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Abstract

Quantification and parametrization of movement in animal models is widely used in behavioral paradigms.
In particular, free movement of an animal in controlled conditions (e.g., the open field paradigm) is used as
a proxy for indices of baseline and drug-induced behavioural changes. However, the analysis of this is often
time- and labour-intensive and existing algorithms do not always classify the behaviour correctly.
Here, we propose a new approach to quantify behaviour in an unconstrained environment: searching for
frequent patterns (k-motifs) in the time series representing position of the subject over time. Validation of
this method was performed using subchronic quinpirole-induced changes in open field experiment behaviors
in rodents. Analysis of this data was performed using k-motifs as features to better classify subjects into
experimental groups on the basis of behavior in the open field. Our classifier using k-motifs gives as high
as 94% accuracy in classifying repetitive behaviour versus controls which is a substantial improvement
compared to currently available methods including using standard feature definitions (depending on the
choice of feature set and classification strategy, accuracy up to 88%). Furthermore, vizualization of the
movement / time patterns is highly predictive of these behaviours. By using machine learning to create
features in a data driven fashion, this can be applied to general behavioural analysis across experimental
paradigms beyond the open field.
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1. Introduction

1.1. Open field paradigms in translational psychiatry
Rodent behavioural research analyses patterns of behaviour as face and predictive validity measures

for human psychiatric and neurological conditions.These behavioural paradigms are relevant to a number
of cognitive disorders, including schizophrenia, depression, bipolar disorder[1], anxiety and autism[2]. The
open field paradigm is commonly deployed for the study of movement, learning, sedation and anxiety related
aspects[3]. In the open field paradigm, an animal is placed in a constrained environment (a well-lit circular,
square or rectangular area, bounded either by insurmountable walls or deep gaps) which it is free to explore.
Its behavior is then recorded over time. The characteristics of the environment can differ between experi-
ments and may deploy objects to study interaction between the animal and object to examine reactions to
novel and stressful situations. An open field with objects can also be used to examine repetitive checking
behaviour, an important aspect of obsessive compulsive behaviors[4]. Commonly recorded variables include
horizontal locomotion (based on a count of transitions between marked areas within the field, Figure 2),
vertical activity (based on the animal’s rearing and leaning behaviour), as well as the latency (time) spent in
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certain areas and more specific behaviours such as head shakes and grooming[3]. Automated systems record
all of the necessary variables with high precision and flexibility[5], by recording the animal’s position using
a video camera and processing the resulting footage with specialised software such as Noldus EthoVision
3.0[6]. The open field is also often divided into a grid of zones for the analysis which can be of differing sizes
dependent on the size of the open field. Typically this is divided into 5 by 5 zones. A range of experimental
designs are used within the open field paradigm. Subjects are divided into experimental groups which un-
dergo different interventions. Differences between groups in terms of observed open field behaviour is then
assumed to result from the difference in intervention deployed. These experimental interventions include
changes to the objects in the open field, introduction of another animal, differences in the amount / type of
food available or administration of drugs expected to induce behavioural changes[7].

1.2. Automated methods for quantifying rodent behaviour
In order to accurately assess the differences in behaviour between experimental groups, the objective

quantification of the behaviour is important. Although currently available software such as Noldus Theme is
able to extract raw behavioural variables from video footage, little has been done to automate and optimize
further analysis of the collected datasets. These approaches detect T-patterns, which denote the repeating
sequences of fields visited by the animal during the experiment[8, 9]. This method while useful also involves
a large number of significance tests, thereby increasing the risk of false positive results[10]. In addition,
the T-patterns method assumes that all areas of the open field are equally likely to be visited. In reality,
the opposite is true: some areas are visited far more often than others. Furthermore, zone transitions are
computed using the T-pattern method with no regard to the temporal relation between crossings. That
is, the time that a subject spends within a zone is of no consequence, only the order in which zones are
visited counts. This is problematic as this does not enable a distinction between behaviours that are time-
sensitive (e.g. spending time near an object as opposed to just passing by it). This is a consequence of the
T-pattern method performing only spatial and not temporal segmentation. Finally, the T-pattern method
only utilises the absolute position of the subject, and does not account for other factors such as objects
in the open field or the distance between the animal and the open field boundary. As such, behaviours
dependent on the relative location of these objects cannot be detected using T-patterns. If the location
of an object changes, for example between subjects, the T-pattern method cannot discover a pattern if
both subjects display the same behaviour relative to the object but in different absolute positions. Lastly,
the T-pattern method is only available as a part of a commercial software, Theme by Pattern Vision
(http://patternvision.com/products/theme/), which is a black-box software with a basic interface, and does
not allow for accessing the source code.

1.3. The k-motif approach
Here we sought to design a new method for quantifying behaviour in the open environment. In an attempt

to overcome the above issues, we proposed a method which takes into account the temporal dynamics of the
movement as well. This method adapts the k-motifs algorithm to search for the hierarchical structure of
repeating patterns in behaviour. The most common patterns were then used to train a classifier to distinguish
between experimental groups between quinpirole and vehicle treated rats in the open field. Here, we improve
the classification of experimental groups (further referred to as classes) on the basis of behavioural differences
in the open field.

In section 2.1, we provide a detailed description of the experimental datasets used for developing the clas-
sifier. In section 2.2, we introduce the k-motifs approach. Then, in section 2.5, we report the results of
classification with use of k-motifs as features, and compare this classification performance with classifiers
using standard features. Lastly, in section 3, we critically discuss the results and potential applications for
this methodology. We made all the tools developed for this paper accessible in open source.

We dedicate this work to researchers looking for data-driven biomarkers of behavior in the open field.
These patterns can help in better understanding of the characteristics of disorders related to movement,
such as Obsessive-Compulsive Disorder, Tourette Syndrome, Parkinson’s Disease or Hutchinson’s Disease.
The k-motif method proposed in this manuscript can also help to measure effects of pharmacological therapy
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with higher sensitivity as the performance in classification between experimental and control group achieved
with our method is the highest among all the available methods.

