set of ∼3000 genes and the same hyperparameter
set. In our data, 10 out of 1397 tracing experiments (0.7%) had a value in the range [0
- 0.2] for ridge regression based models, while the equivalent percentage for random
forest based models was 40 out of 1397 (2.8%).
Nevertheless, performance of models with a high r2 score can be appreciated when
the predicted projection patterns are visually compared with the measured ones in the
form of brain slices and cortical flatmaps (for an example see figure 6).

(a) (b)

(c) (d)

Fig. 5: (a) Prediction scores per tract-tracing category. x-axis: tract-tracing category. y-axis: r2 values.
Results for the wild-type tracing experiments are being highlighted in red in order to be differentiated from
the cre-lines. (b) Comparison of ridge regression (left) with random forest (right) based models. y-axis: r2

scores. The red line is the median, the box encloses the interquartile range and the green dots are outliers
which comprised 0.7 % of the injections for ridge regression and 2% for the random forest. (c) Performance
comparison of surrogate (bottom panel) and actual models (top panel) for a number of tracing datasets. x-
axis: datasets - Cux2-IRES-Cre (left), Exm1-IRES-Cre (middle), wild-type (right). y-axis: r2 scores. The
red line and box are as in (b) while the blue and green dots are outliers for the regression of the actual
and surrogate data respectively. (d) Performance comparison of null (bottom panel) and actual models (top
panel) for a number of tracing datasets. x-axis: datasets - Cux2-IRES-Cre (left), Exm1-IRES-Cre (middle),
wild-type (right). y-axis: r2 scores. The color conventions are as in panel (b).
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(a)

(d)(c)

(b)

(e)

Fig. 6: Subcortical visualizations (a,b), cortical visualizations (c,d) and a prediction performance scatter
plot (e) for a Cux2-IRES-Cre tracing experiment which labeled cells in layers 2/3 and was injected in the
AId area (agranular insular area, dorsal part). The r2 score for this experiment was 0.826, which was the
highest score across all tracing experiments. (a,c): measured values. (b,d): predictions from gene expres-
sion patterns. The subcortical projection patterns were visualized using coronal slices of the projection
volume, whereas the cortical projection patterns were projected onto a flatmap and their values have been
averaged over all cortical layers. The scaling for both axes is in milimeters. The intensity of each plot
was normalized by its maximum value. Cortical areas such as Retrosplenial area dorsal part (RSPd), An-
teromedial visual area (VISam), trunk of primary somatosensory area (SSP tr) and Posterior auditory area
(AUDpo) exhibit highly similar projection strength between their measured and predicted versions, while
on the contrary subcortical similarities exist but are not as strong as the cortical ones. (e) x-axis: measured
data. y-axis: predicted data. Green points correspond to subcortical projections, red points to cortical ones
and the solid line is the diagonal, for which predicted values are equal to the measured ones. Cortical points
are closer to the diagonal compared to subcortical ones, so they are more accurately predicted.

3.2 Binary Predictions

Previous studies have used a binarized version of the mesoconnectome to test the
accuracy of their predictive models. In order to compare our performance to these

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/736520doi: bioRxiv preprint 

https://doi.org/10.1101/736520
http://creativecommons.org/licenses/by-nc/4.0/


Prediction of a cell-type specific mouse mesoconnectome using gene expression data 17

