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Abstract
Background: Shape is a critical element of the visual appeal of strawberry fruit and determined by both genetic and non-genetic factors. Current fruit
phenotyping approaches for external characteristics in strawberry rely on the human eye to make categorical assessments. However, fruit shape is
multi-dimensional, continuously variable, and not adequately described by a single quantitative variable. Morphometric approaches enable the study of
complex forms but are often abstract and difficult to interpret. In this study, we developed a mathematical approach for transforming fruit shape
classifications from digital images onto an ordinal scale called the principal progression of k clusters (PPKC). We use these human-recognizable shape
categories to select features extracted from multiple morphometric analyses that are best fit for genome-wide and forward genetic analyses.
Results: We transformed images of strawberry fruit into human-recognizable categories using unsupervised machine learning, discovered four principal
shape categories, and inferred progression using PPKC. We extracted 67 quantitative features from digital images of strawberries using a suite of
morphometric analyses and multi-variate approaches. These analyses defined informative feature sets that effectively captured quantitative differences
between shape classes. Classification accuracy ranged from 68.9 – 99.3% for the newly created, genetically correlated phenotypic variables describing a
shape.
Conclusions: Our results demonstrated that strawberry fruit shapes could be robustly quantified, accurately classified, and empirically ordered using image
analyses, machine learning, and PPKC. We generated a dictionary of quantitative traits for studying and predicting shape classes and identifying genetic
factors underlying phenotypic variability for fruit shape in strawberry. The methods and approaches we applied in strawberry should apply to other fruits,
vegetables, and specialty crops.
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Background1

Fruit breeders actively selected several morphological and quality phenotypes2

during the domestication of garden strawberry (Fragaria× ananassa), an allo-3

octoploid (2n = 8x = 56) of hybrid origin [1, 2, 3]. F. × ananassa was created4

in the early 1700s by interspecific hybridization between ecotypes of wild oc-5

toploid species (F. virginiana and F. chiloensis), multiple subsequent introgres-6

sions of genetic diversity from F. virginiana and F. chiloensis subspecies in sub-7

sequent generations, and artificial selection for horticulturally important traits8

among interspecific hybrid descendants. Domestication and breeding have9

altered the fruit morphology, development, and metabolome of garden straw-10

berry, distancing modern cultivars from their wild progenitors [4, 5, 6, 7, 8, 9].11

Approximately 300 years of breeding in the admixed hybrid population has led12

to the emergence of high yielding cultivars with large, firm, visually appealing, 13

long shelf-life fruit that can withstand the rigors of harvest, handling, storage, 14

and long-distance shipping [10]. Fruit shape is an essential trait of agricultural 15

products, particularly those of specialty crops, due to perceived and realized 16

relationships with the quality and value of the products. Image-based plant 17

phenotyping has the potential to increase scope, throughput, and accuracy in 18

forward-genetic studies by reducing the effects of user bias, enabling the anal- 19

ysis of larger sample sizes, and partitioning of genetic variance from other en- 20

vironments (E), management (M), and other non-genetic sources of variation 21

[11, 12, 13]. 22

Current fruit phenotyping approaches for external characteristics in straw- 23

berry rely on the human eye to make categorical assessments [14, 15, 16]. De- 24
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scriptive categories for planar shapes (e.g., rhombic and reniform) have long25

played a role in plant systematics [17]. Categories may be either nominal26

[11, 18, 19], existing in name only, or ordinal, referring to a position in an or-27

dered series or on a gradient [15, 16, 19]. Classification is often labor-intensive28

and prone to human bias, which can increase with task complexity and time re-29

quirement [20, 21]. Alternative scoring approaches have relied on morphomet-30

rics and machine learning to automate classification; for example, sorting fruit31

into shape categories in both tomato [11] and strawberry [18]. Unsupervised32

machine learning methods (e.g., k-means, hierarchical, and Bayesian cluster-33

ing), unlike supervised methods, are useful for pattern detection and clustering,34

while supervised machine learning methods (e.g., regression, discriminant anal-35

ysis, and support vector regression) are useful for prediction and classification36

[22, 23]. Unsupervised clustering enables the calculation of several measures37

of model performance and overfitting to balance compression and accuracy.38

However, the categories derived from these techniques are without order, re-39

sulting in the need for a suitable transformation to an ordinal scale, which is40

more appropriate for quantitative genetic analyses [24, 25, 26, 27, 28]. In this41

context, ordinal categories give the interpretation of relationship with, or dis-42

tance from, other shape categories in the series. To enable this interpretation,43

we developed a method for discovering the progression through fruit shape cat-44

egories derived from unsupervised machine learning methods. The principal45

progression of k clusters (PPKC), allowed us to non-arbitrarily determine the46

appropriate shape gradient for statistical analyses using empirical data. Here,47

we describe approaches for translating digital images of strawberries into com-48

putationally defined phenotypic variables for identifying and classifying fruit49

shapes.50

Fruit shape and anatomy are complex, multi-dimensional, and abstract phe-51

notypes that are often not readily or intuitively described by planar descriptors52

or individual qualitative or quantitative phenotypes. Beyond precise qualitative53

definitions used in systematics (e.g., rhombic, falcate, and reniform) [17, 18],54

references to fruit shape encompass a wide variety of mathematical parameters55

and geometric indices that establish quantitative measurements of plant organs56

[29, 30, 31]. Much like human faces, fruit shape and anatomy are products of57

the underlying genetic and non-genetic determinants of phenotypic variability58

in a population [32, 33]. The genetic determinants of fruit shape are unknown59

in strawberry, in part because researchers have not yet translated fruit shape60

attributes into quantitative phenotypic variables, which are essential for identi-61

fying the underlying genes or quantitative trait loci through genome-wide asso-62

ciation studies (GWAS) and other forward-genetic approaches [34, 35, 36, 37].63

Quantitative phenotypic measurements have allowed researchers to uncover64

some of the genetic basis of fruit shape in tomato [38, 39], pepper [40, 41], pear65

[42], melon [33], potato [43], and strawberry [9, 44]. These quantitative fea-66

tures often rely on linear metrics of distance (e.g., height, width, and perimeter)67

and are generally modified into compound descriptors that remove the effects68

of size (e.g., aspect ratio or roundness) [42, 44, 45]. However, compound lin-69

ear descriptors often have limited resolution compared to more comprehensive,70

multi-variate descriptors [31]. Elliptical Fourier Analysis (EFA) quantifies fruit71

shape from a closed outline by converting a closed-contour into a weighted sum72

of wave functions with different frequencies [12, 46, 47, 48, 49, 50]. General-73

ized Procrustes Analysis (GPA) quantifies the distance between sets of biolog-74

ically homologous, or mathematically similar, (pseudo-)landmarks on the sur-75

face of an object [49, 51, 52, 53, 54, 55, 56]. Fruit shape can also be described76

using linear combinations of pixel intensities from digital images extrapolating77

from analyses generally used to quantify color patterns and facial recognition78

[13, 57, 58, 59, 60, 61, 62]. Here, we generated a dictionary of 67 quantitative79

features, including linear-, outline-, landmark-, and pixel-based descriptors to80

investigate the quality of different features in preparation for forward-genetic81

analyses.82

The ultimate goal of our study was to develop heritable phenotypic vari-83

ables for describing fruit shape, which could then be used to identify the ge-84

netic factors underlying phenotypic differences in fruit shape. We describe85

and demonstrate the application of PPKC, which transforms categories discov-86

ered from unsupervised machine learning methods to a more convenient and87

analytically tractable ordinal scale [24, 26, 27]. We explore the relationship88

between machine-acquired categories and 67 quantitative features extracted89

from digital images. We apply random forest regression to select critical sets90

of quantitative features for classification and use supervised machine learning91

methods, including support vector regression and linear discriminant analysis,92

to determine the accuracy of shape classification. We discovered that there are 93

only a few categories of interest in a highly domesticated breeding population 94

and that a small number of features are needed to classify shape into the dis- 95

covered categories accurately. We also find that ordinal shape categories are 96

highly heritable and that the features needed for accurate classification are also 97

heritable. 98

Data Description 99

The data released with this manuscript contains digital images of 6, 874 straw- 100

berry fruit from 572 hybrids originating from the University of California, 101

Davis Strawberry Breeding Program. The data for this manuscript, including 102

pre-processed images (Fig. 1A), processed images (Fig. 1B), and extracted 103

features (see Methods), are available on Zenodo [63]. The pre-processed im- 104

ages typically contained multiple berries per image along with a data matrix bar 105

code indicating the genotype ID and other elements of the experiment design. 106

The processed images are 1000 × 1000px-scaled binary images of individ- 107

ual fruit. The extracted features data set is provided as a CSV file. The code 108

to replicate the analyses in this manuscript is provided in a GitHub repository 109

[64]. We hope that the release of this data assists others in developing novel 110

morphometric approaches to better understand the genetic, developmental, and 111

environmental control of fruit shape in strawberry, and more broadly in other 112

fruits, vegetables, and specialty crops. 113

Analyses 114

Modified k-means clustering 115

k-means clustering can rapidly detect patterns in large, multi-dimensional data 116

sets used for clustering, decision making, and dimension reduction [22, 65, 66]. 117

It is an iterative algorithm that partitions a data set into a pre-defined number of 118

non-overlapping clusters, k, by minimizing the sum of squared distances from 119

each data point to the cluster centroid. A centroid corresponds to the mean of all 120

points assigned to the cluster. Here, we used k-means to cluster flattened binary 121

images (Fig. 1; see Methods). Individual fruits were segmented from the image 122

background as a binary mask, normalized by the major axis, resized to 100 × 123

100px, and flattened into a vector (Fig. 1; see Methods). We represented each 124

image as a 10, 000 element vector containing binary pixel values. We were 125

able to rapidly and reliably assign images to classes using k-means clustering. 126