2. Materials and methods

2.1. The experimental datasets
The experimental datasets includes open field recordings in rats, collected at the Radboud University

Nijmegen Medical Centre under ethical approval number DEC-2012-281. The sample included 6 subjects
in the experimental group and 6 controls. All subjects were male Sprague Dawley rats (Charles River,
Germany). The open field setup includes an open square area of size 160 x 160 [cm], placed 60 [cm] from
the ground. An additional virtual circuit 20 [cm] wide around the table is added to the open field size
in order to record behaviour where the subjects’ head or tail reaches out over the table. The resulting
area of 200 x 200 [cm] is divided into 25 40 x 40 [cm] zones. The area contained four small fixed objects
(cubes or cylinders) to encourage exploration in animals (Figure 1 A, B). The objects were distributed as
in[11], and included two black and two white objects. The experimental sample included 6 subjects in an
experimental intervention group and 6 controls. In total, data was recorded from subjects across 13 30-
minute sessions in the open field, which amounts to a total of 156 recorded sessions. Injection and training
sessions took place every day for 13 consecutive days. Prior to each open field session, the subjects within
the experimental intervention group received an injection of quinpirole (0.5mg/kg i.p.). The behaviour in the
open field was recorded with an overhead video camera. The resulting footage was then processed by a video
tracking system Ethovision 3.0 from Noldus Information Technology BV, the Netherlands (Wageningen, The
Netherlands) [6], which produced multivariate time series for each 30-minute session, representing multiple
variables (Table 6, Supplementary Material 4.1). The set of available variables is represented here by V . The
collection of time series resulting from processing a video footage from one session in one subject, corresponds
to a single d in D (Equation 1). Examples of the visualisations of the movement are presented in Figure
1. The datasets were preprocessed according to a preprocessing scheme is introduced in Supplementary
Material 4.2).

d ∈ D = {dv | v ∈ V } (1)

2.2. K-motif method
In an effort to address the limitations of T-patterns mentioned in Section 1, in this work, the k-motifs

method is employed for feature extraction: finding recurring patterns [12, 13] in the data. This method
involves subsequent use of two algorithms: Symbolic Aggregate Approximation (SAX, [14]) and Sequitur
grammar induction [15]. The first part, SAX, segments the data both in the temporal domain and in
the spatial domain. The second part, grammar induction using Sequitur, finds patterns in the resulting
approximation by constructing a hierarchical grammar. The k-motifs algorithm successfully yields frequent
patterns from a time series, which can be used to characterise the data. However, to enable classification
of time series data, each series must be reduced to a feature vector. A feature vector is a list of numbers
of a set length, where each number describes an aspect of the data. These numbers can then be compared
between series, to determine their relative similarity. In order to use the patterns extracted by k-motifs, a
conversion strategy to feature vectors must be devised. Additionally, while patterns in raw movement data
are useful, even more patterns may be found by exploiting the animal’s position relative to different aspects
of the open field. Finally, k-motifs produces a very large number of patterns, so in order to ensure the
conciseness of the quantification method, some subset of the patterns must be selected for the final feature
vector. All these topics will be discussed in the following sections.
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Figure 1: Movement of example subjects during single sessions. Subfigure A shows the spatial, ’top-down’ view of the path
taken by an exemplary subject. The borders of the open field are shown in red, with the four objects shown as red circles.
The same path’s x and y coordinates over time are shown in temporal subfigure C. Subfigure B shows the path taken by an
exemplary subject.

2.2.1. Symbolic Aggregate Approximation (SAX)
The Symbolic Aggregate Approximation (SAX) algorithm [14] takes a real-valued time series x(t) and

discretises the time series, starting by slicing the values into segments of width w. For each segment, the
values contained within are averaged. This leads to a new time series t(t) of length |x|w . Note that if the
length of x(t) is not divisible by w (length of x(t) is not a multiple of w), x is padded with the last value of
x until its length is divisible by w.

Next, the range of the values of t(t) is divided into a number of sections (further referred to as ’bins’).
The bins are defined by means of z-scores from a normal distribution with mean and standard deviation
derived from the original data x(t). We denote the number of bins by α, and each bin is represented by the
lower limit in its value range. For example, if the values fall between -4.0 and 4.0, and α = 4, the bins are:
[−4.0,−2.0] represented by −4.0, [−2.0, 0.0] represented by −2.0, [0.0, 2.0] represented by 0.0, and [2.0, 4.0]
represented by 2.0.

Additionally, the bins are given unique labels. In this work, bins are labeled from 0 to α − 1, using the
ordering of the bins from the lowest to the highest. Then, each value in t(t) is replaced by the label of
the associated bin to which is belongs - namely, the highest bin whose lowest value is lower than the given
value in t(t). The obtained result is an approximate symbolic representation of the original time series. This
transformation is formalised in Equation 2. An example segmentation is demonstrated in Figure 2 A.
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SAX(x,w, bins) =
[
i for p in

[
0, 1, · · · , |x|

w
− 1
]
s.t.

binsi ≤ Σpw≤j<(p+1)w
xj
w
< binsi+1

] (2)

Figure 2: The SAX algorithm [14]. A: the real-valued input data is presented in black. It the time resolution of the recording
is high, this may be a near-continuous sequence. In this example, parameter w is set to such a value that the input is divided
into segments of 1.2 time units. The mean value of the time series within each segment is used to produce the approximation
sequence (presented in green). Finally, for each mean value, the corresponding bin is determined. In this example, there are
four bins (α = 4) delineated using dotted red lines. Bins width is determined in terms of standard deviations from the mean
value. The final output in this example, is a sequence of labels 2 0 3 1 2. B: standard division into 25 zones (as implemented
in the T-pattern method). C: the division of open field with use of SAX (α = 10, which means 10 bins along each dimension),
with all positional data. Note the underlying normal distribution of visits is reflected in the sizing of the bins. In less popular
areas, larger bins are available and less detail is recorded.

