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It  has  recently  become  possible  to  assay  T-cell  specificity  with  respect  to  large              

sets  of  antigens  as  well  as  T-cell  receptor  sequence  in  high-throughput            

single-cell  experiments.  We  propose  multiple  sequence-data  specific  deep         

learning  approaches  to  impute  TCR  to  epitope  specificity  to  reduce  the            

complexity  of  new  experiments.  We  found  that  models  that  treat  antigens  as             

categorical  variables  outperform  those  which  model  the  TCR  and  epitope           

sequence  jointly.  Moreover,  we  show  that  variability  in  single-cell  immune           

repertoire   screens   can   be   mitigated   by   modeling   cell-specific   covariates.   

 

 

Antigen  recognition  is  one  of  the  key  factors  of  T-cell-mediated  immunity.  The  ability  to               

accurately  predict  T-cell  activation  upon  epitope  recognition  would  have  transformative           

effects  on  many  research  areas  from  in  infectious  disease,  autoimmunity,  vaccine  design,             

and  cancer  immunology,  but  has  been  thwarted  by  lack  of  training  data  and  adequate               

models.  Although  tremendous  effort  has  been  spent  on  elucidating  the  common  rules  that              

govern  the  TCR-pMHC  interaction,  it  still  remains  elusive.  The  T-cell  receptor  (TCR)             

interacts  with  peptides  immobilized  on  MHC  multimers  (pMHC)  through  its  three            

complementarity  determining  region  (CDR)  loops  of  the  ɑ-  and  β-chain.  The  hypervariable             

loops  CDR3ɑ  and  CDR3β  are  most  commonly  aligned  with  the  presented  epitope 1  and  are               

hypothesized  to  be  the  main  driver  of  T-cell  specificity 2 .  Due  to  lack  of  sufficient  data,                

previous   models   for   T-cell   specificity   were   only   based   on   the   CDR3β   loop 3,4 , 5 .   

In  this  study,  we  exploit  a  newly  developed  single-cell  technology  that  enables  the              

simultaneous  sequencing  of  the  paired  TCR  ɑ-  and  β-chain  while  determining  the  T-cell              

specificity  to  train  multiple  deep  learning  architectures  modeling  the  TCR-pMHC  interaction            

including  both  chains.  The  models  include  single-cell  specific  covariates  accounting  for  the             

variability  found  in  such  data,  thereby  fully  exploit  the  multiplicity  of  observations  that  can  be                

easily  sampled  in  single-cell  screens.  We  show  that  models  that  include  both  ɑ-  and  β-chain                
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have  a  predictive  advantage  over  models  that  only  include  the  β-chain,  while  models  fit  on                

only  a  single  chain  still  perform  well.  Interestingly,  we  further  find  that  T-cell  affinity               

imputation  in  a  sample  from  a  known  donor  is  possible,  enabling  the  assessment  of  the                

presence  of  disease-specific  T-cells.  Lastly,  we  anticipate  a  large  number  of  single-cell             

studies  involving  T  cells  to  exploit  TCR-specificity  as  an  additional  phenotypic  readout.  To              

facilitate  the  usage  of  our  predictive  algorithms,  we  built  the  python  package TcellMatch  that               

hosts  a  pre-trained  model  zoo  for  analysts  to  impute  pMHC-derived  antigen  specificities  and              

allows   transfer   and   re-training   of   models   on   new   data   sets.  

  

Results  

A   joint   deep   learning   model   for   alpha-   and   beta-chain,   antigens,   and   covariates  

Before  the  introduction  of  single-cell  TCR  reconstruction  with  coupled  antigen  binding            

detection  via  pMHCs  (Fig.  1a),  most  paired  observations  of  TCR  and  bound  antigen  only               

included  the  TCR  β-chain,  which  are  often  found  in  entries  of  databases  such  as  IEDB 6  or                 

VDJdb 7 .  Here,  we  explore  a  data  set  based  on  single-cell  pMHC  capture  in  which  paired  ɑ-                 

and  β-chain  could  be  successfully  reconstructed  for  10,000s  of  cells  and  binding-specificity             

measured  for  44  distinct  pMHC  complexes 8 .  We  designed  a  model  to  predict  TCR-antigen              

binding  based  on  ɑ-  and  β-chain  sequences  and  cell-specific  covariates  (Fig.  1b)  using              

sequence-specific  layer  types  such  as  recurrent  layer  stacks  (bi-directional  GRUs 9,10  and            

bi-directional  LSTMs 10,11 ),  stacks  of  convolutional  layers 12 ,  self-attention 13  layer  stacks,  and           

densely  connected  networks  (Online  Methods).  We  model  binding  events  within  a  panel  of              

antigens  as  a  single-  or  multi-task  prediction  model  through  a  vector  of  output  nodes               

corresponding   to   antigens.  

 

Cell-specific   covariates   improve   binding   event   prediction  

Single-cell  T-cell  affinity  screens  feature  multiple  effects  that  confound  the  binding            

observation.  Firstly,  one  would  expect  the  donor  identity  to  affect  the  TCR  structure  if  donors                

vary  in  their  HLA  genotype.  We  compared  models  with  and  without  a  one-hot  encoded  donor                

identity  covariate  to  establish  the  impact  of  these  donor-to-donor  differences.  Firstly,  we             

removed  putative  doublets  from  the  data  set  (Online  Methods,  Supp.  Fig.  1).  To  remove               

effects  from  strong  class  imbalance,  we  only  considered  the  8  antigens  in  the  pMHC  CD8 +                

T-cell  data  set  that  had  at  least  100  unique,  non-doublet  clonotype  observations  (Supp.  Fig.               

