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One Sentence Summary: Synchronized patterns of development of the immune system and 
microbiome in pre- and full-term infants are disrupted as a marker of respiratory disease. 

Abstract:  
With birth, there is a dramatic increase in an infant’s T cell exposures to commensal and 
pathogenic bacteria. We hypothesized that populations of T cells and microbiota co-develop in 
the human neonate, and that disruption of their coordination would associate with respiratory 
morbidity in the first year of life. To test this hypothesis, we analyzed blood and microbiota 
samples from 133 pre- and 79 full-term infants (PT and FT, respectively), collected through the 
Prematurity, Respiratory, Immune System and Microbiome (PRISM) study through one year of 
age. T cell function and phenotype were repeatedly measured by flow cytometry over the first 
year of life and summarized into immune state types (ISTs). Intestinal and nasal microbiota were 
measured weekly prior to hospital discharge, monthly thereafter, and during symptomatic 
respiratory illnesses, and were summarized into community state types (CSTs). Our major 
findings were three-fold. First, PT and FT CSTs and ISTs varied at birth, but showed an 
organized progression by postmenstrual age, and convergence by one year. Second, temporal 
associations between CSTs and ISTs suggest a bidirectional relationship between the 
microbiome and T cell development. Third, respiratory morbidity is increased in the first year of 
life in infants displaying atypical acquisition and maturation of microbiota and immune cell 
populations. These results together suggest that microbiota and T cell maturation are coordinated 
during infant development. Most importantly, atypical or asynchronous microbiota and T cell 
maturation is a risk factor for respiratory morbidity in the first year of life.  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/736090doi: bioRxiv preprint 

https://doi.org/10.1101/736090
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

Human newborns are highly susceptible to severe illness and chronic respiratory 

morbidity with frequent viral respiratory infections (1, 2). Additionally, infants born prematurely 

have up to a 50% risk for recurrent cough and rehospitalization in the first year, most frequently 

associated with viral infections, and even a portion of healthy-born full-term infants will suffer 

from similar morbidity (3). Because T cells are critical in clearing viral pathogens and supporting 

the formation of protective memory, elevated risk in newborns has traditionally been attributed 

to either immunodeficiency secondary to the immature adaptive immune systems or, 

alternatively, to injury induced by an exuberant inflammatory response (4). Our recent 

prospective study of 277 preterm (PT, < 37 0/7 weeks gestation) and full-term FT (>/= 37 0/7 

weeks gestation) infants in the Prematurity and Respiratory Outcomes Program (PROP), showed 

that CD31+ CD4+ T cells, a population enriched for recent thymic emigrants, were protective 

against chronic respiratory morbidity in infants born prematurely (5, 6). In particular, the 

persistence of low CD31+ CD4+ T cell frequency in PT infants at approximately 40 weeks 

postmenstrual age (PMA), suggesting delayed immune maturation, corresponded to higher risk 

for persistent respiratory disease (PRD) in the first year.  We have also reported characteristic 

development of both the nasal and gut microbiota associated with prematurity, day of life, and 

PMA (7, 8).  Two recent studies demonstrate that the nasopharyngeal microbiome and virome 

together predict infant respiratory tract infection but fail to take the state of immune development 

into account (9, 10). Early adaptation or maladaptation of the immune system to early colonizers 

undoubtedly relates to an infant’s risk for respiratory morbidity, but characterizing the relative 

importance of immune development in the context of microbial exposures individually and 

synergistically has been elusive.   
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A growing number of studies hint at a complex, developmentally-determined immune 

program influenced by early clinical exposures and microbial colonization (11-13). For example, 

Olin et al. recently demonstrated major shifts in the bulk immune cell populations over the first 3 

months of life that followed a predictable pattern according to days of life (14). Early gut 

dysbiosis, indicated by particularly low microbiota diversity, was associated with an altered 

balance of immune cell populations, though deeper phenotyping of T cells was not reported. We 

propose that understanding interrelated infant T cell and microbiota developmental trajectories 

will reveal markers of predisposition to respiratory illness and shape causative models that link 

early prenatal and postnatal events, including preterm birth and microbiota and immune 

development, to long-term health outcomes.   

The objectives of this current study were to construct a comprehensive model that 

describes concordant and discordant developmental trajectories of both T cells and the 

microbiota in the first year; to characterize the relationship between microbiota and T cell 

variation after adjusting for birth events and gestational age; and, finally, to assess the impact of 

abnormal T cell-microbiota trajectories on risk for PRD and respiratory infection. Here we 

report, for the first time, that while the development of T cells and microbiota of the gut and 

respiratory tract are indeed strongly coupled to PMA, some T cell-microbiota associations exist 

independently of gestational age at birth and PMA, and atypical or mistimed development of 

either the microbiome or T cells relative to host age is a marker of respiratory morbidity during 

infancy.  

Results  

Study Design and Demographics 
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Neonatal subjects (n=267) born 23-42 weeks gestational age (GA) were recruited within 

7 days of birth at the University of Rochester from 2012-2016, as part of the NIAID-sponsored 

Prematurity, Respiratory, Immune Systems and Microbiomes study (PRISM) (Fig. 1). In all, 122 

preterm (PT, < 37 0/7 weeks gestation) and 80 full-term (FT, ≥ 37 0/7 weeks gestation) subjects 

completed the study to 12 months of age corrected for premature birth and were categorized as 

having or not having the primary outcome persistent respiratory disease (PRD) using previously 

published criteria (15).  Among these, 52 PT subjects (43%) and 17 FT subjects (21%) met the 

criteria for PRD. Sufficient blood to perform T cell phenotyping by flow cytometry was 

collected from 55% of subjects at birth, 61% of subjects at NICU discharge, and 38% at 12 

months.  Complete (two staining panels) immunophenotyping for all three timepoints was 

performed on 25% of subjects, and 63% of subjects had complete immunophenotyping for at 

least one timepoint. For microbiota profiling, after sample processing, 16S rRNA sequencing, 

quality control, and removing subjects without any immunophenotyping data, 149 subjects 

yielded 1748 usable nasal samples and 143 subjects yielded 1899 usable rectal samples. Finally, 

109 and 117 subjects had sufficient combined T cell phenotyping and microbiota data to be 
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included for immunome-nasal microbiota and immunome-rectal microbiota association analyses, 

respectively (Supplementary Tables 1-2).  Cohort demographics are shown in Table 1. 
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Fig. 1. Study Design. A total of 119 full term and 148 preterm infants were recruited at birth.  Swabs were obtained of the nares and rectum 
to be used for 16S rRNA sequencing (microbiota) weekly in the NICU prior to discharge, monthly post-discharge, and when symptoms of 
respiratory illness were present. Blood was collected at birth (cord blood), hospital discharge or 36-42 weeks postmenstrual age (whichever 
was first), and again at 12 months. The 12 month outcome of persistent respiratory disease was determined based on quarterly surveys 
assessing respiratory morbidity.  
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Respiratory and Gut Microbiota Progression by Postmenstrual Age 