Assuming normal distribution of the input datasets, this ensures that each value in t is equally likely
to fall into each bin, and thus that each event (falling into a bin 0 to α − 1) occurs equally often. This is
explained in Figure 2, where α = 4. In this example, the value range in the time series, is dissected into four
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Table 1: Example grammar produced by Sequitur for the input sequence a b c a b d a b c a b d, demonstrating rules, expanded
sequences and occurrence counts. Note that a, b, c, d are terminal symbols, and S, 1 and 2 are non-terminal symbols in this
example.

s R(s) expanded c(s)
S → 1 1 a b c a b d a b c a b d 1
1 → 2 c 2 d a b c a b d 2
2 → a b a b 4

equiprobable bins, centred on the mean of the time series. Note that, for any considered variable (e.g., the
animal’s x position on the open field table), the bins are precomputed using all available datasets: the bins
are defined for the merged datasets from all the subjects within the experimental group. The purpose of
this step is to have one, uniform output sentence for all subjects. An example set of bins, computed for
all two-dimensional positional data in our datasets, is presented in Figure 2 B. An advantage of using bins
based on the normal distribution derived from the datasets - rather than equally-sized bins - is that the
proportion of visits in all bins becomes more uniform1.

In order to apply the SAX algorithm, we reimplemented the original version of the algorithm using
Python, the code is included in the open GitHub repository, at https://github.com/MareinK/kmotifs-paper-
code.

2.2.2. Grammar induction using Sequitur
The output of SAX algorithm can be interpreted as a series of symbols. Sequitur is an algorithm

for inducing a hierarchical grammar from a given sequence of symbols, thereby compressing the input to
a smaller representation [15]. This outcome small representation is, again, a series of symbols. Some symbols
are terminal. A terminal symbol is a symbol that was also present in the original sequence. Other symbols
are non-terminal. A non-terminal symbol is an outcome of the compression, and there is an associated rule
which determines how to ’expand’ this symbol to again a series of (non)-terminal symbols. A grammar
is defined as a set of rules for repeatedly expanding all non-terminal symbols in this way will eventually
reproduce the original sequence, with no more non-terminal symbols present. A special ’start symbol’
(denoted by S in this text) determines the initial rule to use when starting the expansion. The Sequitur
algorithm constructs a grammar from the input sequence by processing input symbols sequentially, and
adding them to the grammar one by one. An example of an output grammar is given in Table 1. The
symbol-to-rule mapping is given by R : symbol→ sequence.

The Sequitur algorithm processes input symbols sequentially, adding them to the grammar one by one,
while maintaining two grammar properties:

digram uniqueness : every pair of symbols (terminal or non-terminal) occurs not more than once in the
grammar. If the same pair of symbols occurs twice at some point, a new rule is created mapping a
non-terminal symbol to this sequence of two symbols, and the two occurrences of the pair are replaced
by the new non-terminal symbol. This property ensures that the grammar gets compressed once
a repetition is found. It also imposes a hierarchical structure on the grammar.

rule utility : every rule is used at least twice. Because of the digram uniqueness property, it may happen
that a pair consisting of a non-terminal symbol and of another symbol is condensed as a new rule.
This causes that non-terminal symbol’s occurrence count drops by one, which might become the only
occurrence of the non-terminal symbol. In this case, the rule is removed, and its non-terminal symbol
is replaced by the corresponding sequence. This property not only ensures that no useless rules (with
only one occurrence) exist, but also allows for formation of rules longer than two symbols, which would
otherwise not be possible.

1This may be evaluated by comparing the entropy of the visit counts, with a higher entropy meaning a more uniform
distribution
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By maintaining these properties, and using the proper data structures, the Sequitur algorithm runs in
linear time in the length of the input sequence [15]. The output grammar can then be used to determine the
relative frequency of sub-sequences by their occurrence count, so that they may be used in the quantification
method.

In the context of finding common patterns in the SAX output, we are interested in the occurrence count
of the different non-terminal symbols, since these represent common sequences. Given a grammar, let s
denote a non-terminal symbol in that grammar. Then we can find the occurrence count c(s) of that symbol
by finding all the rules that s occurs in, and taking the total occurrence count of the symbols associated
with all those rules. S always has an occurrence of 1 (Equation 3).

c(s) =

{
1 if s = S∑

t | s∈R(t) c(t) otherwise
(3)

For example, in Table 1, the most frequent sub-sequence (longer than 1 symbol) is a b, as it occurs
four times in the input. We introduced the occurrence count and added to the algorithm in order to apply
Sequitor to this particular research problem, namely finding patterns in the SAX output data.

2.2.3. Feature vectors
The k-motifs method, using SAX and Sequitur, yields frequent motifs for a certain time series, which

may be used to give insights into rodent behaviour. However, these motifs are not suited for classification
since they do not take the form of a feature vector. Specifically, there is no obvious comparison between
motifs derived from different time series.

To resolve this issue, the following method is applied: given a set of time series from which feature vectors
need to be extracted, first find the k most interesting motifs (defined hereafter) for the complete dataset.
We further refer to this set of interesting motifs asMk(D) (Equation 4). Now, in order to create a feature
vector for a single time series, Fk(d ∈ D), we need to determine the frequency of each motif discovered in
that time series (Equation 5). This method yields feature vectors that are comparable for classification,
element-wise.

Mk(D) = k most interesting motifs in D (4)

Fk(d ∈ D) = [count of m in d for m inMk(D)] (5)

In the context of this manuscript, the classification relates to discrimination between the experimental
intervention group compared to the control (vehicle treated) group (on the basis of open field data). These
groups, in machine learning terminology, are referred to as classes. In many classification problems, the
uneven size of classes is an issue. To account for this, k frequent motifs should be extracted from the data
points of each class separately. Given n classes, this will yield k · n frequent motifs. As before, a feature
vector representing d ∈ D is created by determining the frequency of each of the motifs in the data point.
Thus, the length of the feature vector, is dependent on the number of classes n as well as the number of
extracted motifs k.