2a,b).  The  total  data  set  size  was  91,495  unique,  non-doublet  observations  (cells)  across              

four  donors.  We  found  that  the  performance  of  models  without  donor  information  varies              

strongly  and  is  much  worse  than  the  performance  of  models  with  donor  covariates  (Fig.  1c).                
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The  initial  amino  acid  embedding  did  not  have  a  strong  effect  on  the  results  (Supp.  Fig.  3).                  

These  categorical  models  also  performed  well  on  data  derived  from  the  public  databases              

(IEDB 6,7  and  VDJdb 7 )  even  though  there  were  no  corresponding  covariates  present  (Supp.             

Fig.   4).  

The  identification  of  binding  events  based  on  single-cell  RNA-seq  libraries  is  liable  to              

false  negatives  due  to  low  capture  rate  of  RNAs. In  standard  single-cell  RNA-seq              

processing,  such  effects  are  often  rectified  through  normalization .  We  investigated,  whether            

such  normalization  factors  and  negative  control  pMHC  counts  are  useful  predictors  of  a  false               

negative  binding  event:  We  compared  models  only  considering  the  donor  identity  covariate             

and  models  that  also  included  a  scaled  total  mRNA  count  covariate  and  ones  that  contained                

negative  control  count  covariates  (Online  Methods).  Across  all  architectures,  models  that            

accounted  for  the  total  mRNA  count  or  the  negative  control  counts  of  a  cell  performed  better                 

than  models  that  did  not  do  so,  suggesting  that  false-negative  correction  is  feasible  (Fig  1c).                

We  could  also  identify  a  predictive  advantage  of  models  that  accounted  for  the  cell  type                

encoded  by  surface  protein  counts  (Fig.  1c).  We  hypothesize  that  the  surface  protein  counts               

can  be  used  to  embed  cells  based  on  their  membrane  surface  structure  which  in  turn  could                 

correlate  with  the  number  of  TCRs  on  the  cell  surface.  Accordingly,  the  integration  of  surface                

proteins  in  the  model  could  correct  for  variance  induced  by  cell-specific  TCR  availability.  The               

overall  top-performing  model  accounted  for  donor,  total  counts,  negative  control  counts  and             

surface   protein   counts   (Fig.   1c).  

 

Co-modeling   alpha-   and   beta-chain   improves   binding   event   prediction  

We  compared  prediction  performance  between  models  fit  using  one  TCR  CDR3  chain             

(“TRA-only”,  or  “TRB-only”),  to  models  fit  to  the  concatenated  TRB  and  TRA  chains              

(“TRA+TRB”)  to  evaluate  the  additional  information  that  one  can  gain  by  using  both  the  TRA                

and  TRB  chain.  We  found  that  TRA+TRB  models  were  consistently  better  than  TRA-only              

and  TRB-only  models  across  most  layer  types  if  basic  single-cell  covariates  were  included  in               

the  prediction  (Fig.  1d).  We  found  that  self-attention,  recurrent  and  convolutional  neural             

networks  performed  similarly  to  linear  models  (Fig.  1d).  This  suggests  that  antigen-specificity             

of  a  ɑ-  and  β-chain  pair  can  be  well  represented  as  a  sequence  motif  problem  in  which  the                   

sequence   motif   has   a   fixed   position   on   the   CDR3   sequence.  

 

Continuous   binding   affinities   can   be   predicted   based   on   pMHC   counts  

In  single-cell-based  studies,  antigen-binding  events  are  measured  based  on  the  number  of             

bound  pMHCs  of  the  target  antigen  and  bound  negative  control  antigens  (Fig.  1a).  The  raw                
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data  describing  the  binding  event  is  not  a  binary  signal  but  lies  in  the  positive  integer  space                  

(count  data).  This  opens  up  the  possibility  to  not  only  model  binding  events  (binarized  signal)                

but  also  binding  affinity,  which  enables  the  prioritization  of  highly  affine  epitopes  for              

vaccination  and  the  rational  design  of  TCR  sequences  binding  a  specific  antigen.  We  fit               

models  that  were  similar  in  structure  to  the  models  dedicated  to  binarized  binding  event               

prediction  on  covariates  and  TCR  CDR3  sequences  to  predict  pMHC  counts  per  cell  (Fig.               

1b).  Again,  TRA+TRB  models  outperformed  TRA-only  and  TRB-only  models  across  layer            

types  (Fig.  1e).  Covariates  improved  predictive  power  and  models  with  donor,  total  counts,              

negative   control   pMHC   and   surface   proteins   count   covariates   performed   best   again   (Fig.   1f).  

Low-affinity  binding  events  that  are  not  captured  in  the  discretized  binding  data  but              

may  be  represented  in  the  pMHC  counts.  Such  low-affinity  events  may  contain  information              

about  antigen-antigen  similarities  and  therefore  about  output-space  correlations,  which  can           

be  exploited  by  multi-task  supervised  learning.  Indeed,  we  found  that  multi-task  models             

outperformed  single-task  models  on  six  out  of  eight  antigens  modelled  (Fig.  1g).  An              

alternative  interpretation  of  the  improved  performance  of  multi-task  models  is  their  ability  to              

learn  better  de-noised  low-dimensional  representations  of  TCR  sequences,  through  the           

integration   of   more   diverse   training   data.   

 

Models  with  sequence-space  embedding  of  antigens  are  outperformed  by  categorical           

models  

Binding  events  in  the  databases  such  as  IEBD 6  or  VDJdb 7  (Fig.  2a)  have  previously  been                

modeled  based  on  a  learned  embedding  of  the  antigen  amino  acid  sequence 3  (Fig.  2b).               

Here,  we  investigate  whether  such  antigen-embedding  models  outperform  simple,          

antigen-wise  logistic  models  of  binding  events  and  whether  they  can  generalize  to  unseen              

antigens.  