models, we developed an approach to make binary predictions as well (see Methods,
figure 4). The accuracy of these predictions was quantified using an ROC analysis
with as outcome the area under the ROC curve (auROC).
The median auROC value over all 1397 tracing experiments was 0.89 with a me-
dian interquartile range of 0.08 (figure 7). Moreover, performance for wild-type data
matched that of the state of the art in binary projection predictions of wild-type ex-
periments with gene expression data, such as in (Ji et al., 2014), where 93% auROC
was obtained. The auROC values for all wild-type tracing experiments had a median
of 0.93 and an interquartile range of 0.05. Similar values for cre-lines were obtained,
which had not been subject to this analysis before (Harris et al., 2018). For instance,
the auROC values for Tlx3-Cre PL56 tracing experiments, labeling cells in layers
2-6, had a median of 0.94 and an interquartile range of 0.03 (figure 7).
Visualization of measured and predicted results, in the form of cortical flatmaps and
coronal slices, allows for assessing the quality of predictions in spatial context. An
example is the Cux2-IRES-Cre tracing experiment injected in AId area (figure 8),
which had an auROC value of 0.98 for binary prediction.
The increased performance of the models on binary predictions compared to con-
tinuous ones (figure 8) was due to reduced content of the projection patterns, which
can therefore be more easily captured by the gene expression data. However, the re-
sulting connectivity descriptions are on a very coarse-grained level which made the
continuous ones more suitable for analytic purposes.

(a)

(c)(b)

Fig. 7: (a) Median area under the ROC curve per tract-tracing category. x-axis: tract-tracing category.
y-axis: auROC values. Results for the wild-type tracing experiments are being highlighted in red in order
to be differentiated from the cre-lines. (b-c) Binarized prediction performance for different categories of
tracing experiments. (b) wild-type dataset. (c) Tlx3-Cre PL56 dataset. y-axis: auROC values.
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(a) (b)

(c) (d)

Fig. 8: Subcortical visualizations (a,b) and cortical ones (c,d) of the binarized form for a Cux2-IRES-Cre
tracing experiment injected in the AId area (agranular insular area, dorsal part). (a,c): measured values.
(b,d): predictions from gene expression patterns. The subcortical projection patterns were visualized using
coronal slices of the projection volume (a,b), whereas the cortical projection patterns (c,d), were projected
onto a flatmap. The scaling for both axes is in milimeters. White denotes the value 1 (connections present),
and black denotes the absence of a projection.

3.3 Creation of a regionalized connectivity array based on laminar specific
projection patterns

Our predictive workflow has also incorporated regionalized connectivity models pro-
vided by the MCM tool. Specifically, we applied the MCM tool to an aggregate of the
measured projection patterns from all cre-lines. The output was a laminar specific re-
gionalized connectivity array between anatomical brain areas, for which both source
and target cortical areas were laminar specific.
We investigated the differences in projection patterns across source areas with differ-
ent laminar profiles. Figure 9 shows an indicative subset of the regionalized array as
well as a similarity matrix between source cortical areas with different laminar pro-
files. The similarity matrix was created by estimating the Spearman’s rank coefficient
(also referred to as rho) between the different source areas. We clustered the source
areas on the similarity matrix based on their laminar profile. In addition, we applied
the silhouette score for quantifying the clustering quality, which is a standard measure
in clustering analysis with values ranging from -1 to 1 and reflecting the clustering
cohesion (Rousseeuw, 1987). The silhouette score was 0.61, which was considered
to reflect the cohesive clusters found in figure 9. Therefore, we regarded projection
patterns of source areas with the same laminar profile to be more similar compared
to those of different profiles.
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In order to estimate the significance of that finding, we generated surrogate clusters
by randomly distributing the projection densities across source areas 1000 times. In
addition, we estimated a p-value based on the number of times that the silhouette
score of the surrogate clusters was greater than the score of the actual clusters. The
resulting p-value was 0, which indicated that differences in projection patterns from
source areas with different laminar profiles were significant.

Fig. 9: Heatmaps of a laminar specific regionalized connectivity array. (a) Subset of the array comprised
from a selected set of 25 target and 25 source brain areas. x-axis: source brain areas. y-axis: target brain
areas. (b) Similarity matrix of source brain areas which are clustered based on their laminar profiles. Both
axes correspond to clustered laminar profiles of source brain areas. The similarity matrix was created by
taking all pairs of source areas and estimating the Spearman’s rho between their projection patterns. All
distinct blocks with values greater than 0.9 represent pairs of areas with the same profile. This suggests that
groups of areas with the same laminar profile have more similar projection patterns compared to groups of
areas with different profiles.