In this experiment, we allowed k, the number of permitted categories, to range 127

from 2 to 10. We anticipated that a human-based classification system would 128

not have the speed or reliability needed for this task, particularly for larger 129

values of k. We visualized the centroids for each class (Fig. S1A). Several 130

groups were found to be mirror images of one another when k = 8 (Fig. S1B, 131

black squares). The level plots in Figure S1 depict shape outlines reflecting 132

the 20th, 40th, 60th, and 80th quantiles. To check mirror symmetry, we first 133

rotated one of the suspect classes about the vertical axis (the proposed axis of 134

symmetry) (Fig. S1C; dark gray square) and then overlaid the rotated centroid 135

onto the alternate, unrotated centroid (Fig. S1D). This type of symmetry in 136

the clusters is assumed to have arisen from orientation artifacts during imaging 137

(Fig. 1). It seemed likely that if we observed an object from two opposite sides, 138

they would appear as mirror images of one another and would not reflect an 139

actual difference in category. In this example, k8c2 ≈ k̃8c6, where k̃8c6 is 140

the rotated k8c6 centroid. k8 refers to the results of clustering with k = 8 141

groups, whereas c2 and c6 refer to the cluster assignment within a value of 142

k. The Euclidean distance between the centroid of k8c2 and k̃8c6 was 6.93, 143

and the Euclidean distance between the centroid of k8c2 and k8c6 was 15.73. 144

We re-ran k-means clustering but replaced all images in k8c6 with those in 145

k̃8c6. The unrotated centroid k8c6 was 2.26× more dissimilar to k8c2 than 146

the rotated centroid k̃8c6. As intended, the rotation of k8c6 collapsed the two 147

clusters with reflective symmetry into one and exposed a new cluster (Fig. S1E; 148

light gray square). 149
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Principal progression of k clusters150

k-means clustering does not assign a progression or gradient to discovered151

classes. However, score and ordinal traits are typically more useful in genetic152

studies than variables on nominal scales [24]. We developed a new method to153

transform the categories derived from k-means onto an ordinal scale, which we154

call the principal progression of k clusters, or PPKC (Fig. 2; Alg. 1). This155

method relies on k-means clustering to categorize images. The k-means anal-156

ysis supports several metrics for evaluating model performance and overfit, in-157

cluding adjusted R2, AIC, and BIC, which allows users to determine the most158

appropriate value of k given the observed data. The gradient between clusters159

was estimated by performing principal components analysis on a covariance160

matrix reflecting the hierarchical relationship between a focal cluster and all161

previously discovered clusters.162

We first assigned each flattened binary image (Fig. 1) to a category using a163

modified k-means approach. We assigned a cluster to each image and allowed164

the number of clusters, k, to range from [2, 10]. The order was subsequently165

inferred using PPKC (Fig. 2; Alg. 1). When k = 2, the order of relatedness166

is arbitrary, and both k2c1 → k2c2 and k2c2 → k2c1 have the same mean-167

ing, where "→" indicates the progression of discovered categories. Any given168

order and its reverse are considered equivalent, and this applies to higher lev-169

els of k as well; for example, the hypothetical ranking 1, 4, 2, 3 is considered170

the equivalent of 3, 2, 4, 1. The phenotypic variance of two opposing ordinal171

scales (e.g., 1, 4, 2, 3) does not change. For each cluster of interest (e.g., k4c1,172

k4c2, k4c3, and k4c4), we calculated the proportion of each cluster that came173

from k3c1, k3c2, or k3c3 and k2c1 or k2c2 (i.e., all former classifications).174

These proportions enable the estimation of similarity between a cluster of inter-175

est (e.g., k4c1) and the clusters of all prior values of k. We then normalized the176

proportions by the total number of images in the cluster of interest (e.g., k4c1,177

k4c2, k4c3, and k4c4) (Eqn. 1).178

For every level of k > 2, we constructed M, a rectangular matrix of size179

k2–k
2 – 1 × k (Alg. 1 line 13). The sum of each column should equal k – 2.180

The proportions were continuous values in the range [0, 1] that described the181

origin of a particular cluster of interest (e.g., k4c1) as it relates to the clusters182

of k = 3 and k = 2 or all clusters [2, k – 1]. In this example, k = 4:183

M =



|k4c1∧k3c1|
|k4c1|

|k4c2∧k3c1|
|k4c2|

|k4c3∧k3c1|
|k4c3|

|k4c4∧k3c1|
|k4c4|

|k4c1∧k3c2|
|k4c1|

|k4c2∧k3c2|
|k4c2|

|k4c3∧k3c2|
|k4c3|

|k4c4∧k3c2|
|k4c4|

|k4c1∧k3c3|
|k4c1|

|k4c2∧k3c3|
|k4c2|

|k4c3∧k3c3|
|k4c3|

|k4c4∧k3c3|
|k4c4|

|k4c1∧k2c1|
|k4c1|

|k4c2∧k2c1|
|k4c2|

|k4c3∧k2c1|
|k4c3|

|k4c4∧k2c1|
|k4c4|

|k4c1∧k2c2|
|k3c1|

|k4c2∧k2c2|
|k3c2|

|k4c3∧k2c2|
|k3c3|

|k4c4∧k2c2|
|k3c4|


(1)

We then calculated the variance-covariance matrix of Eqn. (1) (Alg. 1; line184

18). The variance-covariance matrix, ΣM, represents the relationship between185

each cluster of interest (e.g., k4c1, k4c2, k4c3, or k4c4).186

ΣM =


σ2k4c1 σk4c2,k4c1 σk4c3,k4c1 σk4c4,k4c1

σk4c1,k4c2 σ2k4c2 σk4c3,k4c2 σk4c4,k4c2
σk4c1,k4c3 σk4c2,k4c3 σ2k4c3 σk4c4,k4c3
σk4c1,k4c4 σk4c2,k4c4 σk4c3,k4c4 σ2k4c4

 (2)

We then performed eigen decomposition on Eqn. (2) using the following187

equation (Alg. 1; line 19).188

ΣM = VΛV
–1 (3)

In Eqn. (3), Λ is a diagonal matrix with values corresponding to the k eigen-189

values of ΣM and V is a square matrix containing eigenvectors associated with190

the eigenvalues in Λ. We then extracted the eigenvector associated with the191

largest eigenvalue, ~vλmax . We ordered the elements of ~vλmax such that the192

resultant vector, ~vs, has the property vs1 ≤ ... ≤ vsk . We do not consider193

the distance between elements in ~vs, only their rank. The clusters are then in-194

dexed to match the rank of the associated elements in ~vs. There are at most k195

eigenvalues associated with eigenvectors of length k due to ΣM being k × k. 196

Eigen decomposition is used to describe the major axis of variance in ΣM. In 197

theory, this single-axis should be able to separate the classes more effectively 198

than either the proportions or covariance measures. 199

After applying PPKC, the order of elements in ~vs is taken to be the pro- 200

gression through the discovered categories. However, a single dimension may 201

not capture the complexity of some relationships. In this study, we reached 202

that limit when k = 8. The final three clusters in the progression (i.e., k8c4, 203

k8c7, and k8c8) did not seem to follow the same pattern as in previous progres- 204

sions (Fig. S2). The change in progression could be reflective of overfitting the 205

number of groups in k-means clustering. The dramatic change of slope in the 206

total within-group sums of squares, AIC, and Adjusted R2 evidenced overfit- 207

ting (Fig. S3). The strongest evidence for four clusters is in the BIC, which is 208

minimized when k = 4 (Fig. S3D). The elements of ~vs tend to converge on one 209

another as k increases, which may be indicative of little biological information 210

in the new clusters and overfitting (Fig. S4). We extrapolate that PPKC should 211

continue to work beyond k = 8 if new clusters are biologically distinct and 212

do not arise as an artifact of overfitting k. The order through categories was 213

similar to those used in [14] and [16] and are characterized by a progression 214

from ’longer-than-wide’ (prolate) to ’wider-than-long’ (oblate) (Fig. 2). 215

Algorithm 1 Principal Progression of K Clusters (PPKC) Algorithm

1: k = 10
2: for i = 2 to k do
3: Compute class assignments for i using modified k-means clustering.
4: . Only needs to be done once.
5: end for
6: for j = 3 to k do
7: ~x = assignment to j classes
8: for a = 1 to j do
9: r = 1

10: for b = 2 to j – 1 do
11: ~y = assignment to b classes
12: for d = 1 to b do
13: Mr,j =

|a∈~x∧d∈~y|
|a∈~x|

14: r + +
15: end for
16: end for
17: end for
18: ΣM = Cov(M) . Variance-covariance ofM
19: ΣM = VΛV–1 . Eigen decomposition of ΣM
20: Λ = λmax, ...,λkI . λmax is the largest eigenvalue of ΣM.
21: ~vλmax = V.,1 .~vλmax is the eigenvector of λmax .
22: Order elements of ~vλmax such that the resulting vector, ~vs, has the

property~vs1 ≤ ... ≤ ~vsk
23: The order of elements in~vs is the sorted order for the clusters at k.
24: Reindex clusters according to their rank in~vs.
25: end for

Broad-sense heritability of ordered categories 216

For each value of k, broad-sense heritability (H2) on a clone-mean basis was 217

assessed using a general linear mixed model with a cumulative logit link func- 218

tion (see Methods; Eqn. 8 and Eqn. 9) [67]. For this data set, H2 was generally 219

high, ranging from H2 = 0.80 to 0.97, even as k → 10 (Table 2). These 220

estimates of H2 are very similar to those reported in [16] (i.e., H2 = 0.84). 221

When the H2 of a trait is in this range, it indicates that independent replica- 222

tions of the same individuals share a high degree of similarity and that most 223

of the variation among individuals originated from genetic variation among in- 224

dividuals. Since the plant material used in this study are genetic clones, any 225

variation in fruit shape among replicates originated from random, unobserved 226

effects. For k ≥ 8, the accuracy of H2 estimates is expected to be lower than 227

for k ≤ 7 as the gradient of the phenotype seems to be improperly specified. In 228

this set of germplasm, we propose a set of four primary classes for categorizing 229
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fruit shape (Fig. 2 and S3). As k increases from 5 to 10, the visual similarity230

of some clusters is high (Fig. S2), thus indicating fewer relevant delineations231