Firstly,  we  benchmarked  models  with  different  layer  types  that  predict  a  binding  event              

based  on  sequence  embeddings  of  the  antigen  and  TCR  β-chain.  Previously,  a  specific              

single-layer  motif-based  architecture  was  proposed  for  this  task 3 .  We  found  that  all  common              

sequence-embedding  layer  types,  are  able  to  perform  this  prediction  and  that  recurrent             

neural   networks   perform   best   in   terms   of   model   uncertainty   (Fig.   2c).  

In  contrast  to  the  categorical  approach  before,  generalization  across  antigen           

sequences  cannot  easily  be  performed  based  on  sequence  motif  recognition.  We            

hypothesized  that  antigen-embedding  models  could  learn  a  matching  of  seen  antigens  to             

TCRs  within  which  the  prediction  problem  can  be  broken  down  to  a  TCR  motif-detection               

problem.  In  this  setting,  antigen-wise  models  that  identify  the  antigen  categorically  in  the              
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output  should  be  superior  as  they  do  not  have  to  solve  the  matching  problem.  We  found  that                  

antigen-wise  categorical  models  have  a  better  predictive  performance  on  the  antigens  they             

were  trained  on  than  sequence-embedding  models,  on  both  the  IEDB  and  pMHC  CD8 +  T-cell               

data  set  (Fig.  3d,e).  We  conclude  that  the  previously  proposed  antigen  sequence-embedding             

models   are   currently   suboptimal   for   binding   prediction   on   seen   antigens.  

Given  that  current  datasets  do  not  adequately  cover  the  antigen  space,  we  tested  the               

current  potential  of  sequence-embedding  models  to  generalize  to  unseen  antigens.  This  task             

cannot  be  covered  by  models  that  treat  antigens  as  categories.  Firstly,  we  trained  models  on                

a  subset  of  high-frequency  antigens  from  IEDB  and  tested  on  low-frequency  antigens  from              

IEDB  and  found  the  IEDB  trained  models  do  not  generalize  well  to  these  antigens  (Supp.                

Fig.  5a).  Secondly,  we  used  a  subset  of  observations  of  VDJdb  with  antigens  not               

overlapping  to  IEDB  as  a  test  set  (Supp.  Fig.  5b)  and  found  that  models  trained  on  antigens                  

occurring  in  IEDB  do  not  generalize  well  to  these  antigens  either.  Thirdly,  models  trained  on                

IEDB  performed  poorly  on  predicting  binding  in  the  pMHC  CD8 +  T-cell  data  (Supp.  Fig.  5c).                

Thus,  we  cannot  find  evidence  in  the  current  TCR  databases  that  extrapolation  in  the               

antigen   space   is   possible   based   on   current   numbers   of   sampled   antigens.  

 

Imputation  of  antigen-specificity  of  T-cells  adds  phenotypic  information  to  single-cell           

studies  

We  showed  that  antigen  specificity  can  be  predicted  based  on  TCR  sequences  from              

single-cell  data.  The  training  of  such  models  requires  single-cell  experiments  with  pMHC             

binding  detection.  The  inclusion  of  pMHC  binding  detection  in  an  experiment  increases  the              

sequencing  and  reagent  costs  compared  to  CDR3  sequencing  only  experiments;  this  will  be              

especially  drastic  in  assays  with  many  different  antigens.  Therefore,  we  believe  that             

imputation  of  antigen  specificity  based  on  pre-trained  models  will  be  a  valuable  alternative  to               

including  pMHCs  in  T-cell  assays.  All  models  discussed  above  can  be  used  for  the  purpose                

of  imputation.  We  found  that  antigen  specificity  imputation  can  give  interpretable  results  in              

T-cell  subpopulations  identified  based  on  the  transcriptome  (Fig.  3).  The  observed  labels  are              

enriched  in  sub-regions  of  the  transcriptome  space  (Fig.  3a,c)  which  can  be  recovered  in               

multiple   cases   based   on   the   predicted   labels   (Fig.   3b,d).   

 

Discussion  

Our  results  demonstrate  the  benefit  of  jointly  modeling  the  TCR  ɑ-  and  β-chain  while               

accounting  for  single-cell  variability  through  cell-  and  donor-specific  covariates  for  T-cell            

specificity  prediction.  Most  importantly,  we  found  models  that  treat  antigens  as  categorical             
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outcome  variables  outperform  those  that  model  the  TCR  and  antigen  sequence  jointly.  Our              

results  suggest  that  T-cell  specificity  can  be  predicted  in  an  HLA  genotype-specific  fashion              

and  thereby  pave  the  way  for  research  and  development  on  all  HLA  types,  beyond  the                

commonly  investigated  type  HLA-A*02:01.  Generalization  to  unseen  antigens  with          

sequence-embedding  models  is  currently  challenging,  but  will  become  an  important  future            

research  topic  once  screens  with  larger  pMHC  panels  become  available.  Lastly,  we  showed              

that  pMHC  counts  can  be  modeled  as  a  measure  of  continuous  binding  affinity  and  that                

multi-task  models  outperform  single-task  models  in  this  setting,  paving  the  way  for  the              

integration   of   large   pMHC   panels   in   single   models.  