3.4 Gene Module Analysis

Both the projection patterns as well as the gene expression patterns are vectors in
an abstract space, for both regionalized as well as volumetric data. They can thus be
written as sums of basis vectors. One can ask for a basis that most efficiently repre-
sents the variability of gene expression patterns across genes and projection patterns
across injections. Therefore, we used the Dictionary Learning and Sparse Coding
(DLSC) technique to find overcomplete dictionaries that account for patterns with a
small number of basis vectors and small coefficients (see Methods) (Li et al., 2017).
These dictionaries define groups of genes with similar spatial patterns (modules),
whose spatial profile should be less noisy than the individual genes that contribute
to it. Hence, in case that we do not capture the noise of individual gene expression
patterns, these modules should form a better basis for predictive approaches.
With the intention of identifying functional groups with a sparse spatial distribution,
we set the λ parameter (L1 constraint) to 1.0 (see eq. 6). The dictionary set size was
chosen by training models to predict tract-tracing experiments with a different num-
ber of spatial modules, and then selecting a model with a high r2 score (see figure 10).
We selected a set of 200 modules despite being second in performance (the median
r2 is 0.51 for 200 modules and 0.52 for 300 modules), since the set of 300 modules
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was considered to be too large and their difference was considered to be an effect of
variability (both interquartile ranges are 0.19 as shown by the vertical lines in figure
10, panel C). The selected dictionary set accounted on average for 10% of variability
across genes and had an average spatial footprint of 88% of the brain areas. Therefore,
the resulting spatial module matrix was 428 x 200, which was a significant reduction
in dimensionality compared to the 428 x 3318 ISH gene expression matrix.
In order to examine the predictive capabilities of the spatial modules, the prediction
process was repeated with models trained on the modules instead of genes. We con-
sidered an example tracing experiment for which the module based predictive model
had the highest r2 score of 0.79. The tracing experiment was generated by a Cux2-
IRES-Cre injection in Retrosplenial area, lateral agranular part (RSPagl). We looked
for modules with the highest similarity with the projection pattern, as quantified us-
ing the pearson correlation coefficient (r). We selected three modules, labeled as 9,
70 and 88, with a pearson r of 0.51, 0.52 and 0.45 respectively. Each of these mod-
ules were non-zero in a mostly non-overlapping group of brain areas, which together
cover a part of the experimental projection pattern (see figures 11,12). We analyzed
the contribution of their spatial footprint in each area separately, by replacing each
nonzero value by 1.0 if present in all three modules and the projection pattern, 0.8
if present in two modules and the pattern, 0.6 if present in one module and the pat-
tern, 0.4 if present in the pattern and absent in all modules and 0.2 if present in the
modules but absent in the pattern. As indicated in figure 12, there was a large overlap
between the experiment and the modules in cortical areas. Subcortical areas did not
have such strong coverage as cortical ones, which might be the reason why predictive
performance was not higher in terms of the r2 score.
Subsequently, we calculated the pearson r between the RSPagl experiment and its
prediction by the three modules. We found that this prediction yielded an r2 score of
0.4 and a pearson r value of 0.64, which was higher than the median pearson r of 0.54
over all tracing experiments. Therefore, these modules were important components to
the total prediction, whereas they provided a less accurate prediction as stand-alone
predictors (see figure 11,12).
This finding suggests that multiple spatial modules might be needed to reproduce
projection density patterns from the mouse cortex (figures 12,10). For the predictive
models trained and tested with spatial modules over all tracing experiments, the me-
dian r2 score was 0.51, the interquartile range was 0.19, and the maximum r2 score
was 0.79. Therefore results were slightly lower on average than the corresponding
ones for the gene predictions (figure 10). For testing the significance of module based