2.2.4. Interestingness
By means of combinatorics, the number of possible motifs grows very fast with the length of the se-

quence. Therefore, one should define some rules for motif preference. This can be achieved by defining
’interestingness’ of motifs. Given a motif m, three interesting properties may be defined, each of which one
may wish to maximise when searching for interesting motifs. To evaluate a motif’s interestingness I(m),
some (non-linear) combination of these three properties can be used. The k most interesting motifs could
then be selected as those with the highest interestingness.

frequency If (m) : the number of times this motif occurs in the data; the more frequent a motif is, the
more suitable it will be as a feature. Of course, certain motifs which happen to be rare, can still carry

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/735399doi: bioRxiv preprint 

https://doi.org/10.1101/735399
http://creativecommons.org/licenses/by-nc-nd/4.0/


meaningful information and be useful for classification but in practice, there is no efficient way to
select these motifs because using rare motifs would facilitate over-fitting (i.e., building a classification
tool that contains more parameters than can be justified by the data, and will fail to predict future
observations).

length Il(m) = |m| : the number of symbols in the motif. Longer motifs are more interesting because they
expose more detailed patterns. A motif of length 2 only shows a linear movement from one position
to another, while longer movements will describe more detailed aspects of the animal’s behaviour.

diversity Id(m) : the number of unique symbols in the motif. A long motif may only contain few unique
symbols, which means the motif describes a movement with a high amount of repetition. Since such a
pattern is clearly a combination of other motifs, it might be more interesting to focus on motifs which
cannot be easily decomposed. This is encouraged by preferring motifs with a high number of unique
symbols.

Certain relations hold between these properties. Given any motif m and symbol s, a new motif may be
constructed as n = m + s by appending s to m. Regardless of the choice of m and s, it is clear that n
cannot be more frequent than m, since for each occurrence of n there is also an occurrence of m contained
within. Thus, If (m+ s) ≤ If (m) and |m+ s| > |m| for any m and s. This means that frequency is inversely
proportional to length: If (m) ∝ |m|−1. Note also that |m| ≥ Id(m), meaning that length must grow with
diversity, and so If (m) ∝ Id(m)−1.

This means that, when using these three properties and k-motifs to define a quantification method, high
accuracy (If ) and high interpretability (Il and Id) are mutually exclusive. It is not clear whether this holds
for quantification methods in general. In any case, the best way to combine the three properties into a single
measure of interestingness I(m) is not obvious. In this work, four different ways of combining the three
measures are explored (Equations 6-9). While I1 combines the three measures with equal weight, the other
functions favour one measure while devaluing the other measures by scaling them logarithmically.

I1(m) = If (m) · |m| · Id(m) (equal weight) (6)
I2(m) = If (m) · log(|m|) · log(Id(m)) (focus on frequency) (7)
I3(m) = |m| · log(If (m)) · log(Id(m)) (focus on length) (8)
I4(m) = Id(m) · log(If (m)) · log(|m|) (focus on diversity) (9)

The choice of combination matters because they can result in different sets of leading motifs (Fig. 5).

2.2.5. Spatial relations
Although the k-motifs algorithm may be applied to any time series, only the X centre and Y centre

variables from V are used to construct the feature vectors. The choice to restrict the number of variables
was made in order to reduce the size of the feature vector, thereby increasing interpretability. The choice
for these specific variables was made since they are the variables used by other methods, e.g., T-patterns.
Then, we should account not only for the subject’s position in space, but also for the relationship to objects
and to the boundaries of the open field. Therefore, the k-motifs algorithm must not only be applied to a
time series tracking the subject’s position, but also to time series reparameterised in relation to objects.
Each of these transformed time series is called a spatial relation (including the original position).

This extension of the feature space further increases the length of the feature vector to k · n · r, with r
the number of relations we wish to capture. The spatial relations that we chose, are presented in Table 2
(although of course, more possibilities exist). In our specific dataset, n = 2 (control versus OCD) and r = 4
(absolute position, relative position, minimum distance to any object, minimum distance to the boundary).
The length of the feature vector, then, becomes 8 · k.

Note that some spatial relations are two-dimensional (absolute / relative position) while others are
one-dimensional (distance). While using the k-motifs algorithm in application to one-dimensional data is

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/735399doi: bioRxiv preprint 

https://doi.org/10.1101/735399
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Chosen spatial relations
Name Dimensions Description

absolute position 2 (x, y) location of the animal on the table in Cartesian coordinates
relative position 2 change in (x, y) location of the animal as compared to the previous time point
nearest object 1 the distance from the animal to the nearest object

nearest boundary 1 the distance from the animal to the nearest point on the boundary of the table

Table 3: An overview of the free parameters for the full k-motifs pipeline.
Component Symbol Domain Description
k-motifs w N>0 segment size used for dividing the input sequence
k-motifs α N>0 number of bins

vector creation k N>0 number of most interesting motifs to select per class
vector creation I {I1, I2, I3, I4} measure of interestingness

straightforward, in case of two-dimensional data it becomes is less obvious. We took the following approach.
First, the two dimensions are processed by SAX individually, resulting in two separate symbolic time series.
These two time series are then recombined to create a time series consisting of pairs of symbols. This new
time series can then be processed by Sequitur, interpreting each pair as an individual symbol.

2.3. Free parameters
The complete quantification method, combining k-motifs, creation of the feature vector and spatial

relations, involves a number of free parameters (Table 3).
Hill-climbing is a technique for optimising a cost-function characterising certain problem, by iteratively

adjusting its input parameters [16]. This technique can be used to determine the optimal values in the pa-
rameter space (w, α and k), whereas exhaustive search is performed to optimise I. In order to evaluate the
results of this optimisation, the complete dataset is split into two portions: 90% that is used for hill-climbing
based on classifier performance (which in turn splits the data into training and test sets) and 10% that is
held out for final evaluation.

To summarize, the schematic representation for the full k-motifs pipeline is given in Figure 3.

2.4. Evaluation
Four popular classifiers are used to compare four different quantification methods. Implementation of

these classifiers comes from sklearn package for Python [17]:

Gaussian Naive Bayes Assuming independence between features, Bayes’ theorem can be applied to the
data. This method learns probabilities with each combination of class and feature from the data, and
from this evaluation, the most probable class can be inferred for a new observation[18].