Preterm (n=148) Term (N=119)

Gesta!onal age (weeks) 29.8 3.7 39.6 1.0

Birthweight (g) 1406.6 620.8 3471.5 511.4

Female 71.0 (48.0%) 49.0 (41.2%)

Black or Asian race 46.0 (31.1%) 29.0 (24.4%)

Public Insurance 81.0 (54.7%) 59.0 (49.6%)

Maternal smoking postnatal 29.0 (19.6%) 15.0 (12.6%)

Delivered by cesarean sec!on 94.0 (63.5%) 49.0 (41.2%)

Chorioamnioni!s 7.0 (4.7%) 4.0 (3.4%)

Funisi!s* 35.0 (24.3%) 0 (0.0%)

Pre-eclampsia 26.0 (17.6%) 0

Antenatal steriods 121.0 (81.8%) 0

Postnatal steroids 47.0 (31.8%) 10.0 (8.4%)

BPD 25.0 (16.9%) 0

Supplemental O2 (Median FiO2 for first 14 days, IQR) 21.9% (21-27.8) 21% (room air only)

Postnatal infec!ons (% with culture- posi!ve
bacteremia)

24.0 (16.2%) 0

Recieved breastmilk (any) 134.0 (90.5%) 92.0 (77.3%)

Number of illness visits/subject (mean +/- SD) 1.2 (1.9) 1.0 (1.8)

Ven!lator days (n) 10.0 18.3 0

PRD** 52.0 (42.6%) 17.0 (21.1%)

Table 1: Subject Demographics
*Funisitis calculated on 144 PT and 27 FT subjects (placental pathology available)
**PRD measured in 122 PT and 80 FT
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Respiratory and gut microbiota samples were assessed by 16S rRNA sequencing as 

previously described (8). Swabs were obtained on study enrollment, at weekly intervals prior to 

initial hospital discharge, and monthly following hospital discharge through one year of life. 

Additional samples were collected during acute respiratory illnesses between discharge and one 

year.  Unweighted Unifrac distances between all samples within each body site were computed 

as a measure of b-diversity and were used to perform principal coordinate analysis (PCoA).  The 

first principal coordinate (PC1) accounted for 10.8% of the total variation seen in the gut 

microbiota and 12.2% of the total variation in nasal microbiota.  Visualization and annotation of 

these results revealed that for both body sites, overall sample variation reflected subjects’ 

maturity at birth and PMA at sampling (Fig. 2A-2B).  Specifically, position along PC1 

corresponds to PMA.  Samples lower in PC1 tend to be taken prior to 40 weeks PMA, indicating 

a unique PT microbiota.  Over time, subjects progress along PC1 and PT and FT subjects 

converge, exhibiting equal representation on the right side of axis 1. 

To summarize microbiota composition and facilitate subsequent comparative analyses, 

we partitioned samples from each body site into “community state types” (CSTs) using Dirichlet 

Multinomial Mixture (DMM) Models (Fig 2C-2D).  Each CST represents an archetypal profile 

of microbiota composition, and samples are assigned to the CST which best explains their 

observed makeup.  Based on model fit and parsimony, 13 CSTs were defined for both respiratory 

(nCST) and gut microbiota (gCST) and were numbered sequentially (1-13) according to the 

average PMA at which samples assigned to that CST were collected. Progression from CST 1 to 

13 in the gut and the nose strongly associated with PMA (ANOVA , r2= 0.57 and 0.61, 

respectively) (Fig. 2E-2F). Both gCST and nCST 1 were predominated by Staphylococcus, 

which was replaced over time with more niche-specific taxa in later CSTs, including 
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Enterobacteriales and Clostridiales in the gut and Streptococcus and Corynebacterium in the 

respiratory tract (Fig. 3A-3B). Several early CSTs with the lowest average PMA were 

predictably enriched for PT samples. An unexpected observation was that several gCSTs and 

nCSTs collected at later PMA were overrepresented by either PT or FT subjects per a two-tailed 

binomial test.  For example, gCST 9 contained 78% PT samples and was Tissierellaceae 

dominant, Bifidobacterium low, whereas 83% of samples in gCST 10 were from FT subjects, 

and had high abundances of Bifidobacterium, Veillonella, and Prevotella. The observed FT or PT 

bias in CSTs suggests that early life events can persistently influence aspects of microbiota 

development.  
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Fig. 2. Progression of microbiota in preterm and full term newborns. Microbiota community profiling was performed on rectal 
(A, C, E) and nasal (B, D, F) samples obtained from 159 infants during regular surveillance and acute respiratory illness. (A-D) 
Principal coordinate analysis (PCOA) plots using Unweighted Unifrac distances summarize overall variation and structure. (A-B) 
Points were colored by postmenstrual age (PMA) at the time the sample was obtained. Colored bands at the base of PCOA 
plots show the proportion of samples along each point of axis 1 that are from either preterm (teal) or full term (salmon) 
subjects. (C and D) Microbiota community state types (CST) were defined for each body site, with samples in the PCOA colored 
according to the CST they represent. CSTs are ordered according to average PMA of occurrence. (E, F) Samples within each CST 
were plotted against subjects’ PMA at the time of sample collection. Each dot represents a single sample, and is colored by the 
subject’s gestational age at birth. R2 values show correlations between CST and PMA. Asterisks at base of dot plots indicate 
significant enrichment for either preterm (red) or full term samples (blue) (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 
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T cell development in newborns 

We next sought to characterize associations between PMA and T cell phenotype. T cell 

phenotyping (Tphe) was performed by flow cytometry using blood samples collected at birth, 

hospital discharge (or 36-42 weeks PMA, whichever came first) and 12 months of gestationally 

corrected age. Cells were thawed and prepared for staining with a T cell phenotyping panel 

(“Tphe”, total 414 samples). A separate intracellular cytokine antibody panel was also used to 

stain cells stimulated in vitro with Staphylococcal Enterotoxin B (SEB) (“ICS”, total 404 

samples) (staining panel details available in Supplementary Fig 1). The clustering algorithm 

FlowSOM was used to identify unique populations of T cells, or “metaclusters” (Fig 4A) (16), 

which were grouped according to the following established naming conventions: memory, naive,  

T follicular helper (TFH), central memory (CM), T regulatory (Treg), naïve recent thymic 

emigrants (RTE), virtual memory (Vmem), terminal effector (TE), cytotoxic CD8+ (17-22).  

(A) Gut Community State Types (B) Nasal Community State Types

1        2           3        4     5     6       7     8        9     |   11   |   13
10        12

     1             2   3     4        5      6        7       8    9    |   11   |  13
10        12

Fig. 3. Microbiota community state type composition. Microbiota community state types (CST) were constructed for each body site and 
were numbered sequentially based on the average postmenstrual age (PMA) at which they occurred. Composition of each CST based on 
the 25 most abundant genera overall within each body site is shown in heatmaps (A – gut; B – nose). 
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To visualize a longitudinal trajectory of T cells, uniform manifold approximation and 

projection (UMAP) was applied to each sample, without regard to subject-level clinical features.  