(Fig. S4). As indicated, there is strong evidence in this data that there are four232

distinct clusters in this data (Fig S3).233

Feature selection using random forests234

To discover which of 67 quantitative features (summarized in Figures 3 and 4)235

capture and reflect differences in shape categories, supervised machine learn-236

ing was employed to estimate feature importance (see Methods) [68]. Of the237

67 features used as predictors in a random forest regression (see Methods),238

we selected only 15. OOB error is an estimate of how poorly models perform239

when a specific feature is excluded and is akin to error estimated from jack-240

knife re-sampling (Fig 5). In this way, features with higher estimates tend to241

be more relevant for classification and prediction. In this experiment, features242

could only be selected up nine times, once per value of k. We maintained fea-243

tures that were selected in ≥ 3 levels of k to use as independent variables in244

classification (Table 1). The 15 selected features accounted for > 80% of im-245

portance assigned to the 67 features across all values of k (Fig 5B). Here, the246

use of "EigenFaces," an analysis from the 1980s, designed to classify human247

faces, was re-purposed for the quantification and classification of fruit shape248

in strawberry [58, 57, 60, 59]. Pixel-based features dominated the selected fea-249

tures and include PCs 1 – 7 of the EigenFruit analysis (EigenFruitPC[1,7]),250

PCs 1 and 2 of the vertical biomass profile (BioVPC[1,2]), and PCs 1 – 3 of251

the horizontal biomass profile (BioHPC[1,3]) (Table 1; Fig. 5 and 6). These252

features originated from the same data type as used in k-means clustering (i.e.,253

pixel intensities), which is likely the reason they make up the majority of the254

selected features (Table 1; Fig. 5 and 6). Several geometric descriptors were255

also selected, including the bounding aspect ratio (BAR), Shape Index (SI),256

and Kurtosis (Kurt) (Table 1; Fig. 5 and 6). We generated a subset of five257

features with mean OOB≥ 0.069 (Fig. 5A). OOB = 0.069 was the median258

OOB error for all features across all classes. This subset of features included259

EigenFruitPC[1,2], BioVPC1, BioHPC1, and BAR (Table 1). We also gener-260

ated a third smaller set that included only EigenFruitPC1 and BioVPC1 with261

mean OOB ≥ 0.1 (Fig. 5A). OOB = 0.1 was the mean OOB error for all262

features across all classes. The prevalence of pixel-based descriptors in these263

selected subsets indicated the magnitude of relevant shape information that they264

described.265

Broad-sense heritability and relationship of selected features266

While the continuous nature of the morphometric features is expected to be267

more conducive and provide higher resolution to quantitative genetic analyses268

compared to their categorical counterparts, it is also vital that these features be269

heritable. The H2 for each feature was estimated on a clone-mean basis using270

a linear mixed-effect model (see Methods; Eqn. 10 and Eqn. 9) [69]. The H2271

for each feature is reported in Table 1. Estimates of H2 for the quantitative272

features ranged from low (> 0.3) to high (> 0.7). Heritability estimates were273

consistent with those previously reported for shape phenotypes in strawberry274

and other plant species [12, 44, 50]. However, the H2 of one selected feature,275

EigenFruitPC3, was estimated to be 0.00 (Fig. S5). Similar results were re-276

ported in carrot (Daucus carota L.) for pixel-based root and shoot features [13]277

and apple (Malus domestica) for elliptical Fourier series leaf shape features278

[12]. [13] attributed the nullH2 of root shape characteristics to low phenotypic279

variation between the inbred parents and genotype× environment interactions.280

While these reasons could certainly be drivers, we hypothesize that the null281

estimate may arise from the pixel-based descriptors describing more complex282

aspects of fruit or root shape. If the non-genetic component of a multi-variate283

phenotype is large, then performing PCA on that multi-variate trait could pro-284

duce leading principal components that describe mostly non-genetic variance.285

However, this study and [13] are two of the only studies to report the H2 of286

pixel-based features in plants, and the likelihood of this phenomenon remains287

unclear.288

Figure 6A shows the directions of the feature variance-covariance matrix289

with the traits labeled as in Figure 5. Figure 6B shows the correlation matrix290

between the 15 selected features. For the five features selected by OOB error291

(Fig. 5), indicated with a 5 in Table 1, the estimated H2 was ≥ 0.58. As292

the majority of selected features are principal components of different pixel- 293

based analyses (Fig. S6), there were many weak correlations (Fig. 6B). We 294

hypothesize that the importance of these features is partly driven by the simi- 295

larity of the raw data (i.e., binary pixel intensities) used in k-means clustering 296

to acquire shape categories and for EigenFruit shape analysis. Although prin- 297

cipal components are uncorrelated, we observed strong correlations between 298

PCs from different analyses (Fig. 6). EigenFruitPC1 shared a strong posi- 299

tive correlation with both BioVPC1 and BioHPC1 (ρ = 0.98; p < 2e – 16 300

and ρ = 0.93; p < 2e – 16, respectively), as did EigenFruitPC2 with 301

BioVPC2 (ρ = 0.86; p < 2e – 16). BioHPC2 was negatively correlated 302

with both EigenFruitPC2 and BioVPC2 (ρ = –0.92; p < 2e – 16 and 303

ρ = –0.81; p < 2e – 16, respectively). BioHPC3 was negatively correlated 304

with EigenFruitPC4 (ρ = –0.87; p < 2e – 16). BAR was negatively corre- 305

lated with EigenFruitPC1, BioVPC1 and BioHPC1 (ρ = –0.89; p < 2e–16, 306

ρ = –0.87; p < 2e – 16, and ρ = –0.78; p < 2e – 16, respectively). The 307

correlations between these features indicated that the pixel-based descriptors 308

describe comparable patterns of phenotypic variation. 309

Image Classification using Selected Features 310

The accuracy of classification, or prediction, is typically assessed by cross- 311

validation [22, 70]. We generated training sets that consisted of 80% (5, 500), 312

50% (3, 437), or 20% (1, 374) of the images. Assignment to either training 313

or test set was random and without stratification. k-means clustering was per- 314

formed using the training sets, and k was allowed to range from 2 to 10. We 315

assigned the test set images to the nearest neighboring cluster for each level 316

of k. We performed PPKC on the clusters derived from the training set and 317

the similarity between the full set and training sets were visually assessed. The 318

clusters derived from the different sets appeared to be nearly identical (Fig. S7). 319

The order of clusters derived from the reduced data set also appears identical 320

to those described in the full set (Fig. S7). The principal component-based 321

features were recalculated using the training data sets and the corresponding 322

test set images projected into the new space. We only extracted the 15 selected 323

features. These included EigenFruitPC[1,7], BioVPC[1,2], and BioHPC[1,3] 324

(Table 1). The selected geometric features, including BAR, SI, and Kurt, were 325

not recalculated as they do not change concerning the other samples, unlike 326

k-means and PCA which both rely on and change based on observed data. For 327

EigenFruitPC[1,7], BioVPC[1,2], and BioHPC[1,3], the percent variance ex- 328

plained by each feature was similar to that in full data set (Table 1), indicating 329

that the principal components derived from the reduced set describe similar 330

features of shape as those derived from the full set. 331

Support vector regression (SVR) and linear discriminant analysis (LDA) 332

were both used for classification (see Methods). We performed ten iterations of 333

each set size and feature set across all levels of k. The results of this experiment 334

are reported in Table 2. Overall, the models performed with high accuracy of 335

classification. Generally, as we used fewer features for classification model 336

performance is reduced, most notably for larger values of k. Indeed, when 337

k = 2 accuracy improved slightly with fewer features in the different models. 338

Except for one case, SVR was found to outperform linear discriminant analysis 339

consistently. The one case where LDA outperformed SVR was when k = 10, 340

including two features, and 20% training data. LDA achieved 69.4% accuracy, 341

and SVR achieved 68.7% accuracy. Using five features for classification, we 342

achieve the highest accuracy (99.3%) for k = 2. In the range of interest, 343

k = [2, 4], the models do not fall below 94.0% accuracy for any training set 344

size. 345

Discussion 346

As high-throughput phenotyping for external fruit characteristics becomes 347

more and more widely of interest to specialty crop researchers, we expect that 348

this work will have various applications in both applied and basic plant research 349

[49, 12, 13], cultivar development [14, 44], intellectual property protection and 350

documentation [71, 72], and waste reduction [18, 73]. Our study showed that 351

strawberry fruit shapes could be robustly quantified and accurately classified 352

from digital images. Most importantly, our analyses yielded quantitative phe- 353

notypic variables that describe fruit shape (Fig. 3), arise from continuous dis- 354
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tributions, and are moderately to highly heritable (H2) (Table 1) [35, 36]. We355

accomplished this by translating two-dimensional digital images of fruit into356

categorical and continuous phenotypic variables using unsupervised machine357

learning and morphometrics, respectively [12, 13, 49, 58, 60, 74]. We found358

that mathematical approaches developed for human-face recognition [57, 58]359

were powerful for strawberry fruit shape recognition (Table 1), that unsuper-360

vised shape clustering was robust to sample size deviations (Fig. S7), and that361

only a few quantitative features are needed to accurately classify shapes from362

images (Table 2).363

We empirically derived the shape progression produced in the present study364

through the application of PPKC (Alg. 1; Fig. 2). Ordinal categorical traits365

are commonplace in quantitative genetic studies [27, 75] and are the current366

standard for phenotyping external fruit characteristics [14, 15, 44]. PPKC iden-367

tified four exemplary strawberry shape categories in the population we studied,368

which were characterized by a progression from ’longer-than-wide’ (prolate)369

to ’wider-than-long’ (oblate) (Fig. 2). Critically, this gradient agreed with the370

arbitrarily defined progressions in previous reports [14, 16]. However, unlike371

previous studies, which suggested using nine [14] or eleven shape categories372

[18], our work presented empirical evidence for a specific number of mathemat-373