Decision Tree In this method, a number of if-then-else decision rules are learned with the purpose to
accurately divide the data into classes based on feature values. A new observation is then classified by
evaluating the decision rules on its features [19].

Multilayer Perceptron A feed-forward network of artificial neurons with nonlinear activation functions
is used to model the relationship in the data between features and classes through connectivity weights
between neurons. A new observation is then classified by feeding a set of features representing this
observation into the network, which returns the predicted class at the output [20].

k-Nearest Neighbours All observations in the data and their associated classes are stored in memory.
Given a new observation, its class it determined by majority vote of the k data points closest to the
observation in the feature space [21].
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Figure 3: Schematic visualisation of the approach proposed in this work, based on k-motifs. The pipeline starts with the
raw dataset (1), containing movement data from multiple open field sessions. Each of these sessions is then transformed into
multiple spatial relations (2). For each spatial relation, the SAX bins are computed, using parameter α determining a total
number of bins (3). The spatial relations are then separated based on the class of the session (4). For each class, every data
point is processed using k-motifs, using the parameter w and the SAX bins computed earlier (5). For each data point, this
results in a set of motifs, and all motifs of a class are gathered into a list. The motifs are sorted according to a measure of
interestingness (I). Subsequently, certain number k of top motifs is selected to represent the class (6). The top motifs from
each class are then combined to create the final set of motifs (7). These can then be used to create a feature vector for any
data point (from the original data or otherwise), by counting the number of occurrences of each motif within that segment (8).
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We chose the default parameters as implemented in the sklearn package. In order to determine the
relative performance of classifiers, the label-frequency based macro F1 score was used as a measure of test
accuracy. As a variation of the commonly used F1 score, this measure combines the classifier’s precision P
(also known as positive predictive value, PPV) and recall R (also known as sensitivity) with equal weights
in order to evaluate the performance of the classifier. The F1 score is computed individually for each class c,
then the average between these scores is computed, with each score weighted by the size of the corresponding
class |c| (Equation 10) [22]. This ensures that imbalance in class size does not influence the score.

Fweighted
1 =

∑
c∈C

2P (c)R(c)

|c|(P (c) +R(c))
(10)

In order to obtain reliable classification results, stratified k-fold cross-validation was used. In non-
stratified k-fold cross-validation, the data is randomly divided into k subsets of equal size. Then, for each
subsample i, the subsample is used as a test set while the other k−1 subsamples are used for training. This
results in k classifiers with each a classification score, which may be averaged to obtain the final score. This
method ensures that all individual data samples are used for testing exactly once. Additionally, in stratified
k-fold cross-validation, each subset is selected in a way that the distribution of classes is as near as possible
to that of the complete data [23] (here, it means a ratio 1:1 between cases and controls). This prevents
confounding the results by the class labels. In this project, k = 10 is used.

2.5. Comparison with other methods
In this work, we further compare k-motif approach with other methods which also define how a single

experimental session is reduced to a simpler representation:

1. established T-pattern method [8] which interprets patterns as sequences of visited discrete fields (in
this case, on the square experimental table divided into 25 square zones) within certain time-frame

2. full data method: no reduction is performed and the complete set of points visited during the session
is taken as the representation of that session

3. means and variances method: the data of a session is reduced to just four numbers: the mean and the
variance, per dimension (one of each for x-coordinates and y-coordinates)

4. behavioural method: the data of a session is reduced by applying several hand-crafted heuristics to
it that are thought to be useful descriptions of an animal’s behaviour. This results in a collection of
numbers that describe behaviour displayed during the session. For a full description of this method,
check [24]

sectionResults

2.6. Normalising bins with SAX algorithm
Using the T-pattern method with linear zone divisions, the entropy of the proportion of visits per zone

is 2.90. In contrast, using the bin divisions based on SAX algorithm, the entropy is 2.63 (Figure 4 A).

2.7. Leading motifs depending on interestingness measure
The 8 most interesting motifs obtained with use of every of the four measures of interestingness defined

in Section 2.2.4, are presented in Figure 5. An example of a feature vector based on these most interesting
motifs is presented in Table 4.

A summary of all 20 (2 classes × 10 motifs) feature vectors obtained using the I2 measure for all the data
segments in our dataset (concatanated for the whole cohort) can be found in Figure 6. The hill-climbing
method found w = 15, α = 10, k = 10 and I = I2 as parameters yielding the highest classification
performance. Note that k = 10 was the highest allowed value in the hill-climbing setup. This suggests that
segments of 625 [ms] in length and 10 bins per dimension should be used as an input to the SAX algorithm.
Further, top 10 motifs should be delegated to represent each class and since I2 was the leading method for
quantifying interestingness, motifs should be chosen primarily due for their frequency, rather than due to
their length or diversity. Also, performance accuracy is robust with respect to α, w and k (Figure 4 B).
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Figure 4: A: Proportion of visits to each bin in the ’2014’ dataset after using SAX with parameters α = 5 and w = 15.
B: Robustness of the k-motifs algorithm using k Nearest Neighbors using I2 definition of interestingness, with respect to
parameters α, w and k. C: Significance of differences between method performances. Yellow fields denote significant differences
in performance between two corresponding methods, while purple means non-significant.

Table 4: An example feature vector resulting from the quantification method, describing a single data segment. This vector
contains 20 features, since there are two classes and k = 10, so 10 motifs from each class are used. Each number indicates the
number of times a particular motif occurs in the data segment of interest.