Each sample’s Tphe and ICS profiles combined in this case represented a single feature in the 

UMAP (Fig. 4B), revealing a pattern similar to the microbial progression; PT and FT T cell 

phenotype and function clustered separately at birth, less so at discharge, and appeared fully 

convergent by 12 months. Metaclusters that were different between PT and FT subjects were 

observed almost exclusively at birth and discharge timepoints (Fig. 4D, Supplementary Fig. 2). 

Many PT-associated populations were Tregs, memory and effectors. Tphe metaclusters enriched 

in FT were mostly naïve and Vmems with high CD31+ and IL7ra expression. ICS metaclusters 

enriched in PT were naïve CD45RA+ T cells with either TNFa, IL-2 or no detectable cytokines. 

FT ICS metacluster cytokine function was characterized by high IL-8 and IL-2.  

The majority of metaclusters could serve as simple linear predictors of PMA (Fig. 4C). 

Both CD4+ and CD8+ T cells displayed a TE phenotype at the earliest PMA, which then 

transitioned to predominantly naive T cells, followed by CM and then Vmem by one year PMA. 

The nature and abundance of cytokine functions varied with both GA and PMA. Activated 

TNFa+, IL-2+ or cytokine null CD4+ and CD8+ metaclusters were higher at the earliest PMA, 

after which IL-8 became the dominant cytokine. IL-8-positive subpopulations showed minimal 

TNFa expression, suggesting that these functions may be counter-regulated within the cell. 

Canonical polarized (CD45RA-, IFNg, IL-4, IL-17 or CD107a) T cells were frequent only at the 

12 month timepoint. The exception to the delayed polarized T cell development was a single IL-

4-positive CD8+ metacluster, which was only seen at the youngest PMA.  Utilizing the three 

timepoints typically captured for each subject, we identified 10 metaclusters with non-monotone 

V- or inverted-V trajectories from birth to 12 months in PT samples (Fig. 4E, Supplementary 
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Fig. 3). Most frequently, these metacluster abundance followed a V-shaped trajectory: decreasing 

sharply from birth to 37 weeks PMA, followed by a slower recovery from 37 weeks to one year. 

This pattern was seen in several memory CD4+ and CD8+ metaclusters, indicating a transiently 

activated T cell phenotype at birth that resolves under more homeostatic conditions. Two CD4+ 

ICS metaclusters (5 and 9), which were IL-8-positive, had inverted-V trajectories.  
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Defining immune state types 

To characterize T cell trajectory during infancy, we partitioned samples into immune 

state types (ISTs) based on the abundances of all metaclusters, using the same DMM modeling 

technique that was applied to the microbiota samples.  We defined 7 T cell phenotype immune 

state types (Tphe ISTs) and 8 ICS immune state types (ICS ISTs), which were numbered 

according to their order of occurrence and exhibited strong associations with PMA (ANOVA, r2= 

0.86 and 0.69, respectively) (Fig. 5A-5D). Tphe1-Tphe4 and ICS1-ICS4 were only seen in 

samples drawn at birth and discharge. The phenotypic and functional trajectory revealed by ISTs 

is consistent with that found using individual metaclusters (Fig 5E-F).  

Two Tphe ISTs (Tphe5 and Tphe6) were present at all three timepoints and in both GA 

groups, suggesting that clinical exposures, as opposed to development, drive the phenotypes. 

Tphe5 was most notably marked by the abundance of atypical early activated (CD31+, 

CD45RO-, CCR7-, CD28-) CD8+, CD4+ CM, and Treg subpopulations. Vmems were lower in 

Tphe5, suggesting perturbed homeostasis. This heterogeneity, reflecting activated conventional 

and regulatory T cells, indicates that subjects exhibiting Tphe5 at birth or discharge experienced 

some degree of prenatal immune priming. In fact, chorioamnionitis and/or exposure to antenatal 

antibiotics raised the odds of a subject ever entering Tphe5 by 7-fold (95% CI 1.0-54, p<.05) and 

4-fold (95% CI 1.1-13, p<.03), respectively, in a joint logistic regression model that adjusted for 

GA, sex, race, mode of delivery, and premature rupture of membranes (Supplementary Fig. 4). 

Tphe6, which was more common at 12 months, was marked by high abundance of CD57+ and 

cytotoxic CD8+ metaclusters. CD57+ CD8+ T cells have been associated with T cell exhaustion 

due to chronic viral infection (23, 24). In our cohort 60% of subjects ever entering Tphe6 tested 

positive for CMV at 6 or 12 months, while CMV occurred in less than 7% of Tphe6 negative 
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subjects (odds ratio 10.2, p<.0001).  These results demonstrate the utility of T cell clustering to 

distinguish atypical from normal T cell developmental trajectory, and in identifying clinical 

factors that perturb normal immune development in infants.  

 

Early-life immunity and subsequent microbiome state type  

We next hypothesized that some immune and microbial features would exhibit 

correlations beyond what their mutual dependence on host age could explain. In order to test this, 

we modeled the number of days a subject spent in a given CST and the odds the CST occurring 

in a subject at all each as a function of one of their immunological parameters (IST or 
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metacluster abundance at a particular time point), adjusting for gestational age at birth and mode 

of delivery.  We fit models on all pairwise combinations of CSTs and immunological parameters.  

The significant results of these tests were visualized as networks (Fig. 6A, Supplementary Fig. 

5A).  Among the models of CST duration, of the potential 6318 possible associations between 

the 26 CSTs and 243 immunological parameters, only 10 Tphe and no ICS metaclusters achieved 

statistical significance after multiple test correction. CST-associated CD4+ metaclusters 

preceded, but CD8+ metaclusters followed, the average onset of their associated CST, suggesting 

the directionality of these relationships.  Among the models of whether or not a CST would 

occur at all, of the 15 total ISTs, only 3 (Tphe1, Tphe3 and Tphe5) were significantly correlated 

with a single CST (nCST 8). The most striking finding in the network was that early entry into 

Tphe5 (n=25 subject-samples) precluded a subject ever entering into nCST 8 (Fig. 6B).  The 

nCST 8 dominant taxa Allociococcus was virtually absent in preterm samples collected prior to 

40 weeks PMA, but appeared soon after, with stationary mean abundance post-discharge (Fig. 

6C). 

 We then performed a similar analysis fitting survival models using the same covariates 

and time to first reach a given CST as the outcome. Interestingly, gCSTs, CD8+ T cell 

populations and ICS metaclusters appeared significant more often in these models than in the 

duration and occurrence models (Supplementary Fig. 5B). Infants with higher TNFa or IFNg+ 

naïve CD8+ T cell metacluster frequencies at discharge and one year showed delayed entry into 

the Streptotoccus-dominant nCST 4. The gCST 9 (Bifidobacterium and Bacterioides low), in 

which there were a higher number of PT samples, was delayed in subjects discharged with higher 

frequencies of effector CD8+ populations. Similarly, the occurrence of gCST 3, the most diverse 

and mature gCST common prior to discharge and the earliest gCST in which Clostridia are 
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prevalent, was accelerated in subjects exhibiting Tphe2 at discharge (Supplementary Fig. 6). 