ically defined shape categories. We determined that k = 4 was the appropriate374

level of complexity based on the visual appearance of the discovered clusters375

(Fig. 2), highH2 estimates (Table 2), and the information criteria calculated for376

the k-means models (Fig. S3). Interestingly, PPKC can determine a visually,377

reasonable phenotypic gradient up to k = 7 (Fig. S4) despite strong evidence378

of overfitting for k > 4 (Fig. S3). Because unsupervised clustering does379

not define unobserved categories, more shape categories may exist mainly be-380

tween individuals with more extreme or more variable fruit shape phenotypes381

or greater genetic distances.382

The specific genetic factors that give rise to variation in fruit shape in gar-383

den strawberry are currently unknown and have been understudied in straw-384

berry [44]. The selective pressure exerted on fruit shape in strawberry could385

have impacted large-effect loci, in which case ordinal phenotypic scores are386

likely to be sufficient for identifying genetic factors affecting fruit shape. Loss-387

and gain-of-function mutations have played an essential role in identifying388

genes affecting fruit shape in tomato, a model that has been highly instruc-389

tive and important for understanding the genetics of fruit shape and enlarge-390

ment in plants [32, 33, 38, 76, 77]. There are striking examples in tomato and391

other plants where identified genes regulate the development of fruit shape. For392

example, the OVATE gene in tomato regulates the phenotypic transition from393

round- to pear-shaped fruit [78, 79]. If large-effect mutations underlie differ-394

ences in strawberry fruit shape, the ordinal classification system proposed here395

should enable the discovery of such effects. Furthermore, quantitative pheno-396

types were linked to genetic features that interact with large-effect genes, i.e.,397

suppressors of OVATE (sov), through bulk segregant analysis and QTL map-398

ping [80]. In woodland strawberry (F. vesca), fruit size and shape are linked to399

the accumulation and complex interaction of auxin, GA, and ABA, mediated400

by the expression and activity of FveCYP707 and FveNCED, as well as other401

genes [9]. Because of the high H2 estimates for several of the newly created402

phenotypic variables 1, we hypothesize that quantitative shape phenotypes can403

yield a more comprehensive understanding of the underlying genetic mecha-404

nisms of fruit shape in garden strawberry (F. × ananassa) through genome-405

wide association studies and other forward-genetic analyses [35, 36, 81]. We406

anticipate that the analyses in this study will enable us to discover and study407

the genetic determinants of fruit shape in strawberry and other specialty crops.408

Methods409

Mating and Field Design410

Seventy-five bi-parental crosses were generated by controlled pollination of411

30 parents in an incomplete (16 × 14) factorial mating design. These parents412

were chosen to represent a broad range of phenotypic diversity in the Univer-413

sity of California, Davis strawberry germplasm. 2, 800 hybrid progeny were414

planted at the Wolfskill Experimental Orchard in Winters, CA in sets of 20 or415

40 per family, depending on seedling survival. 20% of the planted materials416

from each family were randomly selected for further testing. Clones of 545417

of the selected 560 progeny were successfully propagated. 12 bare-root run-418

ner plants of each of the 545 progeny and the 30 parents were collected and 419

planted in November 2017 in Salinas, CA in 4 plant plots as a randomized 420

complete block design with three replicates of each genotype. 421

Image acquisition 422

Strawberries were harvested from plots in Salinas, CA once in April 2018 423

and again in May 2018. Digital images of up to 3 fruit per plot were imaged 424

using a Sony α-6000 Mirrorless digital camera mounted on a portable copy 425

stand in aperture priority, with the aperture set to f/8. Strawberries with the 426

calyx removed were placed in the frame against a black felt backdrop, along 427

with a QR-code identifying the plot, such that the most extensive face was 428

perpendicular to the sensor. Berries were mounted to set of staples to eliminate 429

any rolling or pitch of the berries. The time to stage a given set of fruit and 430

acquire an image ranged from 1 to 2 min. All images were acquired with a 431

16–50mm lens set to 16mm and positioned approximately 16 cm above the 432

base of the copy stand resulting in images with 97.4 pixels per cm. In total, 433

2, 924 plots were imaged over the two harvest dates. 434

Image Processing 435

Input files were JPEG images (3008px×1688px) with the strawberries placed 436

in regular positions within a scene. All images were first segmented and con- 437

verted to binary using the Simple Interactive Object Extraction (SIOX) tool in 438

ImageJ 2.0.0 [82, 83, 84] through custom batch scripts. Images that were un- 439

successfully segmented were flagged and handled individually to ensure com- 440

pleteness. ImageJ was used to acquire the bounding rectangle of each object 441

of interest. Each object was extracted based on the dimensions of its bound- 442

ing rectangle using R 3.5.3 [85] and the jpeg package [86]. White pixels 443

were added to the edges of each image such that the resulting images is a 444

square of size max(H,W)×max(H,W) using the "magick::image_border()" 445

package [87]. "magick::image_resize()" was used to scale the images from 446

max(H,W)× max(H,W) px to 1000× 1000 px. This method results in bi- 447

nary images that maintain the original aspect ratio with a maximum dimension 448

equal to 1, 000 pixels and then resized to 100 × 100.(Fig. 1). In total, the 449

downstream analyses included 6, 874 images of individual berries. 450

Feature extraction 451

Categorical features 452

This method afforded clustering decisions based on raw image data instead 453

of the extracted quantitative features. Each image matrix was flattened into a 454

single 10, 000 element row vector; all of the samples were then bound together 455

by columns. The resulting matrix for all samples was 6, 874× 10, 000. The 456

"stats::kmeans()" function in R was used to perform k-means clustering. Values 457

of k (i.e., the number of clusters) range from 2 to 10. Assigned clusters were 458

recorded for all values of k. 459

After initial clustering, the centroids of each cluster from each value of k 460

were visually examined. We determined that, when k ≥ 8, there were two 461

(≥ 2) groups that appeared to be mirror images of each other. Mirrored groups 462

likely arose as artifacts of the imaging set up and symmetries between per- 463

spectives and are likely not reflective of any true biological characteristic. All 464

images in one of the mirrored groups were reloaded, rotated around their ver- 465

tical axis, and flattened into vectors as before. The "stats::kmeans()" function 466

clustered this modified data set allowing k to vary between 2 and 10. We 467

recorded newly assigned clusters each object for all values of k. A second vi- 468

sual inspection concluded that the modification removed mirror groups when 469

k ≥ 4. We used the modified clusters assignments in downstream analyses. 470

Modified clusters are then reordered using PPKC (Fig. 2). The ordered cat- 471

egories, across the various levels of k, became the response for classification 472

experiments. The correct choice of k is often ambiguous, with interpretations 473

depending on the shape and scale of the distribution of points in a data set and 474

the desired clustering resolution of the user. In addition, increasing k without 475

penalty will always reduce the amount of error in the resulting clustering, to 476

the extreme case of zero error if each data point is considered its own cluster 477

(i.e., when k equals the number of data points, n). Intuitively then, the optimal 478
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choice of k will strike a balance between maximum compression of the data479

using a single cluster, and maximum accuracy by assigning each data point to480

its own cluster. The optimal value of k was determined based on four different481

evaluation criteria: total within-cluster sum of squares, adjusted R2, AIC, and482

BIC.483

Linear and geometric features484

Linear and geometric features measure aspects of the fruit directly from im-485

ages and were processed using ImageJ 2.0.0 [83, 84] and R 3.5.3 [85]. Ex-486

tracted measurements included Shape Index (SI) [42], Circularity (Circ) [84],487

Bounding Aspect Ratio (BAR) [84], Ellipse Aspect Ratio (AR) [84], Round-488

ness (Round) [84], Solidity (Solid) [84], Feret Aspect Ratio (FAR) [84], the489

ratio of the height of max width and max height (HW) [42], Variance (Var),490

Skewness (Skew) [84], and Kurtosis (Kurt) [84] (Fig. 3A). For Var, Skew, and491

Kurt, the analyses focus on the horizontal axis (Fig. 3A).492

Elliptical Fourier features493

EFA comprehensively described closed outlines as a series of oscillating, har-494

monic functions and were calculated using Momocs v1.2.9 [88] in R 3.5.3.495

We extracted elliptical Fourier features for the first 5 harmonics resulting in 20496

coefficients using "Momocs::efourier()" function. Each harmonic level is made497

up of 4 coefficients that correspond to the effects of the cosine and sine in the498

x-axis (coefficients A and B) and the y-axis (coefficients C and D). To allow499

for discrimination between accessions based on fruit shape, principal compo-500

nent analysis (PCA) was performed using the "Momocs::PCA" from Momocs501

for EFFs. We recorded the eigenvectors of each image on the 20 resulting502

principal axes (Fig. 3B).503

Generalized Procrustes and revealed latent features504

GPA describes the shape as the distance either between landmarks and505

a centroid. The outline of each object was decomposed into 50 evenly506

spaced pseudo-landmarks moving clockwise around the object. The "Mo-507

mocs::fgProcrustes()" function from Momocs v1.2.9 [88] was used to perform508

the alignment between shapes (Fig. 3C; left). Each of the 50 aligned pseudo-509

landmarks was considered as an individual multi-variate feature. Each of the510

50 features was centered such that the marginal mean of both axes is 0. The511

"stats::prcomp()" function in R was used to perform PCA on each of the 50512

centered pseudo-landmarks (Fig. 3C; left and center).513

Latent features from the calculated landmark principal components were514

constructed to describe the 4 most variable regions of the strawberry outline515

(i.e., tip, left side, neck, and right side) (Fig. 3C; center) with "lavaan::sem()"516

using the lavaan package v0.6 – 3 [89]. Use of SEM is commonly justified in517

the social sciences because of its ability to impute relationships between unob-518

served constructs (latent variables) from observable variables. Here, we treat519

different the pseudo-landmarks as the observable variables to impute the rela-520

tionship between latent components of shape. Only those pseudo-landmarks521

with variance on PC1 greater than the median were used to manifest the four522

latent features (Fig. 3C; center and right). Latent features were established by523

the following structure:524

Tip = 0.939 ∗ PC11 + 0.909 ∗ PC12 + 0.805 ∗ PC3
+ 0.592 ∗ PC14 + 0.627 ∗ PC147 + 0.799 ∗ PC148

+ 0.886 ∗ PC149 + 0.920 ∗ PC150 (4)