predictions, surrogate models were built as explained in subsection 3.1 and trained
with spatial modules instead of genes. All models trained for the 1397 tracing ex-
periments had higher r2 values than the respective surrogate ones, as indicated by a
number of examples in figure 10. Taken together, our findings suggest that spatial
gene modules contain a large fraction of the predictive capacity of the much higher
dimensional gene set.
Previous studies focused on integrating single-cell RNA sequencing with ISH data
in order to provide cell-type densities (Mairal et al., 2010). Furthermore, the neu-
roexpresso tool has provided access to a large collection of single-cell gene expres-
sion data derived from multiple studies (Tasic et al., 2016; Mancarci et al., 2017).
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In (Mancarci et al., 2017), the authors collected expression data of ∼11.000 genes
from pooled cell-type microarray and single-cell RNA-sequencing studies. For that
reason, we tested the capability of the DLSC model to provide meaningful mod-
ules by constraining it with the neuroexpresso data. We selected 74 cell-types from
their repository (https://github.com/PavlidisLab/markerGeneProfile) and
2154 genes that were common between the single-cell and the ISH data, which re-
sulted in a 2154 x 74 array of cell-type specific gene expression. Finally, the cell-type
specific and the ISH gene expression arrays were given as inputs to the DLSC model
that created a new array of 428 areas x 74 constrained spatial modules.
We trained the prediction models using the constrained spatial modules and evalu-
ated the quality of the resulting projection patterns. The term unconstrained is used
to describe the spatial modules from the DLSC model which was not constrained
with single-cell RNA sequencing data. The median r2 score of the constrained mod-
els for all tracing experiments was 0.45, which was substantially lower compared to
the unconstrained ones (median r2 of 0.51), and the interquartile range was 0.19. In
addition, we created a similarity matrix between the constrained and unconstrained
modules and we applied biclustering analysis to it (figure 13). The similarity ma-
trix was created by Spearman’s rho, and the biclustering algorithm used was Spectral
Biclustering with 3 biclusters (Kluger et al., 2003). Moreover, the ranks of the uncon-
strained and constrained module arrays were 200 and 74 respectively, which indicates
that both arrays were full rank and did not contain redundant modules. This analysis
did not result in meaningful biclusters and suggested that there is little relationship
between the two types of modules. Nevertheless, the unconstrained modules provided
predictions of higher quality than the constrained ones.
Moreover, gene ontology enrichment analysis was applied to the unconstrained spa-
tial modules and the tract-tracing experiments in order to identify significant anno-
tations related to synaptic and neuronal function in the mouse brain (Rivals et al.,
2007). The unconstrained modules were preferred over the constrained ones due to
providing better quality predictions. For each tracing experiment, we included the
most predictive genes whose coefficients exceeded the 99th percentile for that experi-
ment. In the case of modules we included all genes having a non-zero coefficient. The
percentage of modules and tracing experiments having at least one significant anno-
tation was 100% and 98% respectively. A tracing experiment was associated with 12
annotations on average (median), while a module was associated with 39 annotations
on average.
We observed that annotations related to postsynaptic function were associated with
both the RSPagl experiment and module 9 (see figure 14). The jaccard similarity co-
efficient between the significant annotations of module 9 and modules 70 and 88 was
0.7 and 0.69 respectively, and thus annotations of module 9 were considered to be
representative of the three modules.
As a generalization of this observation, the percentage of modules and tracing exper-
iments having at least one annotation related to postsynaptic function was 100% and
70% respectively. Hence, annotations with postsynaptic function was another com-
mon denominator between a substantial number of tracing experiments and spatial
modules, in addition to strong correlations and predictive capability.
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(a) (b)