These results indicate that precocious T cell function may impact developmental timing and rate 

of progression of the gut microbiota, rather than promoting persistent differential abundance of 

specific taxa as is observed in the airway. 

 

Illness, Microbiome and Nascent T Cell Immunity 

Previous reports indicate that Alloiococcus in the respiratory tract is positively associated 

with antibiotic-resistant otitis media, but also with less severe respiratory illness in children (25, 

26).  Because the predominance of Alloiococcus is the distinguishing feature of nCST 8, and the 

occurrence of nCST 8 was precluded by the occurrence of Tphe5 in early life, we sought to 

assess the relationship between Alloiococcus abundance in the nose, acute respiratory illness, and 

early immunopheotype, controlling for multiple confounders.  To identify episodes of respiratory 

illness post-NICU discharge, infants were scored by parents using a self-reported modified 

COAST score when respiratory symptoms arose (27). If the threshold of 3 was met, an in-person 

study visit was initiated, during which symptom scores were reviewed, nasal and rectal swabs 

were obtained, and a physical exam was performed. 

As expected, the Tphe5 immunophenotype at birth or discharge was associated with 

diminished Alloiococcus abundance in the nose across all post-discharge timepoints, yielding a 

7-fold reduction (3-14 fold, 95% CI, p-value < 0.001; Fig. 6C), while controlling for day of life, 

gestational age at birth, mode of delivery, and repeated sampling of subjects.  Additionally, we 

found a 40% reduction in the odds of a sample being taken during acute illness for every 10% 

increase in Alloiococcus relative abundance (log odds = -3.52 ± 2.19, 95% CI, p-value = 0.002), 

controlling for confounders as above.  Considering the joint effects of acute illness and Tphe5 
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occurrence at birth or discharge as predictors in the same model, we found that both were 

associated with reduced Alloiococcus abundance, (log ratios -0.91 ± 0.42 and -1.90 ± 0.80, 

respectively, 95% CI; p-values < 0.001; Fig. 6D).  However, despite negative associations 

between Tphe5 and Alloiococcus abundance, and Alloiococcus abundance with illness, Tphe5 

was not significant as a predictor of illness, either by itself (log odds = 0.54 ± 0.70, 95% CI, p-

value = 0.131) or in conjunction with Alloiococcus relative abundance (log odds = -0.35 ± 0.71, 

95% CI, p-value = 0.328), controlling for confounders in both cases.  Together, these results 

show that early immune priming, as seen by early entry into Tphe5, may shape respiratory 

microbiota development, which is subsequently strongly linked with acute respiratory illnesses.   
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Immune/Microbial Developmental Index and Respiratory Outcome 

Observing that rare T cell-microbiota interactions occurring independently of PMA 

impacted respiratory morbidity led us to hypothesize that mistimings in development of T cells 

or microbiota increased the risk of PRD. To test this hypothesis, we developed a quantitative 

model of “normal” PMA, as a function of T cell and microbiota composition. We trained two 

sparse regression models that used the metacluster and OTU abundance vectors to predict log2-

transformed PMA at sample collection. Holding out a subject’s longitudinal record, the cross-

validated models strongly predicted PMA using either T cell metaclusters (r2=0.77) or bacterial 

taxa (r2=0.65) (Fig. 7A).   For each subject, the fitted intercepts of these models – predicted PMA 

at 37 weeks actual PMA – indicate the subject’s microbiota and T cell maturity relative to 

normal at term equivalent.  The fitted slopes of the models indicate a subject’s rate of microbiota 

and T cell maturation over the first year, again relative to normal.  These four fitted parameters 

define a developmental index (DI) for each subject, which was used to assess mistiming and 

asynchrony in T cell and microbiota development. 

We used random forest classification models to compare the predictive power of DI alone 

to that of a set of known clinical risk factors for PRD.  The clinical features were race, maternal 

education, sex, GA at birth, birthweight, season at birth and oxygen supplementation integrated 

over the first 14 days of life. The four developmental index features were the z-scores of the 

microbiota and T-immune slopes and intercepts. In cross-validation, the clinical features 

predicted PRD with area under the curve (AUC) of 0.69 (0.59-0.79 95% CI). Not surprisingly, 

the features that contributed most to the outcome were increased oxygen exposure, lower 

birthweight and younger gestational age at birth (Supplemental Fig. 7). When compared to 

clinical predictors, the developmental index had statistically equivalent skill in predicting PRD 
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(Fig 7B, AUC 0.64, 0.54-0.74 95% CI).  Combining the clinical features and the developmental 

variables did not improve the predictive model, further evidence of early life exposures causing 

durable effects on T cell and microbial development. Of the four components generating the DI, 

the microbiome intercept and immune slope had largest variable importance scores. In exploring 

the functional relationship between PRD and these factors, we observed that immature 

microbiota at term equivalent PMA increased the risk of PRD by over 2-fold, and this effect was 

magnified in subjects with accelerated T cell maturation (Fig. 7C).  Together with the Tphe5-

Alloiococcus findings, these results support the notion that timing of T cell and microbiome 

maturation relative to an infant’s age play an integral role in promoting or interfering with 

respiratory health.   
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Fig. 7. Microbiota and Immunologic Developmental Index and Respiratory Outcome. Elastic net regression was used to 
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connected by lines represent an individual subject’s samples. The predicted age of a subject is plotted against the observed 
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slope.  Blue indicates lower PRD risk, red indicates higher risk.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/736090doi: bioRxiv preprint 

https://doi.org/10.1101/736090
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 

Birth marks the commencement of a dynamic interplay between innate developmental 

programming, colonization and assembly of the microbiome, and differentiation and maturation 

of the adaptive immune system which influences health from infancy through adulthood.  In 

healthy infants, this process balances the accommodation of commensal microbiota, appropriate 

immune response to pathogens, and functional maturation of the organs at the interface between 

human host and environment.  By developing longitudinal models of microbiota composition 

and T cell populations, we were able to establish conceptually and analytically tractable 

representations of these systems, and to interrogate their maturation and development, revealing 

several key findings.  First, T cells and microbiota exhibit structured patterns of progression 

synchronized by postmenstrual age, with pronounced differences between pre- and full-term 

infants in very early life and a tendency towards convergence by the end of one year.  

Furthermore, within the framework of development driven by PMA, interactions occur between 

T cell population profiles and microbiota community structure.  Finally, atypical or 

asynchronous immune and microbiota development are markers of respiratory disease and health 

outcomes.  To our knowledge, this is the first study to successfully model the influence of this 

triad of T cell, microbiota, and host development on clinical outcomes in a cohort of both 

preterm and full-term human infants.  