29 22 5 19 5 21 2 21 17 16 22 29 19 21 21 17 13 18 17 20

Table 5: Classification performances of the different quantification methods for each of the considered classifiers.
Method Mean Guassian Naive Bayes Decision Tree Multilayer Perceptron k-Nearest Neighbors
Full Data 0.64± 0.16 0.72± 0.22 0.70± 0.14 0.56± 0.16 0.59± 0.13

Variable means and variances 0.68± 0.13 0.71± 0.15 0.66± 0.12 0.66± 0.16 0.68± 0.10
Behavioral method [24] 0.76± 0.12 0.77± 0.14 0.78± 0.10 0.74± 0.14 0.78± 0.09

T-patterns 0.83± 0.16 0.80± 0.13 0.88± 0.15 0.84± 0.16 0.81± 0.20
k-motifs 0.86± 0.10 0.88± 0.07 0.87± 0.09 0.69± 0.17 0.94± 0.05
Mean 0.76± 0.13 0.77± 0.15 0.78± 0.12 0.71± 0.14 0.76± 0.12
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Figure 5: 8 most interesting motifs resulting from the four different combinations of the three measures of interestingness as
defined in Section 2.2.4. Note that one-dimensional features (distances) are presented in time scale, while two-dimensional
features (movement) are shown in space. Relative movement patterns originate at the central position (0, 0). Where possible,
bins (i.e. zones) are indicated with red lines (this is not possible for relative movement as the bins re-orient with each step).
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Figure 6: A summary of all feature vectors for all data points in the 2014 dataset, using the I2 measure. Note that data points
are separated by class, as indicated by the red line (with the quinpirole group at the top and the control group at the bottom).
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2.8. Comparison with other methods
The full summary of the performance of different classifiers can be found in Table 5. The new quan-

tification method was able to achieve an average score of 0.86, and as such, it outperforms all of the other
classifiers. Note that although the average classification score is the highest, not all the individual scores
are the highest. In particular, the MultiLayer Perceptron classifier did not yield a high score for the k-motif
method (0.69), while T-patterns scored high in that case (0.84). The highest score of any method-classifier
combination was achieved by the k-motif method using k-Nearest Neighbors (0.94).
In this classification study, the validation was performed using stratified 10-fold cross validation (imple-
mented with use of sklearn Python package).According to our results, the k-motif approach is significantly
better than using full datasets, and using means and variances from raw experimental variables, but not sig-
nificantly better than either the behavioural method [24] or the T-pattern method [8]. Significant differences
between methods are visually presented in Figure 4 C.

3. Discussion

The current approach examined the utility of the k-motif approach as a means to improve automated
behavioural analysis in the open field. Our results suggest that this is an efficient technique which re-
turns a sparse set of behavioral patterns best discriminating between experimental groups and gives higher
classification performance than the available methods.

3.1. Normalising bins
The results were contrary to expectations, meaning that dividing the table into linear zones gives better

performance than normalising divisions in creating a uniform distribution of zone visits. However, it is
unclear whether this effect is specific to this particular dataset and additional validation with other datasets
would be useful. While the literature suggests that normalising bins should aid in creating uniform visit
distributions, it would be interesting to investigate the method further in other datasets.

3.2. Motifs, feature vectors and interestingness
The motifs yielded by k-motifs were interesting, although they may be difficult to interpret in a systematic

way. Most probably, motifs are specific to the particular shape and orientation of the open field arena used
and the associated objects, and in another experimental setup, another set of motifs might come out as most
predictive of the subject class. The k-motif approach, in the form proposed in this work, is an exploratory
technique but is adaptable to different contexts. One noticeable property of motifs obtained in this study
is that most of them, describe mostly linear motion or repetitions of linear motions. For example, many
of the motifs in Figure 5 show a single oscillation of a repeating motion, or else they show an almost
linear movement. These movements are not very complex, and may, perhaps, be also picked up by a more
constrained and computationally cheaper method. Some of the features of the motifs presented in Figure 5
are particularly interesting. Of note, the motifs obtained from interestingness I1 and I2 are identical. Since
the difference between these measures lies in the way that length and diversity of motifs are valued, while
the value put on motif frequency is constant, this suggests that even in measure I (the equal-weight measure)
the frequency has more influence on the final selection. It may be useful to normalise the three properties
before combining them into one measure, so that any of them has equal range of values, before taking the
sum.

Furthermore, the nature of each measure of interestingness is reflected in the presented motifs. Both
the measure focusing on length and the measure focusing on diversity do produce longer motifs, while the
measure focusing on diversity additionally finds motifs with a larger number of unique values. Interestingly,
multiple motifs are shared between different measures of interestingness focusing on length I3 and diversity
I4, while seemingly no motifs are shared between these and the measure focusing on frequency I2. This can
be explained by the fact that frequency of motifs should be inversely proportional to both motif length and
diversity. It should be noted that the most-interesting motifs presented in Figure 5 include motifs of all
relation types (positions and distances) except for the ’relative position’ type. This means that no motif of
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this type was among the 8 most interesting based on any of the four interestingness measures. This may be
explained by the fact that the relative position may have the highest variance of all of the spatial relations,
meaning that patterns are less likely to occur.

From the classifier performance results, it would appear that I2, the measure focusing on frequency, is
the best for determining the interestingness of a motif. Note that the significance of the differences between
measures was not evaluated. The goal of exploring different measures was not only to increase performance,
but also interpretability, and this is one of the reasons we proposed the criteria I3 and I4. However, motifs
produced by I3 and I4 seem at most marginally more interpretable than the others. Our conclusion is that,
in this case, it would be best to focus on I2, as properties other than motif frequency do not yield any
additional benefits to the ability to classify behavioural patterns.

Figure 6 demonstrates some interesting properties of the feature vectors. The data points are separated
by class along the vertical axis, and a clear separation is visible in the values of the feature vectors. This
visually shows the source of the classification accuracy as found in the evaluation. However, the main
difference between the two groups seems to be that many motifs are frequent in the quinpirole treated
group, while few motifs are frequent in the control group. Although this facilitates classification, it is
contrary to expectations: since 10 motifs were taken from the top motifs in each class, the expectation
would be for half of the motifs to be frequent in all data points of one class, and the other half in the other
class. One possible explanation for this phenomenon is the fact that motifs derived from the control class,
although common in the control class, are even more frequent in the quinpirole treated class.