(c) (d)

Fig. 10: (a) Performance comparison between surrogate (bottom panel) and actual models (top panel)
trained with spatial modules for a number of tracing datasets. x-axis: datasets - Cux2-IRES-Cre (left),
Exm1-IRES-Cre (middle), wild-type (right). y-axis: r2 scores. (b) Comparison of predictive accuracy be-
tween models trained using spatial modules and models trained using full gene expression data. x-axis:
gene expression based models (left), spatial module based models (middle) and module based models
constrained with single-cell RNA sequencing data (right). y-axis: r2 scores. (c) Histogram of pearson cor-
relation coefficients (r) between all 1397 tracing experiments and their predicted versions. The prediction
of each experiment was achieved with its 3 best correlated modules as determined by pearson r. The first
vertical line to the left represents the point at which all correlations left from it are not longer statistically
significant (p > 0.05). The second vertical line to the left corresponds to the pearson r of 0.64 between a
Cux2-IRES-Cre experiment injected in the RSPagl area and modules 9, 70 and 88, which is greater than
the mean r of 0.54 (see figure 12). A dense distribution of correlations in the range 0.4 - 0.7 indicates that
multiple spatial modules correlate with axonal projection patterns. (d) Predictive performance of module-
based models with different dictionary set sizes. x-axis: dictionary set size. y-axis: median r2 score over
all tract-tracing experiments. The vertical lines represent the interquartile range across the dictionary sets.
The highest peak is for 300 modules with an r2 score of 0.52.
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(h)

(f )
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(b)(a)

(g)

(e)

(c)

Fig. 11: (a-d) Subcortical and cortical visualizations (a,e) for the Cux2-IRES-Cre RSPagl tracing exper-
iment compared to subcortical and cortical visualizations of spatial gene modules 9 (b,f), 70 (c,g) and 88
(d,h). The subcortical projection patterns were visualized using coronal slices of the projection or module
volume (a,b), whereas the cortical projection or module patterns (c,d), were projected onto a flatmap and
their values have been averaged over all cortical layers. The intensity of each plot was normalized by its
maximum value. The scaling for both axes is in milimeters.
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(c) (d)
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Fig. 12: Cortical (a) and subcortical visualization (b) of a spatial footprint related to a Cux2-IRES-Cre
tracing experiment injected in the retrosplenial area, lateral agranular part (RSPagl). The spatial footprint
represents the overlap that exists between the RPSagl experiment and modules 9, 70 and 88 with a pearson
r of 0.51, 0.52 and 0.45 respectively. Each non-zero value across brain areas is replaced by 1.0 if it was
present in all three modules and the projection pattern, 0.8 if present in two modules and the pattern, 0.6
if present in one module and the pattern, 0.4 if present in the pattern and absent in all modules and 0.2 if
present in the modules but absent in the pattern. The subcortical projection pattern was visualized using
coronal slices of the projection volume, whereas the cortical projection was projected onto a flatmap and its
values were averaged over all cortical layers. The scaling for both axes is in milimeters. There is a strong
presence of white (1.0), yellow (0.8) and orange (0.6) colors, that suggests a strong overlap between the
experiment and the modules and which is also reflected by a r2 score of 0.4 when the three modules are
used for predicting the experiment. (c) Scatter plot between the projection pattern of the same experiment
and its prediction by the 3 modules. (d-f) Similar scatter plots between the projection pattern and each
module separately (d for module 9, e for module 70 and f for module 88). The solid line in each scatter
plot is the diagonal, for which values across axes are equal. The scatter plots suggest that a combination of
the three modules scaled by coefficients can lead to a more accurate prediction of the experiment than by
the individual modules alone.
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Fig. 13: Heatmap displaying correlations between the constrained and unconstrained spatial gene mod-
ules. The correlations were estimated with the Spearman’s rank correlation coefficient. 58% out of 6600
correlations in total were considered significant (p ≤ 0.05). However, there are no evident correlation
patterns between the two types of modules.

(a) (b)

Cu x 2 -IRES-Cr e  - RSPag l

ext rinsic com ponent  of postsynapt ic m em brane

ext rinsic com ponent  of synapt ic m em brane

glutam atergic synapse
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synapse part

postsynapt ic m em brane

Fig. 14: An enrichment analysis reveals annotations of neurons and synapses for a spatial module and
a tracing experiment. (a) Significant annotations for a Cux2-IRES-Cre experiment injected in the RSPagl
area.