The ability to predict a subject’s PMA based on their T cell phenotype is strong evidence 

that developmental state is a key driving factor in immune maturation, which is further 

reinforced by convergence of PT and FT phenotypes over time. Characterizing the immune 

trajectory during infancy revealed greater heterogeneity than previously appreciated, especially 

between PT and FT subjects and even within their predominantly naïve T cell pool. As an 
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example, early PT and FT ISTs were both enriched for naïve T cell subpopulations with high 

CCR7 and CD28 and low CD45RO expression.   Yet, CD31, IL-7ra and CXCR5 naive 

metaclusters were differentially abundant between PT and FT, implicating differences in cell 

survival and provision of B-cell help.  Our results are aligned with previous studies 

demonstrating that PT infants have higher proportions of CD45RO+ T cells in their cord blood 

(28, 29). Many of the PT-enriched CD4+ CD45RO+ subpopulations, however, were of a Treg 

phenotype, confirming prior studies showing that activated fetal naive T cells have a propensity 

towards Treg differentiation (30) (31). The low abundance of virtual memory cells in PT subjects 

at birth is contrary to earlier speculation that in utero T cell activation in PT is caused by 

homeostatic expansion alone (32-34).  The direct correlation between gestational age and IL-8+ 

T cells is notable in that the Olin study shows enhanced plasma IL-8 in PT when compared to FT 

(14). Our focus on T cells specifically, rather than secreted mediators in plasma, sheds light on a 

T cell-specific trajectory during infancy that may be distinct from the innate compartment and is 

largely, but not entirely, dependent on postmenstrual age.  

Our results also reinforce the central role of host development in driving microbiota 

progression over time, with premature infants exhibiting distinct patterns of microbiota 

composition in very early life and a convergence between pre- and full-term infants over the first 

year.  Despite this general tendency towards convergence in T cells and microbiota, the 

occurrence of certain state types reflect an enduring influence of GA (e.g. gCST 4, 6, and 8, 

nCST 8 and 12, and early ISTs) and clinical exposures (Tphe5 and Tphe6), indicating that pre- or 

perinatal events can have persistent effects which disrupt the maturation process and alter 

developmental trajectories. 
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 Together, the microbiota of the airway and gastrointestinal tract, and their interaction 

with one another and with host immune function, constitute the gut-lung axis, a system 

increasingly implicated in respiratory morbidity (35, 36).   Notably, while the relationship 

between immune development and the gut microbiome has featured prominently in literature, we 

identified more, stronger associations between T cell populations and nasal microbiota.  Of 

particular interest is the association observed between the occurrence of Tphe5 early in life (at 

birth or discharge), and the subsequent abundance of Alloiococcus in the nose.  Alloiococcus is a 

common post-discharge colonizer, but its abundance is dramatically reduced in infants who pass 

through Tphe5 early in life, with nCST 8 – the Alloiococcus dominated nCST – being entirely 

absent from these subjects.  The additional observation that Alloiococcus is substantially 

diminished during acute respiratory illness reveals a previously undescribed connection between 

T cell development at birth, post-discharge airway colonization, and susceptibility to respiratory 

infection throughout the first year of life. 

By defining developmental indices based on microbiota and T cell populations, we 

establish that maturity at term and rate of maturation over the first year are indicators of disease 

outcome at one year (PRD).  Specifically, precocious immune development in conjunction with 

an immature microbiome at term corresponds to substantially elevated risk of PRD, while either 

one of these factors by themselves has an attenuated effect.  This indicates that mistimed or 

discordant maturation between the microbiome and immune system is a correlate of respiratory 

morbidity. Previous reports have used age, microbiota, or immune variables as independent 

factors in predicting respiratory outcome (2, 5, 25, 37). These studies do not address the 

possibility that a newborn’s immune system is not simply deficient, but rather under normal 

developmental conditions, is uniquely balanced to provide protection against novel pathogens 
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while minimizing immunopathology. Exposures that accelerate or delay the normal maturation 

of T cells and microbiota during infancy, such as in utero infection promoting the early 

occurrence of Tphe5, may disrupt this age-specific balance that has served human evolution so 

well. 

The PRISM study results demonstrate the strength of large, prospective observational 

studies in discovering early risk factors for disease. There are also limitations to our study design 

that should be acknowledged. The greatest challenge in conducting immune surveillance studies 

in newborns is obtaining sufficient blood volumes to perform comprehensive assays and 

adequate sampling frequencies to inform robust longitudinal models. Our results show that 

substantial changes in the immune system occur between NICU discharge and 12 months, and 

without the benefit of intensive interim sampling, it is difficult to comprehensively account for 

all clinical factors that may shape an individual’s immune trajectory. However, our discoveries 

can be used inform future studies focusing on the timing and specific shifts in immune 

populations and microbiota that impact respiratory outcomes, such as Tphe5 and Alloiococcus. It 

will also be important for future models to address other events, including distinguishing 

respiratory viral infections and changes in nutrition, and how these exposures either coordinate 

or interfere with normal developmental trajectories. Despite the inherent challenges, using 

human observational studies is a powerful approach to scientific discovery which can reveal 

practical insights into the systems influencing health and disease that are not readily accessible in 

controlled experimental settings or animal models. However, translation of these discoveries into 

medical management will benefit from carefully controlled interventional studies.  Specifically, 

our results suggest markers of immune and microbiota development which may indicate 

susceptibility to respiratory infection and risk of chronic respiratory morbidity.  Additionally, the 
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interaction between these two systems invites the possibility of intervention, whereby biotic 

therapy or immunotherapy applied to one system could potentially be used to modulate the other.  

Finally, the evidence that an infant’s health is influenced by the these two systems remaining 

synchronous with postnatal development underscores the need to tread cautiously when 

considering interventions that may disrupt this normal balance. 

 

 

Materials and Methods 

Study Design  

All study procedures were approved by the University of Rochester Medical Center 

(URMC) Internal Review Board (IRB) (Protocol # RPRC00045470 & 37933) and all subject’s 

caregivers provided informed consent. The infants included in the study were enrolled within 7 

days of life for the University of Rochester Respiratory Pathogens Research Center PRISM and 

cared were for in the URMC Golisano Children’s Hospital. Clinical data including nutrition, 

respiratory support, respiratory symptoms, medications, comorbidities, were entered into 

REDCap (37, 38), then integrated with laboratory results using the URMC Bio Lab Informatics 

Server, a web-based data management system using the open source LabKey Server (39). Blood 

was collected at birth, time of NICU discharge or 36-42 weeks PMA (whichever occurred first), 

and at 12 months of life. We collected 2729 gut (842 from NICU and 1887 post-discharge), and 

2210 nasal (619 from NICU and 1591 post-discharge) usable microbiota samples longitudinally 

from 139 pre-term and 98 full-term infants. From the PRISM study cohort, fecal (rectal) and 

nasal material was collected from pre-term infants (23 to 37 weeks gestational age at birth 
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(GAB)) weekly from the first week of life until hospital discharge, and then monthly through 

one year of gestationally corrected age. Rectal and nasal samples were collected from full-term 

infants at enrollment and monthly through one year.  Additionally, rectal and nasal samples were 

collected from all infants whenever they exhibited symptoms of acute respiratory illness after 

discharge from the hospital.  Symptoms of acute respiratory illness prompting sample collection 

were summarized by the primary caregiver using a symptom COAST (Childhood Origins of 

Asthma) score sheet (1). Parents were instructed to notify the study team if the infant had 

symptom score of three or greater.  All blood samples generating usable data were included in all 

analyses.  For training the PMA predictions models (described below), all microbiota samples 

were used.  For all other analyses, microbiota samples from subjects that did not have any usable 

data from blood were excluded. 