T-cell  specificity  complements  standard  immunological  single-cell  RNA-seq  studies,         

and  can  be  used  to  uncover  subpopulations  that  are  expected  to  be  activated  during  disease                

or  used  as  an  indicator  of  antigen  presence  in  a  tissue.  Consequently,  we  believe  that  the                 

computational  imputation  of  T-cell  specificity  will  become  an  important  tool  for            

immunologically  focused  single-cell  RNA-seq  experiments.  Imputation  will  reduce         

experimental  complexity  and  costs  and  will  also  offer  unbiased  specificity  metrics  that  are  not               

liable  to  errors  in  the  pMHC  panel  choice.  Such  prediction  models  can  also  be  directly                

applied  to  immunophenotyping  by  screening  for  TCRs  that  interact  with  known  viral  or              

cancer  neoepitopes,  enabling  the  characterization  of  a  patient’s  immunological  state  and  the             

stratification  of  subpopulations  that  are  amenable  for  antigen-specific  immunotherapies.          

Continuous  T-cell  binding  affinity  models  would  enable  the  possibility  of  rational  in  silico  TCR               

design,   accelerating   the   development   of   TCR-based   biologics.  
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Figure  1:  Deep  learning  models  predict  binding  of  TCRs  to  antigen  panels.  Grey  boxes:  Top                

performing  model.  Distributions  shown  as  boxplots  are  across  3-fold  cross-validation.  ( a )            

Concept  of  multimodal  single-cell  immune  profiling  experiment  with  RNA-seq,  surface           

protein  quantification,  bound  pMHC  quantification,  and  TCR  reconstruction.  ( b )  Categorical           

TcellMatch  model:  A  feed-forward  neural  network  to  predict  a  vector  of  antigen  specificities              

of  a  T-cell  based  on  the  CDR3  TCR  ɑ-  and  TCR  β-chain  sequences.  Grey  boxes:  layers  of                  

the  feed-forward  network.  ( c )  Covariates  improve  sequence-based  binding  accuracy          

prediction.  AUC  ROC  test:  Area-under  the  receiver  operator  characteristic  curve  on  the  test              

set  for  the  binary  binding  event  prediction  task.  The  top  panel  is  a  zoom  into  an  informative                  

region  of  the  y-axis. counts :  total  mRNA  counts, nc :  negative  control  pMHC  counts, surface :               

surface  protein  counts.  ( d )  Antigen  binding  prediction  based  on  TCR  CDR3  sequences  is              

improved  by  modeling  ɑ-  and  β-chain. BIGRU :  bi-directional  GRU  model, SA :  self-attention             

model, CONV :  convolution  model, LINEAR :  linear  model.  ( e )  Sequence-encoding  layer  types            

out-perform  linear  models  on  pMHC  count  prediction  if  donor  and  size  factors  are  given  as                

covariates. BIGRU :  bi-directional  GRU  model, SA :  self-attention  model, CONV :  convolution           

model, LINEAR :  linear  model.  ( f )  Performance  of  bi-directional  GRU  models  that  predict             

pMHC  counts  directly  is  best  if  covariates  and  both  TCR  chain  are  modeled. test  MLSE2 :                

mean  logarithmic  squared  error  on  the  test  set, test  R2  (log) :  test  R2  on  log-transformed  test                 

data.  ( g )  Multitask  models  outperform  separate  single-task  model  on  pMHC  count  prediction             

by  antigen. multi :  multitask  model, single :  single-task  model.  All  boxplots:  The  center  of  each               

boxplots  is  the  sample  median,  the  whiskers  extend  from  the  upper  (lower)  hinge  to  the                

largest  (smallest)  data  point  no  further  than  1.5  times  the  interquartile  range  from  the  upper                

(lower)   hinge.  
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Figure  2:  Deep  learning  models  predict  affinity  of  TCRs  to  sequence-encoded  antigens.             

Distributions  shown  as  boxplots  are  across  3-fold  cross-validation.  ( a )  The  databases  IEDB             

and  VDJdb  contain  pairs  of  TCRs  and  antigens  that  were  found  to  be  specific  to  each  other                  

and  are  curated  from  many  different  studies.  Supervised  model  that  predict  binding  events              

can  be  trained  on  such  data  but  also  require  the  assembly  of  a  set  of  negative  observations                  

(Online  Methods).  ( b )  Antigen-embedding  TcellMatch  model:  A  feed-forward  neural  network           

to  predict  a  binding  event  based  on  TCR  CDR3  sequences  and  antigen  peptide  sequence.               

Grey  boxes:  layers  of  the  feed-forward  network.  ( c )  Different  sequence  encoding  layer  types              

perform  similarly  well  on  binding  prediction  based  on  TRB-CDR3  and  antigen  sequence.             

CONCAT :  Models  in  which  TRB  CDR3  sequence  and  antigen  sequence  are  concatenated,             

SEPARATE :  Models  in  which  TRB  CDR3  sequence  and  antigen  sequence  are  embedded  by              
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a  separate  sequence  encoding  layer  stacks. BILSTM :  bi-directional  LSTM  model, BIGRU :            

bi-directional  GRU  model, SA :  self-attention  model, CONV :  convolution  model, INCEPTION :           

inception-type  model, NETTCR :  NetTCR  model 3 , LINEAR :  linear  model.  ( d,  e )  Antigen-wise            

categorical  models  outperform  models  that  are  built  to  generalize  across  antigens  on             

high-frequency  antigens  in  IEDB  ( d )  and  on  overlapping  antigens  between  IEBD  and  10x              

CD8 +  data  ( e ). embedding :  models  that  are  embedding  the  antigen  sequence  and  can  be  run                

on  any  antigen  (Fig.  2a), categorical :  Antigen-wise  categorical  models  that  do  not  have  the               

antigen  sequence  as  a  feature  (Fig.  1b).  All  boxplots:  The  center  of  each  boxplots  is  the                 

sample  median,  the  whiskers  extend  from  the  upper  (lower)  hinge  to  the  largest  (smallest)               

data   point   no   further   than   1.5   times   the   interquartile   range   from   the   upper   (lower)   hinge.  
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Figure  3:  Imputed  antigen  specificity  labels  enrich  single-cell  RNA-seq  workflows  on  T  cells              

by  an  additional  phenotype.  ( a-d )  UMAP  with  observed  ( a,  c )  and  predicted  ( b,  d )  labels.  ( a,                 

b )   The   cells   in   the   UMAP   are   the   cells   from   all   donors   (train   and   validation   data,   n=189,512  