4 Discussion

In this study we built a predictive workflow, based on ridge regression and random
forest based models, to predict axonal projection patterns in the mouse brain using
gene expression data. Using the nested k-fold cross-validation technique, we obtained
a median r2 of 0.54 over 1397 tract-tracing experiments. In order to compare with
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previous studies (Ji et al., 2014), we developed an approach to make binary predic-
tions and obtained similar performance to previous studies. Furthermore, we analyzed
the spatial organization of genes in modules defined in different ways, based on the
DLSC method, for determining links between gene expression and axonal projection
patterns. We obtained median r2 scores of 0.51 and 0.45 for the unconstrained and
constrained approaches respectively. Finally, we applied gene ontology enrichment
analysis to gene groups with high coefficient scores, and a substantial number of the
groups were found to be associated with annotations related to postsynaptic function.
In the following we will put the performance of the different cases in the context
of previous studies, interpret our findings, suggest potential future work and discuss
strengths, limitations and other applications of our pipeline.
The results of our study are consistent with the findings from the (Ji et al., 2014)
study, specifically since our binary approach yielded a similar performance with a
median 93% auROC value on wild-type data. In contrast to this study however, we
did not rely on arbitrary thresholds for binarizing each tracing experiment to attain a
50% connectivity. Instead, we provided a data-driven estimation of the most optimal
threshold value. In addition, we extended their analysis by including cre-line data that
had not been subjected to such an analysis before.
When including both cre-line and wild-type data, we found a median auROC value
of 0.89 across all 1397 tracing experiments. The increased performance of the mod-
els on binary predictions compared to continuous predictions is presumably due to
the reduction of projection pattern related information which can therefore be more
easily captured by the gene expression data (figure 8). However, binary connectiv-
ity descriptions do not inform the modeler about the strength of a projection. Hence,
the continuous predictions are more suitable for analytic purposes. For that reason,
we provided richer predictions of the mouse mesoconnectome by incorporating con-
tinuous patterns to our analysis (figure 6 for continuous predictions and figure 8 for
binary ones).
Overall, our ridge regression models provided significant predictions, since they out-
performed in every case the surrogate and the null models. This implies that gene
expression contains information related to axonal projection patterns in the mouse
brain. Regarding the variability of predictions, our statistical tests indicated that the
difference in performance between cre-line and wild-type tracing experiments, quan-
tified as r2 score, was not statistically significant (p = 0.004 for 14000 random permu-
tations). A possible explanation is that both wild-type and cre-line projection patterns
fall within the range of predictions that can be covered by the gene expression data.
Irrespective of explanation, the results show that the gene expression data contain
enough information to also account for the more specific cre-line projection patterns.
The ridge regression models trained with spatial gene co-expression modules rather
than expressions of individual genes, also outperformed corresponding surrogate and
null models (figure 10). However, we found that such predictions were slightly less
accurate on average than the gene expression based ones. Despite that, significant
predictions of such models and strong correlations between axonal projections and
spatial modules suggest that information related to axonal projections is present in
modules of genes instead of being present in individual genes.
When comparing constrained modules with the unconstrained ones, we observed dis-
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similar patterns and an inferior performance for the constrained one when predicting
tracing experiments. Such results suggest a lack of direct relation between spatial
modules created exclusively by ISH data and modules that were constrained by single
cell RNA sequencing data. A possible explanation is that distinct predictive modules
were mixed when including all genes differentially expressed in the 74 cell-types,
which suggests that better performance could be reached when selecting a subset
from amongst them.
Regarding gene ontology enrichment analysis, a substantial number of tracing ex-
periments (70%) and all unconstrained spatial modules (100%) were statistically as-
sociated with postsynaptic function. This may suggest that a potential causal link
between axonal projections and gene expression in the mouse brain could be gene
co-expression modules with a postsynaptic function and specific spatial footprints.
This suggestion is consistent with the findings of (Roy et al., 2018), according to
which presynaptic and postsynaptic locations have a particular protein profile. These
profiles are partially reflected in gene expression data by locally expressed genes
at axonal release sites (Glock et al., 2017; Cajigas et al., 2012; Holt and Schuman,
2013). Nevertheless, the causal links are far from being clear and will thus require