Flow Cytometry Methods 

Sample collection, isolation, storage, thawing, stimulation and staining for flow 

cytometry was performed as detailed in a previously published method (40). In short, cord blood 

and peripheral blood mononuclear cells were isolated via Ficoll centrifugation, cryopreserved 

and stored in liquid nitrogen, and rapidly thawed and washed with pre-warmed RPMI-1640 (10% 

FBS and 1x L-glutamine); thawing was done in ‘subject-balanced’ batches (equal mix of pre and 

full-term subjects, each with three time points) and an aliquot of each freshly thawed sample was 

plated and stained with a T-cell phenotyping (‘Tphe’) panel with the remainder of the sample 

rested overnight in an incubator, plated and stimulated with Staphylococcus aureus, Enterotoxin 

Type B (SEB), and stained with a T-cell functional panel (‘ICS’). Panel compositions are as 

shown in (Supplementary Fig. 1). 
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Samples were acquired on a BD LSRII (core facility instrument QC-ed daily with BD 

CS&T beads); PMT voltages normalized per run to pre-determined/optimized ‘Peak-6’ 

(Spherotech) median fluorescence values. R-based packages and scripts were used for all post-

acquisition processing and analysis. Reading of raw .fcs files, compensation, transformation, and 

subsetting/writing of .fcs files was performed using flowCore  (41). To minimize inter-run 

variation associated with the Tphe panel, the flowStats (42)  warpSet function was used to 

normalize arcsinh transformed channel data using a healthy donor adult PBMC control as 

reference. For analysis with the clustering algorithm FlowSOM, an iterative approach was used 

for both panels to first cluster on live, intact, lymphoid-sized CD4+ and CD8+ T-cell subsets (in 

the case of the ICS panel, including activated (CD69+) subsets); those subsets were then re-

clustered to capture rare populations and optimally resolve phenotypic heterogeneity and 

associated function.  Over-clustering followed by expert-guided merging was favored when 

defining the number of final metaclusters.  Metaclustering results used in downstream analysis 

were represented as proportion of the respective T-cell subset, per sample. All scripts, including 

Tphe arcsinh cofactors, warpSet and FlowSOM parameters, and final clustering counts are 

available in (Supplementary R-Code and Supp. Fig. 2). 

 

Microbiota Identification  

Microbiota sample collection and storage techniques, genomic DNA extraction and 

background control methods were as previously published (7). Raw data from the Illumina 

MiSeq was first converted into FASTQ format 2 × 312 paired-end sequence files using the 

bcl2fastq program (v1.8.4) provided by Illumina.  Format conversion was performed without de-

multiplexing, and the EAMMS algorithm was disabled. All other settings were default.  Samples 
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were multiplexed using a configuration described previously (43). The extract_barcodes.py 

script from QIIME (v1.9.1) (44) was used to split read and barcode sequences into separate files 

suitable for import into QIIME 2 (v2018.11) (45) which was used to perform all subsequent read 

processing and characterization of sample composition.  Reads were demultiplexed requiring 

exact barcode matches, and 16S primers were removed allowing 20% mismatches and requiring 

a matching window of at least 18 bases.  Cleaning, joining, and denoising were performed using 

DADA2 (46): reads were truncated (forward reads to 260 bps and reverse reads to 240 bps for 

rectal V3-V4 samples and forward reads to 275 bps and reverse reads to 260 bps for nasal V1-V3 

samples), error profiles were learned with a sample of one million reads per sequencing run, and 

a maximum expected error of two was allowed.  Taxonomic classification was performed with 

custom naïve Bayesian classifiers trained on target-region specific subsets of the August, 2013 

release of GreenGenes (47).  Sequence variants that could not be classified to at least the phylum 

level were discarded.  Sequencing variants observed fewer than ten times total, or in only one 

sample, were discarded.  Rectal samples with fewer than 2250 reads and nasal samples with 

fewer than 1200 reads were discarded.  Phylogenetic trees were constructed for each body site 

using MAFFT (48) for sequence alignment and FastTree (49) for tree construction.  For the 

purposes of b-diversity analysis, rectal and nasal samples were rarefied to depths of 2250 and 

1200 reads, respectively, and the Unweighted Unifrac (50) metric was applied. 

 

Statistical analyses   

CST and IST Assembly. Microbial community state types (CSTs) were defined for each 

body site by fitting Dirichlet multinomial mixture (DMM) models (51) using the R package 

DirichletMultinomial (v1.22.0) (52, 53), R version 3.5.0. Sample composition was represented 
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using normalized counts of the most specific operational taxonomic units (OTUs) present in at 

least 5% of the samples from a given body site. Normalization was performed on a per sample 

basis by taking the relative abundance of each OTU and multiplying by 2250 for rectal samples 

and 1200 for nasal samples. Resulting non-integer counts were rounded down. For each body 

site, the DMM model was fit with one through twenty Dirichlet components and the optimal 

number of components was selected by minimizing the Laplace approximation of the negative-

log model evidence.  In this model, CSTs are synonymous with Dirichlet components, and each 

sample was assigned to the CST from which it had the highest posterior probability of be 

derived.  This procedure was repeated with the immunological data in order to define immune 

state types (ISTs), using relative abundances of FlowSOM defined Metaclusters in the place of 

OTUs.  Relative abundances were computed within assays (TPHE and ICS) and major 

populations (CD4 and CD8) separately, and converted to counts by multiplying by 50,000 and 

rounding down.  CD4 and CD8 counts were combined to fit the DMM for each assay. 

Microbiota-T cell Associations. Associations between microbiome development and the 

immune system were modeled using microbiome CST occurrence patterns as outcome variables 

and iterating through the relative abundances of each FlowSOM metacluster or observed IST at 

each time point as predictors.  In symbols, we used the model  

CST ~ immune_parameter + MOD + GA + (sampling_intensity). 