),  the  model  was  fit  with  donor  and  size  factor  covariates.  ( c,  d )  The  cells  in  the  UMAP  are                    

the   cells   from   a   validation   donor   (n=46,526),   the   model   was   fit   without   covariates.   
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Supp.  Fig.  1:  Cellular  doublet  identification  based  on  non-unique  TCR  chain            

reconstructions.  ( a-c )  UMAP  of  CD8 +  T  cells  from  all  donors  (n=189,512)  computed  based              
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on  the  transcriptome  with  ( a )  donor  identity,  ( b )  Louvain  cluster  and  ( c )  inferred  doublet  state                

superimposed.  ( d )  Distribution  of  fractions  of  doublet  out  of  all  cells  per  clustering  computed               

for  each  donor  and  for  all  clustering  computed  across  all  donors.  ( e )  Empirical  cumulative               

density  function  (ECDF)  of  the  number  of  T  cells  that  have  a  given  CDR3  TCR  sequence  by                  

chain  and  donor. log10  counts  on  the  x-axis  are  the  base  10  logarithm  of  the  number  of  T                   

cells  for  a  given  CDR3  sequence.  ( f )  The  fraction  of  cells  that  contain  high-frequency  CDR3                

sequences  which  occur  in  more  than  50  clonotypes.  These  high-frequency  sequences  are             

defined  separately  for  each  donor  and  may  partially  represent  sequences  derived  from             

ambient  molecules  (Online  Methods). True :  is  doublet, False :  is  not  doublet, global :  All  cells,               

doublets,   and   non-doublets.   
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Supp.  Figure  2:  Number  of  unique  TCR  observations  per  antigen.  ( a )  Histogram  with  the               

number  of  TCR  clonotypes  by  antigen  and  donor  for  10x  CD8 +  T-cell  immune  repertoire               

data.  ( b-d )  Empirical  cumulative  density  function  (ECDF)  of  number  of  clonotypes  (counts)             

per   antigen   for   10x   CD8 +    T-cell   immune   repertoire   data   ( b ),   IEDB   ( c )   and   VDJdb   ( d ).  
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Supp.  Figure  3: Amino  acid  embedding  choice  does  not  strongly  affect  model  performance.              

Distributions  shown  as  boxplots  are  across  3-fold  cross-validation.  ( a,  b )  Comparison  of             

model  performance  given  multiple  initial  amino  acid  embeddings  for  models  with  antigen             

identity  encoded  in  the  output  ( a )  and  for  models  with  sequence  embedding  of  the  antigen  in                 

the  feature  space  ( b ). BLOSUM :  BLOSUM52  embedding, NONE :  one-hot  encoding, 1X1            

5-dimensional  1x1  convolution  on  top  of  BLOSUM52  embedding  that  is  learned  at  training              

time.  All  boxplots:  The  center  of  each  boxplots  is  the  sample  median,  the  whiskers  extend                

from  the  upper  (lower)  hinge  to  the  largest  (smallest)  data  point  no  further  than  1.5  times  the                  

interquartile   range   from   the   upper   (lower)   hinge.  
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Supp.  Figure  4:  Validation  of  categorical  models  learned  on  pMHC  CD8 +  T-cell  data  on               

IEDB  and  VDJdb.  Distributions  shown  as  boxplots  are  across  3-fold  cross-validation.  ( a )             

True-positive  rate  of  best  performing  model  by  layer  type  and  covariate  setting  on  VDJdb               

entries  with  antigens  that  occur  in  the  pMHC  panel.  All  observations  in  this  set  should  be                 

predicted  as  positive  for  one  of  the  categories  of  the  model. counts :  total  mRNA  counts, nc :                 

negative  control  pMHC  counts, surface :  surface  protein  counts.  ( b,  c )  The  false-positive  rate              

of  best  performing  model  by  layer  type  and  covariate  setting  on  VDJdb  ( b )  and  IEDB  ( c )                 

entries  with  antigens  that  do  not  occur  in  the  pMHC  panel.  All  observations  in  this  set  should                  

be  predicted  as  negative  (not  binding  any  antigen  of  the  panel).  All  boxplots:  The  center  of                 

each  boxplots  is  the  sample  median,  the  whiskers  extend  from  the  upper  (lower)  hinge  to  the                 

largest  (smallest)  data  point  no  further  than  1.5  times  the  interquartile  range  from  the  upper                

(lower)   hinge.  
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Supp.  Figure  5:  Models  that  embed  antigen  sequences  to  predict  binding  events  cannot              

generalize  well  to  unseen  antigens. BIGRU :  Models  trained  with  bidirectional  GRUs  as             

sequence-embedding  layers. NETTCR :  NetTCR-like  model. LINEAR :  Models  trained  with  a           

single  densely  connected  layer  as  a  sequence-embedding  layer. test  AUC  ROC :  Area-under             

the  receiver  operator  characteristic  curve  on  the  test  set  for  the  binary  binding  event               
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prediction  task, F1  score :  F1  score  on  binary  predictions  on  the  test  set.  Distributions  shown                

as  boxplots  are  across  3-fold  cross-validation.  ( a )  Models  trained  on  antigens  in  IEDB  cannot               

generalize  to  unseen  low-frequency  antigens  in  IEDB.  ( b )  Models  trained  on  all  antigens              

from  IEDB  data  cannot  generalize  to  unseen  antigens  in  VDJdb.  ( c )  Models  trained  on  all                

antigens  from  IEDB  data  cannot  generalize  to  unseen  antigens  in  10x  CD8 +  data  set.  All                

boxplots:  The  center  of  each  boxplots  is  the  sample  median,  the  whiskers  extend  from  the                

upper  (lower)  hinge  to  the  largest  (smallest)  data  point  no  further  than  1.5  times  the                

interquartile   range   from   the   upper   (lower)   hinge.  