further work.
A strength of this study was the inclusion of layer and cell-class specific patterns
by including cre-line data to our analysis. To our knowledge, this is the first study
that predicts brain-wide and cell-class specific projection patterns from gene expres-
sion data. Another advantage of this study was that it went beyond solely providing a
predictive workflow, and it focused on discovering links between the two data modal-
ities by analyzing the spatial organizations of genes with the dictionary learning and
sparse coding technique (Li et al., 2017) and with gene ontology enrichment analysis
(Rivals et al., 2007).
We acknowledge some limitations. First, 0.7% of ridge regression based models had
an r2 score close to zero. This could be attributed to parameters being optimized over
all tracing experiments belonging to one cre-line or the wild-type category rather than
for each experiment (injection) separately. Therefore, it can be expected that perfor-
mance will be reduced when multiple projection patterns with a noisy subset need to
be predicted simultaneously.
Another explanation could be that including the genetic information of target areas
without its relation to source areas has limited capacity in predicting projection pat-
terns. According to (Fulcher and Fornito, 2014), coupled gene expression patterns
were shown to be directly linked with the large-scale topology of the mouse meso-
connectome. Furthermore, in (Bleakley et al., 2007) they used the support vector
machine algorithm with kernels that coupled the feature vectors of nodes, for infer-
ring the edges of biological networks. As a recommendation for future work, we can
adapt this strategy to couple source and target based gene expression patterns and
infer their corresponding axonal projections.
Another limitation is that unionization of data leads to information loss, not-a-number
values and projection bias because of diversity in sizes of source brain areas. For that
reason we will focus our future analyses on the volumetric gene expression and ax-
onal projections data, as to avoid such issues and provide a finer grained predictive
pipeline.
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Furthermore, ridge regression and random forest based models provided significant
predictions of axonal projections from gene expression data, but they are not capa-
ble of explicitly modeling the joint distribution between the two data modalities. Such
explicit modeling could be advantageous in the case of training models to predict cel-
lular resolved projections since data that could serve as training labels, such as single-
neuron axonal reconstruction data, are still limited (Economo et al., 2019; Winnubst
et al., 2019). Future directions might include incorporating generative probabilistic
models, since models such as the infinite relational model have been successful in
capturing the distributions of various connectomes such as the C.elegans connectome
and the mouse retina microcircuit (Jonas and Kording, 2015; Ambrosen et al., 2013;
Hinne et al., 2014, 2017; Betzel and Bassett, 2017).
Whole brain cellular resolved connections have yet to be described. The capability of
our models to provide information for a more faithful reconstruction of the connec-
tome at this resolution will depend on two factors. The first factor will be the ability
to incorporate new advances in neuroanatomy and translational neuroscience, such
as single-cell RNA sequencing and light sheet fluorescence microscopy (Tasic, 2018;
Corsetti et al., 2019; Rolnick and Dyer, 2019).
The second factor will be the ability to mine at a higher spatial resolution from al-
ready tested data modalities such as in-situ hybridization based gene expression data.
For this factor we will need to adapt additional computational tools for use in our
pipeline. One potential tool is spatial point process analysis, which has successfully
been used to extract spatially distributed counts of cells and synapses from modali-
ties such as Nissl-stained brain images (LaGrow et al., 2018; Anton-Sanchez et al.,
2014).
Translational neuroscientists could benefit from the use of our predictive workflow.
A potential use case could include neuroscientists that study the effect of genes in the
cognitive processes of the mouse brain. An example gene could be parvalbumin (PV)
which according to (Nakazawa et al., 2012) has been linked to schizophrenia. Our
workflow can then be used for studying the effect of altering the level and patterns of
PV expression on the mesoconnectome and the resulting brain activity, which can in
turn by validated by electrophysiological experiments.
Descriptions of potential use-cases for our predictive workflow together with their
associated python code can be found online at the HBP Collaboratory and at Github
(see table 1). The use cases are intended to be available via the EBRAINS infrastruc-
ture, provided as part of the EU-funded Human Brain Project.
Taken together, we have demonstrated a predictive workflow that can further be used
to perform multimodal data integration to improve the accuracy of the predicted
mouse mesoconnectome using gene expression data and support other neuroscience
use cases.
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Roy M, Sorokina O, McLean C, Tapia-González S, DeFelipe J, Armstrong JD, Grant
S (2018) Regional diversity in the postsynaptic proteome of the mouse brain. Pro-
teomes 6(3):31, DOI https://doi.org/10.3390/proteomes6030031