For each CST, each of these immunological parameters (metacluster relative abundances 

and IST) at each of the three time points when the immune system was sampled (birth, discharge, 

and one year) was assessed independently, and are hereafter referred to as the immunological 

variables of interest (VOIs).  
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CST occurrence patterns were related to immunological VOIs by testing three types of 

associations between every CST-VOI combination at the level of individual subjects, while 

controlling for mode of delivery (MOD), gestational age at birth (GAB) and, in model (i) only 

(see below), the number of microbiome samples (sampling_intensity) that were collected from 

an individual.  These models differed in the aspect of CST occurrence that was modeled as the 

outcome.   Model (i) tests associations between the VOI and whether or not a CST occurs at all 

in an individual; (ii) tests associations between the VOI and how persistent a CST is in an 

individual; and (iii) tests associations between the VOI and the days to first occurrence of a CST 

in an individual.  Model (i) was tested using logistic regression with VOI, MOD, GA and the 

number of microbiome observations from a given individual as the sampling intensity.  The 

outcome indicated whether or not a given CST was ever observed in the individual.  We tested 

the VOI association by dropping that term and calculating a likelihood ratio test. Model (ii) was 

tested using a quasi-Poisson regression model with MOD, GA, and the VOI as covariates, and 

total number of days the subject was assigned to any CST as an offset.  The number of days a 

subject was assigned to a given CST was the outcome and was calculated by summing the 

interval lengths between CST change points.  Intervals were calculated from midpoint to 

midpoint on the sampled days of life.  At birth, subjects were placed in the first observed CST if 

the first sample occurred within 14 days of life, otherwise the first interval was excluded.  

Subjects were assumed to remain in their final observed CST for an interval equal to half the 

interval length between the penultimate and ultimate sample.  Significance of the VOI was 

assessed as in model (i).  Model (iii) was tested using interval censored, accelerated log logistic 

failure time models (R package icenReg v2.0.9) (54) with MOD, GA, and the VOI as covariates 

and the interval preceding the first observation of a given CST  as the outcome.  For gCST 1 and 
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nCST 1, which on average were the earliest CSTs, we modeled the interval preceding the first 

observation of a CST other than NAS 1 or REC 1.  For each CST, only subjects that were ever 

observed in that CST at some point were included.  Significance was assessed based on Wald 

test p-values of the terms in the fitted full models.  

For models (i)-(iii), subjects with fewer than one sample taken per 30 NICU-days or 

fewer than six samples post discharge were excluded.  We filtered immune VOI with fewer than 

ten observations, and CSTs present in fewer than 10% of the remaining observations.  Numerical 

covariates were converted into z-scores, except GA which we modeled as (GA − 37)/37.  

Within each model (i)-(iii), multiple testing across all CSTs and VOIs was corrected for using 

the Benjamini-Hochberg method at 10% FDR. 

Tphe5, Alloiococcus abundance, and acute illness associations.  Using only post-

discharge nasal samples, the abundance of Alloiococcus represented as read counts was modeled 

as a function of day of life, GA, MOD, and the occurrence of Tphe5 at birth or discharge using a 

generalized estimating equation fit with the geeglm function in R (55).  Subject was used as the 

clustering variable, an exchangeable working correlation structure was specified, total reads per 

sample was used as an offset, and the family was Poisson with a log link function.  This model 

was repeated with the addition of acute illness as a covariate.  The probability of a sample 

coming from an illness or healthy surveillance visit was modeled using mixed effects logistic 

regression fit with the glmer function (56), using Alloiococcus relative abundance, DOL, GA, 

and MOD as covariates, with Subject as a random effect.  This model was repeated with the 

addition of Tphe5 at birth or discharge as a covariate. 

Prediction of PMA. Two separate elastic net regression models (57) were trained to 

predict (58) the log2-transformed PMA with a) T cell immunological features and b) microbial 
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abundance.  In (a) the four feature sets were CD4 ICS, CD8 ICS, CD4 Tphe and CD8 Tphe meta 

clusters, while in (b) the two feature sets consisted of nasal and rectal species-level relative 

abundances from samples collected prior to DOL 450, filtered to remove taxa present in fewer 

than 3% of samples.   A total of 433 samples from 185 subjects and 80 features were included in 

(a).  Model (b) was trained on 3032 samples from 237 subjects and 218 features.  Some samples 

had incomplete feature sets, e.g., if only the ICS panel was run then both the CD4 and CD8 Tphe 

sets were missing, or if only the nasal microbiome was sampled and the rectal abundances were 

missing.  We treated this as a missing data problem, and imputed the values with their mean 

values among non-missing cases.  Imputation was chained onto the elasticnet model (occurred 

only using the training data, in each fold) for the purposes of tuning and validation. Within each 

feature set, we used the relative proportions, transformed into z-scores. 

Cross validation for tuning and prediction. We tuned the model and estimated its 

performance using cross-validation by holding out a subject’s entire longitudinal record.  We 

tuned the elastic net alpha in [0, 1] and lambda in [.001, .5] parameters by randomly selecting 50 

combinations of (alpha, lambda) and evaluating the test mean-square error (MSE) via 5-fold 

cross-validation.   After finding a minimizing pair of (alpha, lambda), the model was refit with 

10-fold cross-validation.  For each subject i, this provides two sequences of fitted values, 

representing the log2-transformed PMA prediction.  For instance, for the microbiome, we have 

𝑌+,- = 𝑓012𝑥145, 𝑗 = 1, … , 𝑛1, 

where 𝑥14 represent microbial feature vectors, 𝑛1 indexes the number of longitudinal 

samples for subject i, and 𝑓01 represent the elastic net model trained excluding subject i.  For the 
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T cell immunome, the analogous model is fit. The back-transformed values 2<=>-  were used to 

calculate each model’s 𝑅@.  

Immunological and microbial developmental indices. The longitudinal sequence of cross-

validated fitted values 𝑌+,-  were compared to the true PMA for each subject using a linear mixed 

model.  We fit the model  

𝑌A − log2(37) ∼ log2(PMA/37) + (1 + log2(PMA/37)|Subject) 

thus 𝑌+,- = 𝛼1 + 𝛽1×PMA14 + 𝜖14   and calculated the best linear unbiased predictor of each 

subject’s 37-week intercept 𝛼1, slope 𝛽1 and their conditional standard errors se(𝛼1), se(𝛽1).  

These are transformed into a quantity similar to a z-score by subtracting the median of 𝛼1, 𝛽1 over 

subjects i, and dividing by its conditional standard error se(𝛼1) or se(𝛽1). 

Prediction of PRD. We used random forest classification models to predict PRD using 

two feature sets: clinical and developmental index.  The clinical features were race, maternal 

education, the baby’s sex, gestational age, weight and season at birth, and oxygen 

supplementation integrated over the first 14 days of life.   The developmental index features were 

the z-scores of the microbiome and T-immune slopes and intercepts. The random forest 

hyperparameters mtry, ntree and nodesize were tuned separately for each feature set with random 

search using 5-fold cross-validation.  After the optimal parameters were found for each feature 

set, a second round of 20-fold cross validation was used to evaluate the area under the ROC 

curve (AUC).  The fitted values from the random forest regression were calculated using the 

function generatePartialDependenceData.  
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TPHE subjects samples TPHE samples pre-term full-term
3 timepoints 78 234 birth 147 65 82
2 timepoints 82 164 discharge 163 87 76
1 timepoint 16 16 12-month 104 58 46
total 176 414 total 414 210 204

ICS subjects samples ICS samples pre-term full-term
3 timepoints 69 207 birth 147 64 83
2 timepoints 89 178 discharge 155 84 71
1 timepoint 19 19 12-month 102 55 47
total 177 404 total 404 203 201