 

FUNDING  

D.S.F.  acknowledges  support  by  a  German  research  foundation  (DFG)  fellowship  through            

the  Graduate  School  of  Quantitative  Biosciences  Munich  (QBM)  [GSC  1006  to  D.S.F.]  and              

by  the  Joachim  Herz  Stiftung.  B.S.  acknowledges  financial  supported  by  the  Postdoctoral             

Fellowship  Program  of  the  Helmholtz  Zentrum  München . F.J.T.  acknowledges  financial           

support  by  the  Graduate  School  QBM,  the  German  Research  Foundation  (DFG)  within  the              

Collaborative  Research  Centre  1243,  Subproject  A17,  by  the  Helmholtz  Association           

(Incubator  grant  sparse2big,  grant  #ZT-I-0007),  by  the  BMBF  grant  #01IS18036A,  and  grant             

#01IS18053A  and  by  the  Chan  Zuckerberg  Initiative  DAF  (advised  fund  of  Silicon  Valley              

Community   Foundation,   182835).  

 

ACKNOWLEDGEMENTS  

None.  

 

CONFLICT   OF   INTEREST  

F.J.T.  reports  receiving  consulting  fees  from  Roche  Diagnostics  GmbH  and  Cellarity  Inc.,  and              

ownership   interest   in   Cellarity   Inc.  

 

Data   and   code   availability  

The  Python  package TcellMatch  will  be  available  from  GitHub          

( https://github.com/theislab/tcellmatch ).  All  data  is  publicly  available  and  was  downloaded          

and   processed   as   described   in   the   Online   Methods.    
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Online   Methods:  

Feed-forward   network   architectures:  

Here,  we  describe  proposed  architectures  of  the  models  that  predict  antigen  specificity  of  a               

T-cell  receptor  (TCR)  based  on  the  CDR3  loop  of  both  ɑ-  and  β-chain  and  on  cell-specific                 

covariates.  Note  that  specificity  determining  influences  of  CDR1  and  CDR2  loops 14–16  and             

distal  regions 17,18  have  been  demonstrated  as  well  but  were  not  measured  in  the  single-cell               

pMHC  assay.  All  networks  presented  contain  an  initial  amino  acid  embedding,  a  sequence              

data   embedding   block   and   final   densely   connected   layer   block.   

 

Amino   acid   embedding:  

The  choice  of  initial  amino  acid  embedding  may  impact  data  and  parameter  efficiency  of  the                

model  and  therefore  may  impact  predictive  power  of  models  trained  on  data  sets  that  are                

currently  available.  We  used  one-hot  encoded  amino  acid  embeddings,  evolutionary           

substitution-inspired  embeddings  (BLOSUM)  and  learned  embeddings.  The  learned         

embeddings  were  a  1x1  convolution  on  top  of  a  BLOSUM  encoding  and  were  prepended  to                

the  sequence  model  layer  stack.  Here,  channels  are  the  initial  amino  acid  embeddings  (we               

chose  BLOSUM50)  and  filters  are  the  learned  amino  acid  embedding.  This  learned             

embedding  can  reduce  the  parameter  size  of  the  sequence  model  layer  stack.  All  fits               

presented  in  the  manuscript  other  than  in  Supp.  Fig.  3  are  based  on  such  a  learned                 

embedding  with  5  filters.  We  anticipate  sequence-based  embeddings  to  gain  relevance  in             

the  context  of  extrapolation  across  antigens  in  the  future.  Here,  parameter  efficiency  in  the               

sequence  models  will  play  an  important  role  and  the  1x1  convolution  presented  here  is  an                

intuitive   first   step   into   this   direction.  

 

Sequence   data   embedding:  

We  screened  multiple  layer  types  in  the  sequence  data  embedding  block:  Recurrent  layers              

(bi-directional  GRU  and  LSTM),  self-attention,  convolutional  layers  (simple  convolutions  and           

Inception-like),  and  densely  connected  layers  as  a  reference.  Recurrent  layer  types  and             

self-attention  layers  have  been  previously  useful  for  modeling  language 13  and  epitope 19  data.             

Convolutional  layer  types  have  been  useful  for  modeling  epitope 20,21  and  image 12  data.  The              

sequence-model  layers  retain  positional  information  in  subsequent  layers  and  can  thereby            

build  an  increasingly  abstract  representation  of  the  sequence.  To  achieve  this  on  recurrent              

networks,  we  chose  the  output  of  a  layer  to  be  a  position-wise  network  state  which  results  in                  

an  output  tensor  of  size  (batch,  positions  x  2,  output  dimension)  for  a  bi-directional  network.                
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This  position-wise  encoding  occurs  naturally  in  self-attention  and  convolutional  networks.  We            

did  not  use  feature  transforms  with  positional  signals 13  on  the  self-attention  networks,  so  that               

the  network  has  no  knowledge  of  the  original  sequence-structure  but  can  still  retain  inferred               

structure  in  subsequent  layers.  We  presented  models  fit  on  both  the  CDR3  loop  of  ɑ-  and                 

β-chain  of  the  TCR  (Fig.  1b)  and  models  fit  on  the  CDR3  loop  of  the  β-chain  and  the  antigen                    

sequence  (Fig.  2a).  In  both  cases,  we  needed  to  integrate  two  sequences.  To  this  end,  we                 

either  used  separate  sequence-embedding  layer  stacks  for  each  sequence  (all  models            

presented  in  Fig.  1  and  models  indicated  as  “separate”  in  Fig.  2)  or  by  appending  the  two                  

padded  sequences  and  using  a  single  sequence-embedding  layer  stack  (models  indicated            

as  “concatenated”  in  Fig.  2).  We  reduced  the  positional  encoding  to  a  latent  space  of  fixed                 

dimensionality  in  the  last  sequence  embedding  layer  of  recurrent  networks  by  the  emitted              

state  of  the  model  on  the  last  element  of  the  sequence  in  each  direction.  This  last  layer                  

allows  usage  of  the  same  final  dense  layers  independent  of  input  sequence  length.              