Rubinov M, Ypma RJF, Watson C, Bullmore ET (2015) Wiring cost and topological
participation of the mouse brain connectome. PNAS 112(32):10032–10037, DOI
https://doi.org/10.1073/pnas.1420315112

Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR,
Jirsa V (2013) The virtual brain: a simulator of primate brain network dynamics.
Frontiers in Neuroinformatics 7:10, DOI https://doi.org/10.3389/fninf.2013.00010

Sanz-Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR,
Jirsa VK (2013) The virtual brain: a simulator of primate brain network dynamics.
Frontiers in Neuroinformatics 7:10, DOI https://doi.org/10.3389/fninf.2013.00010

Shendure J, Ji H (2008) Next-generation dna sequencing. Nature biotechnology
26:1135–1145, DOI https://doi.org/10.1038/nbt1486

Sperry RW ((1963) Chemoaffinity in the orderly growth of nerve fiber patterns and
connections. PNAS 50(4):703–710, DOI https://doi.org/10.1073/pnas.50.4.703

Sporns O (2011) Networks of the brain. The MIT Press 412
Sporns O, Tononi G, Kötter R (2005) The human connectome: A structural de-

scription of the human brain. PLoS Computational Biology 1(4):e42, DOI https:
//doi.org/10.1371/journal.pcbi.0010042

Tan PN, Steinbach M, Kumar V (2005) Introduction to Data Mining, 1st edn. Pearson
Tasic B (2018) Single cell transcriptomics in neuroscience: cell classification and be-

yond. Current Opinion in Neurobiology 50:242–249, DOI https://doi.org/10.1016/
j.conb.2018.04.021

Tasic B, et al. (2016) Adult mouse cortical cell taxonomy by single cell transcrip-
tomics. Nature Neuroscience 19(2):335–346, DOI https://doi.org/10.1038/nn.4216

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/736520doi: bioRxiv preprint 

https://doi.org/10.1101/736520
http://creativecommons.org/licenses/by-nc/4.0/


Prediction of a cell-type specific mouse mesoconnectome using gene expression data 33

Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed Problems, 1st edn. Mathe-
matics of Computation, Winston & Sons

Varma S, Simon R (2006) Bias in error estimation when using cross-validation
for model selection. BMC Bioinformatics 7:91, DOI https://doi.org/10.1186/
1471-2105-7-91

Winnubst J, Bas E, Ferreira TA, et al. (2019) Reconstruction of 1,000 projection
neurons reveals new cell types and organization of long-range connectivity in the
mouse brain. bioRxiv pp 1–10, DOI http://dx.doi.org/10.1101/537233

Wolf L, Goldberg C, Manor N, et al. (2011) Gene expression in the mouse brain is
associated with its regional connectivity. PLoS Comput Biol 75:e1002040, DOI
https://doi.org/10.1371/journal.pcbi.1002040

Woodman MM, Pezard L, Domide L, Knock S, Sanz Leon P, Mersmann J, McIn-
tosh AR, Jirsa VK (2014) Integrating neuroinformatics tools in the virtual brain.
Frontiers in Neuroinformatics 8:36, DOI https://doi.org/10.3389/fninf.2014.00036

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/736520doi: bioRxiv preprint 

https://doi.org/10.1101/736520
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Methods
	Results
	Discussion