Neck = 0.811 ∗ PC123 + 0.886 ∗ PC124 + 0.918 ∗ PC125
+ 0.919 ∗ PC1226 + 0.883 ∗ PC127 + 0.790 ∗ PC128 (5)

SideLeft = 0.994 ∗ PC110 + 0.998 ∗ PC111 + 0.975 ∗ PC112
+ 0.927 ∗ PC113 + 0.868 ∗ PC114 (6)

SideRight = 0.880 ∗ PC137 + 0.935 ∗ PC138 + 0.977 ∗ PC139
+ 0.998 ∗ PC140 + 0.988 ∗ PC141 (7)

The weights for each variable are those reported from the "lavaan::sem()" 525

function. Tip is manifested by a combination of PC1 of the pseudo-landmarks 526

1, 2, 3, 4, 47, 48, 49, and 50 (4); Neck by PC1 of landmarks 23, 24, 25, 527

26, 27, and 28 (5); SideLeft by PC1 of landmarks 10, 11, 12, 13, and 14 528

(6); and SideRight by PC1 of landmarks 37, 38, 39, 40, and 41 (7). Each 529

of the four latent features were calculated for all images. The fit of this model 530

was determined to be adequate based on the SRMR = 0.092, RMSEA = 531

0.068± 0.001, and CFI/TFI = 0.981/0.978 [90]. 532

EigenFruit features 533

EigenFruit features were adapted from the EigenFaces methods of [57] and [58] 534

and incorporate information about every pixel in an image. The resulting ma- 535

trix of binary image vectors was 6874× 10, 000. There can only be as many 536

non-zero PC’s as there are observations (i.e., 6, 874). The "stats::prcomp()" 537

function was used to perform PCA. We recorded the eigenvalues of the first 20 538

PCs. Together these 20 PCs explained 71.7% of the variance. PC1, PC2, and 539

PC3 explained 26.8%, 12.6%, and 5.24%, respectively (Fig. 3D; left). 540

Biomass profile features 541

Biomass profile features describe the shape as the sum of pixels in each row, or 542

column, of a given image. We adopted this method from [13]. We generated the 543

horizontal biomass profile by recording the number of black pixels in each of 544

100 rows. The vertical biomass profile was generated by recording the number 545

of black pixels in each of the 100 columns. The function "stats::prcomp()" in 546

R was used to perform PCA for each profile (i.e., vertical and horizontal). The 547

eigenvectors of the first 5 PCs from each were retained. Together these 5 PCs 548

explained 95.9% and 95.4% of the total symmetric shape variance for the 549

horizontal and vertical profiles, respectively (Fig. 3D; center and right). 550

Broad-sense Heritability Estimation 551

Qualitative Features 552

Broad-sense heritability on a clone-mean basis (H2) for each ordered level 553

of k was estimated using the ordinal package v2019.3 – 9 [67] in R 3.5.3. 554

Variance components were estimated using a cumulative link mixed models 555

with a cumulative logit link function and a multinomial error, 556

yijkl = µ + Gi + Hj + Bk + Eijk + Fijkl (8)

yijkl is the categorical feature, µ is the grand mean, Gi is the random effect 557

of ith genotype (Gi ∼ N (0,σ2G)), Hj is the fixed effect of the jth harvest, 558

Bk is the fixed effect of the kth block, Eijk is the residual error of the ijkth 559

plot (Eijk ∼ N (0,σ2E)), and Fijkl is the error of ijklth fruit (subsample) 560

(Fijkl ∼ logit[P(Y ≤ j)]C–10 ). The "clmm()" function implements of cumu- 561

lative link mixed models for ordinal data. Ordinal GLMMs were considered 562

the most appropriate, and conservative, approach because we could not assume 563

that shape categories would be linear. Variance component estimation is per- 564

formed via maximum likelihood and allows for multiple random effects with 565

crossed and nested structures [67]. H2 for each feature was calculated as 566

H2 =
σ2G

σ2G +
σ2E
hb

(9)

Where σ2G is the genetic variance, σ2E is the residual variance, h is the harmonic 567

mean of observed harvest dates per genotype (1.94), and b is the harmonic 568

mean of observed blocks per genotype (2.89). 569

Quantitative Features 570

Broad-sense heritability on a clone-mean basis (H2) was estimated for features 571

with the lme4 package v1.1–19 [69] in R 3.5.3. REML variance components 572
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were estimated using the linear mixed effect model,573

yijk = µ + Gi + Hj + Bk + Eijk (10)

yijk is the quantitative feature, µ is the grand mean, Gi is the random effect of574

the ith genotype (Gi ∼ N (0,σ2G)), Hj is the fixed effect of the jth harvest, Bk575

is the fixed effect of the kth block, Eijk is the residual error of the ijkth plot576

(Eijk ∼ N (0,σ2E)). Only two Harvest dates and three Blocks were observed577

and, because of this, they were treated as fixed effects. H2 for each feature578

was calculated as in equation 9. Where σ2G is the genetic variance, σ2E is579

the residual variance, h is the harmonic mean of observed harvest dates per580

genotype (1.94), and b is the harmonic mean of observed blocks per genotype581

(2.89).582

Feature selection583

Random forest regression models were fit in R 3.5.3 using the VSURF pack-584

age v1.0.4 [68]. 100 forests, each consisting of 2, 000 random trees were585

fit using 67 features to predict cluster assignments. The "VSURF::VSURF()"586

function returns two sets of features. The first includes important features with587

some redundancy, and the second, smaller set, corresponds to a model focusing588

more closely on the classification and reducing redundancy [68]. Features that589

appeared in the second set for more than three levels of k were recorded and590

used for classification for all clusters (feature set 15). Five features had mean591

OOB estimates greater than the median (OOB= 0.069) were used as feature592

set 5. Two features had mean OOB estimates greater than the mean estimate593

(OOB= 0.1) were recorded as feature set 2.594

Classification performance595

The classification accuracy was then estimated using the "MASS::lda()" func-596

tion from MASS v7.3 – 51.1 [91] as well the "e1071::svm()" function from597

e1071 v1.7 – 0 [92]. Classification models were trained to delineate the clus-598

ter assignments from modified k-means using the three different feature sets599

as predictor variables. All images were randomly sorted into training and test600

sets without stratification of size 80/20%, 50/50%, and 20/80% to explore601

the relationship between sample size and model performance. The training set602

images were clustered using the "stats::kmeans()" function in R. As before, k603

was allowed to range from 2 to 10 for this experiment. The images in the test604

set were assigned to the nearest cluster for each value of k. The principal com-605

ponent features (i.e., EigenFruitPC[1, 7], BioVPC[1, 2], and BioHPC[1, 3])606

were calculated using only the training set images and the test images were607

projected into this new space. The maximum number of non-zero principal608

components in this experiment for the EigenFruit analysis was either 5, 500,609

3, 437, or 1, 374, depending on the size of the training data set. The PVE610

of each leading PC was recalculated. Geometric descriptors (i.e., BAR, SI,611

and Kurt) were not recalculated as they are derived from an individual sam-612

ple and not a sample population. Finally, both LDA and SVR models were613

trained using all three feature sets for all values of k using the "MASS::lda()"614

and "e1071::svm()" functions in R. The trained models were used to classify615

the images in the respective test set. The model performance was evaluated616

using the average classification accuracy, precision, recall, and false positive617

rate (FPR) of 10 iterations of cross validation.618

Availability of source code and requirements619

Lists the following:620

• Project name: 2DShapeDescription621

• Project home page: https://github.com/mjfeldmann/622

2DShapeDescription623

• Operating system(s): Platform independent624

• Programming language: R and ImageJ Macro625

• Other requirements: Not Applicable626

• License: MIT License.627

• Any restriction to use by non-academics: none628

Availability of supporting data and materials 629

The data supporting the results of this article are available in the Zenodo repos- 630

itory [63]. The code to reproduce these analyses are documented and available 631

on GitHub [64]. 632

Additional files 633

The additional files for this article are available in the Zenodo repository [63]. 634

• Additional file 1: Fig. S1 Modified k-means clustering. (A) Results of k- 635

means clustering performed on flattened binary images. (B) (1) Resulting 636

centroids are visualized and inspected for abnormalities. In this example, 637

two of the 8 classes, 2 and 6, appear to be mirror images. (B) (2) All 638

images in second class are rotated on the vertical axis. (B) (3) Similar- 639

ity is visually inspected by overlaying the rotated centroid onto the other, 640

non-rotated centroid. In this example, the overlay exposes a high level of 641

reflective symmetry. (C) k-means clustering is performed again for all lev- 642

els of k but with all images assigned to class 6 rotated on the vertical axis. 643