Convolutional  and  self-attention  networks  were  not  built  to  be  independent  of  sequence             

length.  We  did,  however,  pad  the  input  sequences  to  mitigate  this  problem  on  the  data                

handled  in  this  paper.  We  used  a  residual  connection  across  all  sequence-embedding  layers.              

Further  layer-specific  hyper-parameters  can  be  extracted  from  the  code  supplied  in  this             

manuscript   (Supp.   Data   1,2).  

 

Final   densely   connected   layers:  

We  fed  the  activation  generated  in  the  sequence  embedding  block  into  a  dense  network  that                

can  integrate  the  sequence  information  with  continuous  or  categorical  donor-  and            

cell-specific  covariates.  We  modeled  the  binding  event  as  a  probability  distribution  over  two              

states  (bound  and  unbound)  and  compute  the  deviation  of  the  model  prediction  from              

observed  binding  events  via  cross-entropy  loss.  Firstly,  one  can  use  such  models  to  predict               

binding  events  on  a  single  antigen  represented  as  a  single  output  node  with  a  sigmoid                

activation  function.  Secondly,  one  can  model  a  unique  binding  event  among  a  panel  of               

antigens  with  a  vector  of  output  nodes  (one  for  each  antigen  and  one  node  for  non-binding)                 

which   are   transformed   with   a   softmax   activation   function.  

 

Covariate   processing:  

We  set  up  a  design  matrix  inspired  by  linear  modelling  to  use  as  a  covariate  matrix.  We                  

modelled  the  donor  as  a  categorical  covariate,  resulting  in  a  one-hot  encoding  of  the  donor.                

We  modelled  total  counts,  negative  control  pMHC  counts  and  surface  protein  counts  as              

continuous  covariates.  We  log(x+1)  transformed  negative  control  pMHC  counts  and  surface            
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protein  counts  to  increase  stability  of  training.  We  modelled  total  counts  as  the  total  count  of                 

mRNAs   per   cell   divided   by   the   mean   total   count.  

 

Train,   validation   and   test   splits:  

We  used  training  data  to  compute  parameter  updates,  validation  data  to  control  overfitting              

and  test  data  to  compare  models  across  hyper-parameters.  Model  training  was  terminated             

once  a  maximum  number  of  epochs  was  reached  or  if  the  validation  loss  was  not  decreasing                 

any  more.  In  the  latter  case,  the  model  with  the  lowest  validation  in  a  sliding  window  of n                   

epochs  until  the  last  epoch  was  chosen, n  is  given  in  the  grid  search  scripts  (Supp.  Data  3).                   

The  model  metrics  presented  in  this  manuscript  are  metrics  evaluated  on  the  test  data.  We                

provide  training  curves  for  all  models  that  contributed  to  panels  in  this  manuscript  in  Supp.                

Data   3.   

 

Optimization:  

We  used  the  ADAM  optimizer  throughout  the  manuscript  for  all  models.  We  used  learning               

rate  schedules  that  reduce  the  learning  rate  at  training  time  once  plateaus  in  the  validation                

metric  are  reached.  The  initial  learning  rate  and  all  remaining  hyperparameters  (batch  size,              

number  of  epochs,  patience,  steps  per  epoch)  were  varied  as  indicated  in  the  grid  search                

hyperparameter   list.   

 

Model   fitting   objectives:  

We  chose  cross-entropy  loss  on  sigmoid  or  softmax  transformed  output  activation  values  to              

train  models  that  predict  binarized  binding  events  and  mean  squared  logarithmic  error  (msle)              

on  exponentiated  output  activation  values  for  models  that  predict  continuous  (count)  binding             

affinities.  

 

10x   CD8 
+  
  T-cell   data   processing:  

Primary   data   processing:  

We  downloaded  the  full  data  of  all  four  donors  from 8 .  All  data  processing  for  each  model  fit  is                   

documented  in  the  package  code  (Supp.  Data  1)  and  grid  search  scripts  (Supp.  Data  2).  The                 

number  of  T-cell  clonotypes  per  antigen  varied  drastically  between  the  order  of  10 0  and  10 4                

(Supp.  Fig.  2a,b).  Subsequently,  we  selected  the  8  most  common  antigens  (ELAGIGILTV,             