3.3. Parameters
Parameters optimized in the hill climbing algorithm specified twice as high number of bins per dimension,

than it is specified in the T-pattern method. It would be interesting to explore how the T-pattern method
would perform if using a higher number of bins. Although k = 10 was the optimum value, this was also the
highest allowed value for k in the chosen parameter range. If higher values were allowed, it is likely that the
performance would keep increasing with k, since an increase in the number of features can only increase the
classification performance. However, a higher value of k would also negatively impact the computational
complexity of the algorithm. In addition to the four aspects of the method that were parameterised, some
more possibilities exist that were not explored, e.g., a choice of which spatial relations to include. Also,
interestingness of a motif could be defined in multiple other ways.

3.4. Evaluation
Our results indicate that - although the k-motif method performs significantly better than methods

based on full data, and data compressed to means and variances - it does not perform significantly other
than either of the two other, more complex methods. However, it should be taken into consideration that
the parameters of the k-motif method were fine-tuned to our dataset, while the other methods were not
privileged in a similar fashion. This manifests in the fact that the performance on the held-out data was
only 0.75. The performance was lowest for the Multilayer Perceptron classifier, which is known to be sensitive
to overfitting [25, 26], which could also contribute to this effect. In the future, cross-validation of the results
on another experimental cohort might be performed, although each cohort behaves differently in the open
field environment and the classification performance would certainly drop.

One aspect of classification that was not explored in this project, but which would be very interesting for
the future, is the evaluation of the relative contributions of features in the process of classification. It would
be interesting to know which motifs, or which spatial relations, contribute most to determining classes in
order to refine the k-motif algorithm further.

3.5. Conclusion
The new quantification method based on k-motifs, which converts patterns discovered by k-motifs into

feature vectors, performs very well on the open field datasets arising from the repeated checking behaviour
resulting from quinpirole administration in rats. This allows for an additional description of behaviors char-
acteristic to the experimental group, as opposed to the control group.As such, it can serve as an alternative
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to existing methods dedicated to quantification of animal behaviour in the open field such as the T-patterns
algorithm.
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4. Appendices

4.1. Experimental datasets

Figure 7: Proportion of visits to each zone in the open field, in our datasets (Section 2.1). The distribution is significantly
non-uniform (Kolmogorov-Smirnov test at p < 0.05), which breaks the assumptions of the T-pattern method.

Table 6: Descriptions of experimental variables recorded with Ethovision software
Variable Unit Description
Trial time seconds time since the animal was introduced into the open field environment

Recording time seconds time since the video recording was started
X centre centimetres x-coordinate of the animal’s centre
Y centre centimetres y-coordinate of the animal’s centre
X nose centimetres x-coordinate of the animal’s nose
Y nose centimetres y-coordinate of the animal’s nose
X tail centimetres x-coordinate of the animal’s tail
Y tail centimetres y-coordinate of the animal’s tail
Area square centimetres the amount of area covered by the body of the animal

Area change square centimetres the amount of body area that does not overlap with the body area of the previous measurement [27]
Elongation a measure of how much the animal stretches its body out, between 0 and 1
Direction degrees the direction the animal is facing

4.2. Data preparation
The datasets were incomplete, which is often the case in translational psychiatry experiments. It was

found that the experimental data contained missing values, non-uniform structure, redundancy and anoma-
lous data. For each of these issues, a solution was proposed and implemented. Most solutions involve
disregarding parts of the original data, but enough data remains to support the aim of the project, espe-
cially after augmentation (Section 4.3).

4.2.1. Missing values
Some sessions were missing while some other sessions were cut short, as a result of technical problems

that occurred during the experiment. Lastly, at certain time points within sessions, some data was missing,
leading to long contiguous periods missing data within a session. Specifically, there were some gaps of a
spatial nature, occurring in multiple sessions, always at the same area in space (Figure 8). In sessions affected
by these gaps, whenever a subject passes through the affected area, a temporal gap in the data occurs. Since
the spatial form of these gaps is roughly elliptical, these kinds of gaps are most likely caused by shadows
or highlights on the surface of the open field. These features are caused by the computer vision software
determining the subject’s position. The effect is less prominent in the X centre and Y centre variables, with
most missing values occurring in the other X and Y variables.
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Figure 8: A: An exemplary case of missing values of a spatial nature, a single session (this data was not used in the final
study). A large area to the centre left of the open field is devoid of paths; all encroaching paths are cut off at the boundary
of the area. B: The issue of missing values of a spatial nature, an overlay of a few sessions, with each subject marked with
a different colour (this data was not used in the final study). The gap, although less pronounced, is also visible here, showing
that it is a structural problem. C: An overlay of all movement data for all sessions from two different datasets: the dataset
used in our study, and another dataset produced using the same experimental setup. Although the locations of objects and
boundaries are aligned between sessions within datasets, there is a clear difference in these locations between datasets, as can
be seen by the displacement effect in the image. The projections from the two datasets have been translated and rotated to
achieve a best fit, but even so the difference is clear.

Multiple solutions to these problems were considered, most prominently either interpolating the data
to fill the gaps, or complete removal of sessions containing missing data. Interpolation was difficult in this
case, as this would require prior characterisation of the existing data, while characterisation was the point
of the method. Hence, we decided to remove all the sessions containing missing data (Table 7).

Table 7: Sessions retained after pruning the dataset. The group to which each rat belongs (saline or quinpirole) is presented
in the second row. The leftmost column presents the session number. The inner cells show the internal identifier for each
rat-session combination.

rat 109 110 111 112 113 114 115 117
grp. s s s q q q q q
s1 4 5 6 7 8 9 10 12
s2 16 17 18 19 20 21 22 24
s3 28 29 30 31 32 33 34 36
s4 40 41 42 43 44 45 46 48
s5 52 53 54 55 56 57 58 60
s6 64 65 66 67 68 69 70 72
s7 76 77 78 79 80 81 82 84
s8 88 89 90 91 92 93 94 96
s9 100 101 102 103 104 105 106 108
s10 112 113 114 115 116 117 118 120

4.2.2. Non-uniformity
In this work, we had a selection of datasets to work on, coming from a few distinct experiments on

the quinpirole model of obsessive-compulsive disorder in rats. However, the data displayed problematic non-
uniformity between and within datasets, causing problems when comparing data points. For example, the
scale and orientation of the coordinate space might differ between datasets. These problems can largely be
attributed to differences in camera position and angle at the time of recording. Because of perspective and
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lens distortion effects, these camera parameters have a large effect on the shape of the open field as projected
into two-dimensional space. Although within any single session the camera is stationary, these effects cause
problems when attempting to compare between sessions and datasets where the camera parameters differ
(Figure 8 C). For this reason, only a single dataset is used for the project, namely the dataset which contains
the largest number of sessions, and also happens to display uniform camera parameters between sessions,
was used for the final study.