The lines representing each clusters centroid reflect the 20th, 40th, 60th, 644

and 80th quantiles, moving out from the center of each images. 645

• Additional file 2: Fig. S2 Results of PPKC against original cluster as- 646

signments. Ordered centroids from k = 2 to k = 8. On the left are the 647

unordered assignments from k-means, and the on the right are the order as- 648

signments following PPKC. Cluster position indicated on the right [1, 8]. 649

• Additional file 3: Fig. S3 Optimal Value of k. (A) Total within cluster 650

sum of squares. (B) Inverse of the Adjusted R2. (C) Akaike informa- 651

tion criterion (AIC). (D) Bayesian information criterion (AIC). All metrics 652

were calculated on a random sample of 3, 437 images (50%). 10 samples 653

were randomly drawn. The vertical dashed line in each plot represents the 654

optimal value of k. Reported metrics are standardized to be between [0, 1]. 655

• Additional file 4: Fig. S4 Hierarchical clustering and distance between 656

classes on PC1. The relationship between clusters at each value of k is rep- 657

resented as both a dendrogram and as bar plot. The labels on the dendro- 658

gram (i.e., V1, V2, V3,..., V10) represent the original cluster assignment 659

from k-means. The barplot to the right of each dendrogram depicts the ele- 660

ments of the eigenvector associated with the largest eigenvalue form PPKC. 661

The labels above each line represent the original cluster assignment. 662

• Additional file 5: Fig. S5 BLUPs for 15 selected features. For each plot, 663

the X-axis is the index and the Y-axis is the BLUP value estimated from a 664

linear mixed model. Grey points represent the mean feature value for each 665

individual. Each point is the BLUP for a single genotype. 666

• Additional file 6: Fig. S6 Effects of Eigenfruit, Vertical Biomass, and 667

Horizontal Biomass Analyses. (A) Effects of PC [1, 7] from the Eigenfruit 668

analysis on the mean shape (center column). Left column is the mean shape 669

minus 1.5× the standard deviation. Right is the mean shape plus 1.5× the 670

standard deviation. The horizontal axis is the horizontal pixel position. The 671

vertical axis is the vertical pixel position. (B) Effects of PC [1, 3] from the 672

Horizontal Biomass analysis on the mean shape (center column). Left col- 673

umn is the mean shape minus 1.5× the standard deviation. Right is the 674

mean shape plus 1.5× the standard deviation. The horizontal axis is the 675

vertical position from the image (height). The vertical axis is the number 676

of activated pixels (RowSum) at the given veritcal position. (C) Effects of 677

PC [1, 3] from the Vertical Biomass analysis on the mean shape (center col- 678

umn). Left column is the mean shape minus 1.5× the standard deviation. 679

Right is the mean shape plus 1.5× the standard deviation. The horizontal 680

axis is the horizontal position from the image (width). The vertical axis is 681

the number of activated pixels (ColSum) at the given horizontal position. 682

• Additional file 7: Fig. S7 PPKC with variable sample size. Ordered cen- 683

troids from k = 2 to k = 5 using different image sets for clustering. For 684

all k = [2, 5], k-means clustering was performed using either 100, 80, 685

50%, or 20% of the total number of images; 6, 874, 5, 500, 3, 437, and 686

1, 374 respectively. Cluster position indicated on the right [1, 5]. 687
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Clustering & Morphometric Analyses
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Figure 1. An example of the processing pipeline. (A) A user collects a stack of images containing
multiple strawberries and a unique QR code. (B) All images are then segmented using the SIOX algo-
rithm implemented in ImageJ. Each object is then cut from its original image based on the coordinates
of its bounding rectangle in R 3.5.3. White pixels are then added to the edges of each frame until all
images are 1000 × 1000 pixels. Regions of interest are then scaled such that the major axis of each
object becomes 1000px in ImageJ. Output images are scale invariant and maintain the original aspect
ratio.
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Unordered Centroids

C = 1 C = 2 C = 3

k3c1 k3c2 k3c3

k2c1 0 1 0.54

k2c2 1 0 0.46

𝑴

A.

B.

C. Ordered Centroids (K = 3:5)

C = 1 C = 2 C = 3 C = 4 C = 5

K 
= 

3
K 

= 
4

K 
= 

5

k3c1 k3c2 k3c3

k3c1 0.5 -0.5 0.040

k3c2 -0.5 0.5 -0.04

k3c3 0.04 -0.04 0.003

Σ𝑴

K 
= 

2
K 

= 
3

Ranked elements of 𝑣$

k3c2 k3c3 k3c1

𝐸𝑖𝑔𝑒𝑛 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

0% 100% 100% 0% 54% 46%

Figure 2. An example use of PPKC. (A) After k-means clustering is performed clusters are randomly assigned a numeric value (1,2,...,k). When k > 2, this value becomes nominal. PPKC relies on the
fact that the order through clusters when k = 2 has identical interpretations in either direction. The lines representing each clusters centroid reflect the 20th, 40th, 60th, and 80th quantiles, moving out from
the center of each images. (B)(1) A table representation of the resultant matrix from equation 1. Each cell represents the proportion of images in the column class and in the row class, normalized by the
number of images in the column class. (B)(2) A table representation of ΣM . (B)(3) The ranked elements of~vs shown on a number line. (C) After using PPKC, the order of groups is explicitly identified.
In this example, showing k = [3, 5], the order discovered seems to trend from tall and thin berries, through more triangular shapes, and ending with berries that are short and wide.
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A. Linear and geometric descriptors

B. Outline-based descriptors

D. Pixel-based descriptors

C. Landmark-based descriptors
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Figure 3. Trait Dictionary for this study. (A) Linear descriptors. Left Simple linear measurements. Center Best fit ellipse axes. For the circle, Round and Circ = 1. Right Max and Min Feret. Histogram
represents the marginal distribution on the horizontal axis used to calculate Var, Skew, and Kurt. (B) Outline descriptors. (Left) The two left most images are the outlines of two strawberries with 12 evenly
spaced points. The graphs on the right show the original closed outline as two oscillating functions. (Center) Deviations from the closed outline with increasing harmonics (harm= [h1, h5]).(Right) The
plot shows the effects of PC [1, 5] (vertical) with effect sizes, [–4, 4] (horizontal) on the mean shape. (C) Landmark descriptors. (Left) 50 evenly spaced landmarks are extracted and treated as bi-variate
features.(Center) Standard deviation of PC1 for each landmark is plotted in sequence. Dashed horizontal line is the median standard deviation. (Right) Pseudo-landmarks were selected to represent each
region of high variance. Using the values on the first principal axis as observed variables, confirmatory factor analysis was performed to infer latent relationships to tip, left and right side, and neck shape.
(D) Pixel descriptors. (Left) Mean EigenFruit using flattened binary images. (Center) Mean Horizontal Biomass using image row sums. (Right) Mean vertical biomass using image column sums.
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Figure 4. Correlations between all 67 features used in this study. Positive correlations are colored blue, negative correlations are colored red.
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Figure 5. Results from feature selection. (A) Out-of-Bag error for each of the 15 selected features. Horizontal dashed lines are the median (0.069) and mean (0.1) OOB. (B) The relative importance of
each feature within each level of k. The 15 selected features explain nearly 90% of the weight attributed to all of the features.
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Figure 6. Relationship between selected features. (A) Principal directions of the feature variance-covariance matrix among the 15 features selected for classification. (B) Pearson correlation matrix of
the 15 selected features. Positive correlations are colored blue, negative correlations are colored red.
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Table 1. Broad-sense heritability of selected features

Feature H2 % Times Selected Normalized Eigenvalue (80%,50%,20%) Feature Set

EigenFruit PC1 0.68 100 0.26 (0.27,0.27,0.26) 15, 5, 2
EigenFruit PC2 0.58 88.9 0.14 (0.14,0.14,0.14) 15, 5
EigenFruit PC3 0.00 55.6 0.05 (0.06,0.05,0.06) 15
EigenFruit PC4 0.69 55.6 0.04 (0.04,0.05,0.04) 15
EigenFruit PC5 0.43 66.7 0.03 (0.03,0.04,0.03) 15
EigenFruit PC6 0.47 55.6 0.03 (0.03,0.03,0.03) 15
EigenFruit PC7 0.29 44.4 0.02 (0.02,0.02,0.02) 15

Vertical Biomass Profile PC1 0.67 100 0.65 (0.66,0.66,0.66) 15, 5, 2
Vertical Biomass Profile PC2 0.49 55.6 0.17 (0.17,0.16,0.17) 15

Horizontal Biomass Profile PC1 0.65 88.9 0.44 (0.44,0.46,0.44) 15, 5
Horizontal Biomass Profile PC2 0.62 55.6 0.36 (0.36,0.35,0.37) 15
Horizontal Biomass Profile PC3 0.69 33.3 0.10 (0.10,0.10,0.10) 15

Bounding Aspect Ratio 0.71 100 NA 15, 5
Shape Index 0.72 66.7 NA 15

Kurtosis 0.55 33.3 NA 15

Broad-sense heritability (H2) estimated on a per line basis.
% times selected is the number of classification models that a feature was selected in out of 9 (i.e., k = [2, 10]).
Normalized eigenvalues is the eigenvalue associated with a specific PC divided by the sum of all eigenvalues.
The large value is the normalized eigenvalue from the full data set. Values in parentheses contain the normalized eigenvalues for the 80%, 50%, and the 20% training sets, respectively.
Feature set indicates in which of the 3 sets a given feature was included.
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A. Results of k-means clustering (k=8)

2. Rotation 3. Overlay
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1. Visual Inspection

B. Modification

C. Results of modified cluster (k=8)

Figure S1. Modified k-means clustering. (A) Results of k-means clustering performed on flattened binary images. (B) (1) Resulting centroids are visualized and inspected for abnormalities. In this
example, two of the 8 classes, 2 and 6, appear to be mirror images. (B) (2) All images in second class are rotated on the vertical axis. (B) (3) Similarity is visually inspected by overlaying the rotated
centroid onto the other, non-rotated centroid. In this example, the overlay exposes a high level of reflective symmetry. (C) k-means clustering is performed again for all levels of k but with all images
assigned to class 6 rotated on the vertical axis. The lines representing each clusters centroid reflect the 20th, 40th, 60th, and 80th quantiles, moving out from the center of each images.
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Figure S2. Results of PPKC against original cluster assignments. Ordered centroids from k = 2 to k = 8. On the left are the unordered assignments from k-means, and the on the right are the order
assignments following PPKC. Cluster position indicated on the right [1, 8].
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Figure S3. Optimal Value of k. (A) Total within cluster sum of squares. (B) Inverse of the Adjusted R2 . (C) Akaike information criterion (AIC). (D) Bayesian information criterion (AIC). All metrics
were calculated on a random sample of 3, 437 images (50%). 10 samples were randomly drawn. The vertical dashed line in each plot represents the optimal value of k. Reported metrics are standardized
to be between [0, 1].
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Figure S4. Hierarchical clustering and distance between classes on PC1. The relationship between clusters at each value of k is represented as both a dendrogram and as bar plot. The labels on the
dendrogram (i.e., V1, V2, V3,..., V10) represent the original cluster assignment from k-means. The barplot to the right of each dendrogram depicts the elements of the eigenvector associated with the
largest eigenvalue form PPKC. The labels above each line represent the original cluster assignment.