TPHE_ICS subjects samples TPHE_ICS samples pre-term full-term
3 timepoints 67 201 birth 141 63 78
2 timepoints 83 166 discharge 150 81 69
1 timepoint 18 18 12-month 94 51 43
total 168 385 total 385 195 190

Supplementary Table 1: Subject numbers for immunophenotyping
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Figure Description Site Samples Subjects
Microbiome CGA & CST PCoA plots Both NAS 1748 149

Both REC 1899 143
Microbiome CST Occurrence Over CGA NAS 1748 149

REC 1899 143
Microbiome Composition Heatmaps NAS 1748 149

REC 1899 143
Immuno IST Composition Heatmaps TPHE 414 176

ICS 404 177
Immuno IST Occurrence Over CGA TPHE 414 176

ICS 404 177
Immuno IST Avg. Occurrence GAB/CGA TPHE 414 176

ICS 404 177
NAS 8 Occurrence vs TPHE ISTs Birth 68 68

Discharge 95 95
CST-Immuno Association Networks NAS 1589 109

REC 1697 117

Supplementary Table 2: Subject numbers microbiome and combined analyses
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Cytometer: BDLSRII (URMC FlowCore - Animal)
Tphe Functional Panel (RPRC 12-0012)

Laser Long Pass Band Pass PMT Detector  Marker Color Clone  Company  Catalog #
488 505 515/20 BB B515 CD122 BB 515 Mik-β BD Biosciences 564688
488 685 710/50 BA B710 Perforin PerCP-Cy5.5 dG9 Biolegend 308114
407 450/50 VH V450 Granzyme B BV 421 GB11 BD Biosciences 563389
407 535 550/40 VG V550 Live/Dead Aqua Life Technologies L34957
407 570 585/42 VE V585 CD3 BV 570 UCHT1 Biolegend 300436
407 595 605/40 VD V605 CD31 BV 605 WM59 BD Biosciences 562855
407 630 660/40 VC V660 CD127 BV 650 HIL-7R-M21 BD Biosciences 563225
407 670 705/70 VB V705 CD45RO BV 711 UCHL1 BD Biosciences 563722
407 740 780/60 VA V780 CD8a BV 785 RPA-T8 Biolegend 301045
633 660/20 RC R660 KLRG1 APC 13F12F2 eBioscience 17-9488-42
633 685 710/50 RB R710 CD185 (CXCR5)APC-R700 RF8B2 BD Biosciences 565191
633 740 780/60 RA R780 CD197 (CCR7)APC-Cy7 G043H7 Biolegend 353212
532 575/24 GE G575 Foxp3 PE 236A/E7 eBioscience 12-4777-42
532 600 610/20 GD G610 CD4 PE-TR S3.5 Invitrogen MHCD0417
532 640 660/40 GC G660 CD28 PE-Cy5 CD28.2 BD Biosciences 561791
532 740 780/40 GA G780 CD57 PE-Cy7 TB01 eBioscience 25-0577-42

ICS Functional Panel (RPRC 12-0012) 
Cytometer: BDLSRII (URMC FlowCore - Animal)

Laser Long Pass Band Pass PMT Detector Marker Color Clone Company Catalog #
488 505 515/20 BB B515 IL-8 FITC E8N1 BioLegend 511406
407 450/50 VH V450 IL-17 Pacific Blue BL168 BioLegend 512312
407 Live/Dead Aqua polyclonal Life Technologies L34957
407 CD14 BV510 MφP9 BD Biosciences 563079
407 570 585/42 VE V585 CD8a BV570 RPA-T8 BioLegend 301037
407 595 605/40 VD V605 IL-2 BV605 MQ1-17H12 BD Biosciences 564165
407 630 660/40 VC V660 CD45RA BV650 HI100 BD Biosciences 563963
407 670 705/70 VB V705 IL-10 BV711 JES3-9D7 BD Biosciences 564050
407 740 780/60 VA V780 TNFa BV785 MAb11 BioLegend 502948
633 660/20 RC R660 IL-6 APC MQ2-13A5 BD Biosciences 561441
633 685 710/50 RB R710 CD3 AF700 UCHT1 BD Biosciences 557943
633 740 780/60 RA R780 CD69 APC-Cy7 FN50 BioLegend 310914
532 575/24 GE G575 IL-4 PE MP4-25D2
532 600 610/20 GD G610 CD107a PE-CF594 H4A3 BD Biosciences 562628
532 690 710/50 GB G710 CD4 PE-Cy5.5 S3.5 ThermoFischer MHCD0418
532 740 780/40 GA G780 IFN-g PE-Cy7 B27 BD Biosciences 557643

535 550/40 VG V550

Supplementary fig 1. Flow cytometry channels and antibodies for ICS and Tphe panels.
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Supplementary fig 2.  Estimated change in metacluster abundance at 37 weeks PMA
per week increase gestational age at birth.
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Supplementary fig 3. Meta clusters with non-monotone trajectories as a function of PMA.
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Supplementary fig 4. Risk factors for subjects ever entering IST Tphe5. A joint logistic regression of the 
form Tphe5 ~ s(gestation_age_birth)+  race + preg_membrane + preg_antibiotics + mode_delivery + gender 
+ cchorio was run using R package mgcv version 1.8.24.  The term s(gestational_age_birth) represents an 
arbitrary, smooth function of gestational age at birth that was simultaneously estimated with the other 
parametric model terms.
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Supplemental fig 5. Networks of associations between CST 
occurrence and T cell populations and ISTs. (A) Logistic 

regression was used to assess the relationship between T cell 

populations or ISTs at birth, discharge, or one year and the 

probability of ever observing a given CST within a subject. (B) 

Interval censored survival modeling was used to assess the 

relationship between T cell populations and ISTs at birth, 

discharge, or one year and the time to occurrence of a given CST 

within a subject.  Mode of delivery and gestational age at birth 

were included as covariates in both types of models.  All 

significant associations (after multiple test correction) are 

plotted, with edges between an immunological parameter and a 

CST indicating a significant relationship.  Edges are colored 

according to the direction of the relationship and the magnitude 

of its significance.  Nodes are colored to indicate time point or 

body site and are shaped to distinguish between CSTs, ISTs, and 

individual T cell populations.
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Supplemental fig 6. Time to transition into gCST 3 based on Tphe
IST at discharge. Survival analysis using an accelerated failure time 
model was used to assess the time to initially transition into gCST 3 
as a function of Tphe IST at discharge, gestational age at birth, and 
mode of delivery.  Fitted mean probabilities of not having 
transitioned in gCST 3 are shown for infants born at 30 weeks GA 
by Cesarean section, with 95% confidence intervals.  Tphe3 at 
discharge significantly delayed initial transition into gCST 3.
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Supplementary figure 7. Random forest variable importance plots for clinical and developmental index models.  Larger values 
represent greater decreases in the Gini purity coefficient.  Importance was calculated using the default method in R 
package randomForestSRC version 2.7.0.
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