An additional problem is caused by the fisheye effect (Figure 8). An almost unpreventable effect of using
a video camera, it causes the recorded footage to become warped. Since Ethovision 3.0 does not take this
issue into account, the resulting data is also warped. Although the severity of the effect on further data
analysis is not obvious, it would be good to try and revert the warping effect in the resulting data. However,
that has not been attempted in this project.

4.2.3. Anomalies
In some sessions, some anomalous sudden jumps seemingly made by the subject over large distances from

one location to another (the ’teleportation effect’) can be found. Sometimes these anomalies even seem to
transport the subject to locations outside the regular bounds of the open field (e.g., Figure 8 A, B). These
jumps almost always come in pairs, where the subject is transported to an anomalous location and then
transported back to the original area after a fraction of a second. It seems that these anomalies can be
attributed to errors made by the computer vision software when extracting the movement data from the
raw video footage. Anomalies may be detected by looking for position change between two adjacent time
points that would be impossible for an actual rat to accomplish - assuming a top speed of 9.6 km/h for rats
[28], 93 such event occur in the dataset (0.002% of all time points). One elegant solution to the problem
of anomalies would be to detect these anomalies, remove the data between two instances of ’teleportation’
so that the period of anomalous movement is no longer present, and then reconstruct the missing values
by means of interpolation. However, as discussed in Section 4.2.1, interpolation is difficult and can cause
that the classification problem becomes ill-posed. Therefore, since only such a small percentage of all data
is affected with this problem, we decided to neglect it in this work.

4.2.4. Redundancy
Since the original data contains a large number of variables, some of which describe phenomena that

seem closely intertwined, there is redundancy in the data. For example, the location of the subject’s head
can be predicted from the location of the subject’s torso with a high accuracy. It might then be possible
to remove certain variables from the data, without losing predictive power in the classification. Therefore,
we calculated pairwise correlations between all of the variables in the complete dataset (preprocessed with
the previous step) with use or Pearson’s r (Figure 9 A).

Going further, the set of variables can be pruned so that only those variables remain which do not
significantly correlate with any earlier variable. Given two variables v, w ∈ V , the variable w is ’earlier’
than v (w < v) if w precedes v in the standard order of variables as used in Section 2. The resulting set of
variables V ′ is defined in Equation 11.

V ′ = {v ∈ V | ¬∃w∈V w < v and R(v, w)} (11)

where R(v, w) - Pearson’s r coefficient between variables w and v. This pruning technique ensures that
out of all sets of inter-correlating variables, only one remains, namely the first in the order as defined.

4.3. Data augmentation
Given the ultimate goal of creating a quantification method and evaluating it using classification, it is

important to have sufficient data points for effectively training a classifier. Therefore, since the data under-
goes significant reduction in the preprocessing stage, the possibility of data augmentation was considered. In
machine learning, data augmentation is the process of extending the available data to be more multitudinal
or vibrant, before using it as input for learning algorithms [29].
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Figure 9: A: Correlations between variables recorded by Ethovision. B: a very small segment of an open field session) simply
has too little features to use for describing behaviour. Compare with the images in Figure 1. C: Data segmentation. As
the segment size decreases, so does the p-value of the the difference in variance as compared to the original segment size (30
minutes). The red line indicates a threshold p = 0.05. The yellow line presents the average p-value over all variables in V . The
blue area shows the spread of the p-value for all variables.

In this work, we augment the data. Given that each session is reduced to a single data point (set of
features), the amount of data points is equal to the amount of sessions. However, each session has a duration
of half an hour but the features are observables which be measured within far less time. Thus, each session is
split into a number of segments, which can then all be used for feature extraction, yielding a larger number
of data points.

Optimal split of the data into segments is not an trivial problem: if the sessions are split into too many
segments, each segment will be so small for the proper feature estimation, while at the same time, the more
splits, the more data points. Thus, there is a trade-off between the length of the data in each segment, and
the number of segments (Figure 9 B, C).

Two methods for determining the optimal segment size are evaluated. The first method is based on the
variance of the data in a segment as the segment size changes: as the segment size decreases, the variance
in the data must decrease as well. The significance of this decrease from the original is calculated. Then,
based on significance, the optimal segment size can be determined as a segment as small as possible while
not displaying a significant difference in variance from the original data.

The second method for determining the optimal segment size is based on prior literature [4, 30, 31]. Many
rodent experiments involve measuring the frequency of certain behaviours displayed by the animal, such as
grooming or marble-burying. If the frequency of such behaviours can be determined from the literature,
especially with regards to OCD behaviour, then this would be a good indication of how small segments can
be while retaining the possibility to detect these behaviours in each segment.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/735399doi: bioRxiv preprint 

https://doi.org/10.1101/735399
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Open field paradigms in translational psychiatry
	Automated methods for quantifying rodent behaviour
	The k-motif approach

	Materials and methods
	The experimental datasets
	K-motif method
	Symbolic Aggregate Approximation (SAX)
	Grammar induction using Sequitur
	Feature vectors
	Interestingness
	Spatial relations

	Free parameters
	Evaluation
	Comparison with other methods
	Normalising bins with SAX algorithm
	Leading motifs depending on interestingness measure
	Comparison with other methods

	Discussion
	Normalising bins
	Motifs, feature vectors and interestingness
	Parameters
	Evaluation
	Conclusion

	Appendices
	Experimental datasets
	Data preparation
	Missing values
	Non-uniformity
	Anomalies
	Redundancy

	Data augmentation