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/736397doi: bioRxiv preprint 

https://doi.org/10.1101/736397
http://creativecommons.org/licenses/by-nd/4.0/


20 | Journal of XYZ, 2019, Vol. 00, No. 0

●

●

●●●●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

−
20

0
10

20

EigenFruit PC1

Individual

B
LU

P

●

●

●●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

−
20

0
10

20

EigenFruit PC2

Individual
B

LU
P

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●●
●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●●●●
●
●●
●

●

●

●

●
●●
●

●

●

●

●

●
●●

●
●

●

●
●
●
●

●
●
●

●

●

●
●●

●
●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●●

●
●●
●
●
●

●
●

●
●

●

●

●

●●

●
●●●
●

●
●
●
●

●

●
●

●
●

●
●
●

●

●

●

●

●●

●

●
●●
●
●●●●●

●●

●

●

●
●
●

●

●

●

●

●●

●●●

●

●
●

●●●●
●●
●

●
●

●

●
●

●●
●

●

●

●●

●
●
●
●●

●
●

●

●

●

●

●
●●

●●

●

●

●

●
●
●

●

●
●●

●

●
●
●

●●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●●
●
●

●

●
●

●
●

●●

●

●

●●●

●

●
●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●●●
●

●●
●

●
●

●
●●

●

●●
●

●
●

●

●

●
●●●●

●

●

●
●

●
●

●
●
●
●
●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●
●

●●
●●
●
●●

●

●

●

●
●

●

●●

●

●

●

●●●
●

●

●●

●●
●
●●

●

●
●
●

●

●●
●
●
●

●
●

●
●
●

●

●

●
●

●

●

●
●
●

●●

●

●

●
●●
●●●●

●●

●
●●
●

●

●

●

●●

●

●
●●●●
●●●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●●●

●
●
●●

●

●
●
●
●

●

●
●●
●●
●
●

●

●
●●
●

●

●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●●
●
●
●

●
●

●

●
●
●
●
●●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●●
●●
●
●

●

●●
●
●

●

●●
●
●
●●

●

●

●●

●

●
●●●

●

●

●●

●
●
●
●

●●

●

●

●●
●
●
●
●●
●

●
●

●
●
●

●

●

●●
●
●
●

●

●

●

●

0 100 200 300 400 500

−
20

0
10

20

EigenFruit PC3

Individual

B
LU

P

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●
●
●
●

●

●●

●

●
●
●

●

●

●

●
●

●
●

●

●●●
●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●●●

●
●●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●
●●

●●

●

●

●

●●●

●
●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●●

●

●

●
●●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●
●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●
●
●●●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●●

●
●

●
●

●

●●

●●

●
●

●

●

●

●

●
●
●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●●
●●

●

●
●

●
●

●●

●

●

●●
●

●

●

●

●

●
●●

●
●
●

●

●●
●

●
●
●
●
●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●

0 100 200 300 400 500

−
20

0
10

20

EigenFruit PC4

Individual

B
LU

P

●●

●●

●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●
●●

●●

●

●
●●
●

●
●

●

●

●●
●
●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●
●
●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●
●●

●●

●

●

●

●●●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●●

●

●

●
●●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●●

●
●●
●

●

●

●●

●

●

●

●

●
●
●●
●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●
●

●

●●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●
●●

●

●
●

●
●

●●

●

●

●●
●

●

●

●

●

●
●●

●
●
●

●

●●
●

●
●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●
●●●●
●

●
●
●

●

●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●
●
●

●
●●

●

●

●
●●

●

●

●●
●
●
●

●

●

●

●

●
●●●
●

●●

●●
●●

●

●

●

●

●●
●
●
●

●

●

●

●

●
●

●●
●

●
●●

●●
●
●

●

●
●
●

●

●
●●

●
●

●

●

●●
●
●
●●
●

●

●

●
●●●
●

●●
●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●
●
●●
●

●

●●

●

●

●

●●

●
●●●

●

●

●

●
●
●●
●
●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●
●
●●

●

●

●

●

●●
●

●
●
●

●

●
●●
●●●

●

●●●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●●
●●●
●●

●●

●

●●
●●
●

●

●●
●
●
●

●

●●

●
●

●

●
●
●●●

●

●

●●
●
●
●●●
●
●

●

●●

●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●●

●●●

●●
●
●
●●
●
●

●

●

●●
●

●●
●●

●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●
●
●●●●

●

●

●

●
●●

●●

●

●

●
●●●
●
●

●●
●
●
●●●●●
●

●

●
●

●
●

●

●●

●
●●

●

●

●

●●

●●

●

●

●

●
●●

●

●
●
●

●
●●●

●

●

●

●

●
●

●

●

●●●
●●

●
●●

●

●●●

●
●●

●●

●

●

●

●
●
●

0 100 200 300 400 500

−
20

0
10

20

EigenFruit PC5

Individual

B
LU

P

●

●

●

●
●●

●
●
●

●

●

●

●●

●

●

●

●●●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●
●●
●●

●

●
●
●

●

●
●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●●

●

●

●
●●●
●

●

●

●

●

●

●●●
●

●●

●
●
●●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●
●

●

●
●
●

●
●

●

●

●●
●

●
●●
●

●

●

●
●●●
●

●●
●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●●
●
●●
●

●

●●

●

●
●
●●
●
●●●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●
●●
●●●

●

●●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●●
●

●●

●

●●
●
●

●

●

●●

●●
●

●

●
●

●
●

●

●
●
●
●●

●

●

●●
●

●
●●●
●
●

●

●●

●
●●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●●

●●●

●●
●
●
●●
●
●

●

●

●●
●

●●
●●

●

●

●●

●
●

●

●

●

●●●

●
●

●

●

●
●
●●●●

●●
●

●
●●
●●

●

●

●

●●●
●
●

●●
●
●

●●●●●
●

●

●
●

●
●

●

●●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●
●

●
●●●

●

●

●

●

●
●

●

●

●●●
●●

●
●●

●

●●●

●
●●

●●

●

●
●

●
●

●

●

●
●
●

●

●
●
●
●●
●●

●

●

●

●

●
●
●●
●

●

●

●●●

●
●●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●
●●
●
●

●

●

●
●●
●
●

●

●

●●

●

●

●●●●

●

●
●

●

●

●

●

●
●●

●

●

●●

●●

●
●

●

●

●

●
●
●
●

●
●
●

●
●
●

●

●

●

●●

●

●

●

●
●
●
●●

●

●

●
●
●●
●

●●

●●
●

●
●

●
●
●
●
●

●●

●
●

●

●●

●

●

●

●

●

●

●●

●●●

●
●
●

●●●

●

●●
●●

●

●●●●

●
●

●

●

●
●
●
●

●
●
●

●

●●
●●
●

●

●●
●
●●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●
●

●●
●

●●
●
●●

●
●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●●

●

●
●
●
●

●
●●
●

●
●●
●●●

●
●

●

●

●

●
●
●●

●

●
●

●

●

●

●
●
●
●
●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●●●

●●
●
●

●
●●

●●

●

●●●

●
●●

●

●

●

●

●
●
●

●

●●
●
●●
●
●
●●

●
●●
●
●

●
●

●

●●●●●

●

●

●

●●

●

●
●

●●

●

●

●

●●●●●
●●●
●

●
●

●

●●

●
●●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●
●

●
●
●

●

●●

●

●
●●

●●
●

●
●

●

●

●
●●●

●
●

●
●

●

●●
●
●

●

●

●
●

●

●

●
●

●
●●●

●

●

●●

●
●

●
●
●
●

●

●

●●●
●
●●
●

●●

●●
●●●
●●●
●

●

●●
●

●

●

●

●

●

●●●●●

●

●
●

●
●●

●

●

●●●
●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●●
●
●●
●
●●●●

●

●

0 100 200 300 400 500

−
20

0
10

20

EigenFruit PC6

Individual

B
LU

P ●

●
●
●

●

●
●
●
●●
●●

●

●

●

●
●
●
●●
●
●

●

●

●
●

●
●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●
●●
●
●

●

●

●
●●
●
●

●

●

●●

●

●
●●●●

●

●●

●

●

●

●

●
●●

●

●

●●

●●

●
●

●

●

●

●
●
●
●

●●
●

●
●
●

●

●

●

●●

●

●

●

●

●
●
●●

●

●

●●
●●
●

●●

●●
●

●
●

●
●
●
●
●

●●

●

●

●
●●

●

●

●

●

●

●

●●

●●●

●●●

●●●

●

●●
●●

●

●●●●

●
●

●

●

●

●
●
●

●

●
●

●

●●●●
●

●

●●

●
●●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●●

●●

●
●●

●
●
●
●●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●
●
●●●
●●●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●●
●

●

●
●●

●●

●
●●●

●
●
●

●
●

●

●

●
●
●

●

●●●

●●
●

●
●●

●

●●

●

●

●
●

●

●●●●●
●●

●

●
●

●

●
●

●●

●

●

●

●●
●●●
●●●
●

●
●

●

●●

●

●●

●

●

●
●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●
●

●
●●

●
●

●
●
●

●

●●

●

●
●●

●●

●

●
●

●

●

●
●●●

●●

●
●

●

●●
●

●

●

●

●
●

●

●

●●

●
●
●●
●

●●

●

●
●

●
●

●
●

●

●

●●●
●
●●
●

●●

●●
●●●
●●●

●

●

●●
●

●

●

●

●

●

●●●●●

●

●
●

●
●●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●
●
●●

●
●
●
●●

●

●

●

●

●
●●●●
●●
●●
●
●
●●●●

●

●
●
●

●●
●●●
●
●

●●
●●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●
●
●

●

●●

●

●

●
●

●
●
●●
●
●
●
●
●●
●●

●
●

●
●

●

●

●

●●

●
●

●
●
●●●
●
●

●

●
●

●●
●
●●●●

●

●●●●
●
●●

●●
●

●

●
●●●

●
●
●

●●●●
●

●●●

●

●

●

●
●
●
●
●●●

●

●●●
●
●●
●
●●
●
●
●
●

●

●
●
●

●
●
●

●●
●●
●●●

●
●●●●
●
●●
●
●
●
●●
●●

●

●
●

●

●
●

●●●
●
●
●
●●

●

●
●
●●
●
●
●●

●●

●
●
●●

●●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●●

●

●●
●
●●

●

●
●●●
●
●

●

●

●

●●●●

●

●
●●

●
●
●
●

●

●

●●
●●
●

●

●●
●

●●
●
●

●

●

●
●

●●

●●

●
●

●

●

●●

●

●

●●●

●
●

●
●
●●●
●●

●
●

●
●
●
●
●

●

●
●
●●

●

●

●

●

●
●

●

●
●
●●
●
●●●

●●

●

●

●●
●
●
●
●
●●
●

●
●

●

●
●●●

●

●

●
●
●
●
●●
●

●
●●
●

●●●●
●
●●

●

●
●

●
●
●●
●
●

●

●

●

●

●
●
●

●●

●

●
●

●

●
●
●●
●●

●

●●

●

●●
●●
●

●
●●

●
●
●

●
●
●
●
●
●

●

●
●
●●●
●

●

●

●

●●

●
●

●

●●
●

●
●

●●●
●

●●
●
●
●

●
●

●
●
●
●
●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●
●

●

●●●●
●

●●
●
●
●●●●
●●

●

●
●
●

●

●

●

●

●
●●

●

●
●●●●
●

●
●
●●
●

●

●
●
●
●
●●

●●

●

●●

●

●●
●
●
●

●
●●

●

●

●
●
●

0 100 200 300 400 500

−
20

0
10

20

EigenFruit PC7

Individual

B
LU

P

●

●

●●●●●
●
●
●●
●
●
●
●●●

●

●

●●

●●●●●

●
●

●●
●●

●

●

●
●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●●
●
●

●

●●

●

●

●

●

●
●
●●●
●●
●
●●
●●

●

●

●
●

●

●

●

●●

●●

●
●

●●●
●

●

●

●
●

●●
●
●●●●

●

●●●●●●●

●●
●

●

●

●●●

●
●
●

●●●●
●

●●●

●

●

●

●
●
●
●
●●●

●

●●●●
●●
●
●●
●
●
●
●

●

●●
●

●
●
●

●●
●●

●●●

●
●●●●●
●●
●
●
●
●●
●●

●

●
●

●

●
●

●●●
●
●
●
●
●

●

●

●
●●
●
●
●●

●●

●
●

●●
●
●

●

●

●

●
●
●

●●

●
●●

●

●
●
●

●

●●

●

●●●
●●

●
●●
●
●
●●

●

●

●

●●
●●

●

●
●●

●

●
●
●

●

●

●●
●●●

●

●
●

●

●●
●
●

●

●

●
●

●
●

●●

●
●

●

●

●●

●

●

●●●

●

●

●
●

●●●
●●

●
●
●
●
●
●
●

●

●
●
●●

●

●

●

●

●
●
●

●
●
●
●
●
●●●

●
●

●

●

●●
●
●
●
●
●●
●

●
●

●

●
●●●

●

●

●
●
●

●
●●

●

●
●
●
●

●●●●
●
●●

●

●
●

●
●
●●
●
●
●
●
●
●
●●●
●●

●

●
●

●

●
●
●●●●

●

●●

●

●●
●●●

●
●
●

●
●●

●
●
●
●
●
●

●

●
●
●●●
●

●

●

●

●●

●
●

●

●●
●

●
●

●●●
●
●●
●
●
●

●●

●●●●
●●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●
●

●
●

●

●●●●
●

●●
●
●
●●●●
●●

●

●
●
●

●

●

●

●

●
●●

●

●
●●●●
●

●

●
●●
●

●

●
●
●
●
●●

●●

●

●●

●

●●
●

●
●

●
●●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

−
15

0
−

50
50

15
0

BioVPC1

Individual

B
LU

P

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●
●

●●

●

●

●

●●●

●
●
●

●

●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●●

●
●●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●●
●●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●●
●

●

●

●

●

●●

●●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●

●●

●

●

●

●

●
●●
●

●

●

●
●
●

●

●

●

●●●

●●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●●
●
●
●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●
●

●

●

●
●
●

●

●●
●
●
●

●

●

●
●
●

●
●●

●●

●

●

●●

●
●

●
●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●
●●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

0 100 200 300 400 500

−
15

0
−

50
50

15
0

BioVPC2

Individual

B
LU

P

●

●

●
●

●

●

●
●●
●

●●

●

●

●

●

●
●

●●
●

●

●

●●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●●

●
●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●●
●●

●

●

●

●
●

●

●

●●
●●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●●
●

●

●

●

●

●●

●●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●●
●
●

●

●
●
●
●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●
●
●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●
●
●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●
●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●
●
●

●

●

●
●

●

●

●●
●
●
●

●

●

●●
●

●●

●●
●
●
●

●●

●
●

●
●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●
●
●

●

●

●

●

●●●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●●

●

●

●
●
●●

●
●

●

●
●

●

●
●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

−
15

0
−

50
50

15
0

BioHPC1

Individual

B
LU

P

●

●

●
●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●
●

●

●
●

●●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

−
15

0
−

50
50

15
0

BioHPC2

Individual

B
LU

P

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●
●

●

●●●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●
●

●

●

●●●●●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●
●
●●
●

●●●

●

●

●
●●

●
●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●

●

●

●●
●●
●

●

●
●
●
●

●
●

●
●
●

●●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●●

●

●

●●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●
●●

●

●
●

●●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●
●●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●●●

●

●●

●
●

●●
●
●

●●
●
●

●

●

●

●
●●

●

●
●

●

●●●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

0 100 200 300 400 500

−
15

0
−

50
50

15
0

BioHPC3

Individual

B
LU

P

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●●
●
●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●
●

●

●

●
●●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●
●
●
●

●●●

●

●

●
●●

●●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●

●

●
●●
●●
●

●

●
●
●
●

●
●

●
●

●

●●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●
●●

●

●
●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●●

●

●●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●●
●

●

●●

●
●

●●
●
●

●●
●
●

●

●

●

●
●●

●

●
●

●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●
●

●

●

●●

●
●
●●

●

●

●

●●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●
●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●
●

●

●
●●

●
●●

●

●
●

●

●●

●●

●●

●●

●

●
●●
●
●

●

●

●

●

●

●●
●
●●
●
●
●
●

●

●●
●●

●
●

●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●

●●
●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●
●
●

●

●

●
●

●
●
●
●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●●●
●

●

●
●

●

●

●
●

●●
●
●
●●

●

●

●

●

●●

●

●●
●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●●●

●

●●●

●
●

●
●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●
●
●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●●●●

●

●●

●

●
●

●

●

●

●

●●

●●

●

●

●●
●●

●
●

●

●●
●●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●●

●

●
●
●

●
●●

●

●

●
●

●

●
●●

0 100 200 300 400 500

−
0.

2
0.

0
0.

2

Kurtosis

Individual

B
LU

P

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●●
●

●

●

●●

●

●
●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●●

●

●

●●

●

●
●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●●

●●

●●

●●

●

●
●
●
●
●

●

●

●

●

●

●●
●

●
●
●
●
●
●

●

●●
●●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●

●●
●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●
●

●
●
●

●

●
●

●●

●

●

●
●●
●
●

●

●

●

●●●
●

●

●
●

●

●

●
●

●
●
●

●
●●

●

●

●

●

●●

●

●●
●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●●●

●●

●
●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●●
●
●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●
●
●
●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●
●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●●

●●

●
●

●

●●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●

●
●

●

●
●●

●

●

●
●

●

●
●● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●
●
●
●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●
●

●●

●

●●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500

−
0.

4
0.

0
0.

4

BAR

Individual

B
LU

P

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●
●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●
●

●●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●
●●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●●

●

●

●●
●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●
●

0 100 200 300 400 500

−
0.

4
0.

0
0.

4

SI

Individual

B
LU

P ●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●●

●

●

●●
●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●
●

Figure S5. BLUPs for 15 selected features. For each plot, the X-axis is the index and the Y-axis is the BLUP value estimated from a linear mixed model. Grey points represent the mean feature value for
each individual. Each point is the BLUP for a single genotype.
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Figure S6. Effects of Eigenfruit, Vertical Biomass, and Horizontal Biomass Analyses. (A) Effects of PC [1, 7] from the Eigenfruit analysis on the mean shape (center column). Left column is the mean
shape minus 1.5× the standard deviation. Right is the mean shape plus 1.5× the standard deviation. The horizontal axis is the horizontal pixel position. The vertical axis is the vertical pixel position. (B)
Effects of PC [1, 3] from the Horizontal Biomass analysis on the mean shape (center column). Left column is the mean shape minus 1.5× the standard deviation. Right is the mean shape plus 1.5× the
standard deviation. The horizontal axis is the vertical position from the image (height). The vertical axis is the number of activated pixels (RowSum) at the given veritcal position. (C) Effects of PC [1, 3]
from the Vertical Biomass analysis on the mean shape (center column). Left column is the mean shape minus 1.5× the standard deviation. Right is the mean shape plus 1.5× the standard deviation. The
horizontal axis is the horizontal position from the image (width). The vertical axis is the number of activated pixels (ColSum) at the given horizontal position.
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Figure S7. PPKC with variable sample size. Ordered centroids from k = 2 to k = 5 using different image sets for clustering. For all k = [2, 5], k-means clustering was performed using either 100, 80,
50%, or 20% of the total number of images; 6, 874, 5, 500, 3, 437, and 1, 374 respectively. Cluster position indicated on the right [1, 5].
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