GILGFVFTL,  GLCTLVAML,  KLGGALQAK,  RLRAEAQVK,  IVTDFSVIK,  AVFDRKSDAK,       

RAKFKQLL)  for  categorical  panel  model  fits  to  avoid  issues  with  class  imbalances.  We  used               

the  binarized  binding  event  prediction  by  the  authors  of  the  data  set 8  (labeled  “*_binder”  in                
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the  files  “*_binarized_matrix.csv”)  as  a  label  for  prediction.  For  the  continuous  case,  in  which               

we  predicted  pMHC  counts,  we  chose  the  corresponding  count  data  columns  in  the  same               

file.  Next,  we  performed  multiple  layers  of  observations  filtering:  (1)  doublet  removal,  (2)              

clonotype  downsampling,  and  (3)  class  downsampling.  It  has  previously  been  shown  that             

doublets,  i.e.  droplets  containing  two  cells  targeted  with  the  same  barcode  which  cannot  be               

distinguished  in  downstream  analysis  steps,  tend  to  be  enriched  in  subsets  of  transcriptome              

derived  clusters 22 .  We  propose  to  use  reconstructed  TCR  to  identify  potential  doubles  and              

demonstrate  that  the  so  characterized  doubles  are  indeed  enriched  in  a  particular  cluster  in               

each  donor  (Supp.  Fig.  1a-d).  We  further  investigated  the  overall  contribution  of  potentially              

ambient  molecules  that  give  rise  to  all  observed  T  cells  and  found  that  high-frequency  chains                

do  not  dominate  the  overall  signal  (Supp.  Fig.  1e,f).  This  analysis  presents  an  upper  bound                

to  the  impact  of  ambient  molecules  on  this  experiment  as  evolutionary  effects  likely  also               

contribute  to  over-representation  of  particular  chain  sequences.  Subsequently,  we  removed           

all  cellular  barcodes  that  contain  more  than  one  ɑ-  or  β-chain  as  mature  CD8 +  T  cells  are                  

expected  to  only  have  a  single  functional  ɑ-  and  β-chain  allele.  Next,  we  down-sampled  each                

clonotype  to  a  maximum  of  10  observations  to  avoid  biasing  the  training  or  test  data  to  large                  

clones.  Here,  we  used  clonotypes  as  defined  by  the  authors  of  the  data  set  in  the  files                  

“*_clonotypes.csv” 8 .  Lastly,  we  downsampled  the  larger  class  to  a  maximum  of  twice  the  size               

of  the  smaller  class  when  predicting  a  binary  binding  event  for  a  single  antigen.  We  did  not                  

perform  this  last  step  on  multiclass  and  count  prediction  scenarios.  We  padded  each  CDR3               

sequence  to  a  length  of  40  amino  acids  and  concatenated  these  padded  chain  observations               

to  a  sequence  of  length  80  for  models  that  were  trained  on  both  chains.  We  performed                 

leave-one-donor-out  cross-validation  on  models  that  did  not  take  the  donor  identity  as  a              

covariate.  We  sampled  25%  of  the  full  data  clonotypes  and  assigned  all  of  the  corresponding                

cells  to  the  test  set  for  all  models  that  did  use  the  donor  covariate.  The  latter  case  yielded                   

68,716  clonotypes  and  91,495  cells  across  all  four  donors.  All  cross-validations  shown             

across  different  models  are  based  on  a  3-fold  cross  validation  with  seeded  test-train  splits               

resulting   in   the   same   split   across   all   hyper-parameters.  

 

Binarization   of   10x   CD8 +    T-cell   pMHC   counts   into   bound   and   unbound   states  

We  used  the  binarization  described  in  the  original  publication 8  for  the  raw  counts  to  receive                

binary  outcome  labels:  A  total  pMHC  UMI  count  larger  than  10  and  at  least  five  times  as  high                   

as  the  highest  observed  UMI  count  across  all  negative  control  pMHCs  was  required  for  a                

binding  event.  If  more  than  one  pMHC  passed  these  criteria,  the  pMHC  with  the  largest  UMI                 

count   was   chosen   as   the   single   binder.   
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Test   set   assembly   for   models   fit   on   IEDB   data:  

This  section  describes  how  the  test  described  in  Fig.  2e  and  Supp.  Fig.  5c  was  prepared.                 

The  cells  were  filtered  as  described  above.  We  then  extracted  one  binding  TCR-antigen  pair               

per  cell  from  this  list.  We  used  the  remaining  TCR-antigen  pairs  as  validated  negative               

examples  and  down-sampled  these  to  the  number  of  positive  observations  to  maintain  class              

balance.  All  cross-validations  shown  across  different  models  are  based  on  a  3-fold  cross              

validation  with  seeded  test-train  splits  resulting  in  the  same  split  across  all             

hyper-parameters.  

 

IEDB   data   processing:  

Primary   processing:  

We  downloaded  the  data  from  the  IEDB  website 6  with  the  following  filters:  linear  epitope,               

MHC  restriction  to  HLA-A*02:01  and  organism  as  human  and  only  human.  This  yielded  a  list                

of  matched  TCR  (mostly  β-chain  CDR3s)  with  bound  antigens.  We  assigned  TCR             

sequences  to  a  single  clonotype  if  they  were  perfectly  matched  and  downsampled  all              

clonotypes  to  a  single  observation.  We  only  extracted  the  β-chain  and  CDR3  sequences  to  a                

length  of  40  amino  acids.  We  padded  the  antigen  sequences  to  a  length  of  25  amino  acids.                  

We  sampled  10%  of  all  observations  as  a  test  set.  We  generated  negative  samples  for  both                 

training  and  test  set  separately  by  generating  unobserved  pairs  of  TCR  and  antigens.  Here,               

we  assumed  that  all  TCRs  bind  a  unique  antigen  out  of  the  set  of  all  antigen  present  in  the                    

database  so  that  any  other  pairing  would  not  result  in  a  binding  event.  This  procedure                

yielded  9,697  observations  for  both  the  positive  and  the  negative  set  before  the  train-test               

split.  

 

Test   set   assembly   for   models   fit   on   IEDB   data:  

This  section  describes  how  the  test  described  in  Supp.  Fig.  5a  was  prepared.  To  explore  the                 

ability  of  antigen-embedding  TcellMatch  models  to  generalize  to  unseen  antigens,  we  fit  such              

a  model  on  the  subset  of  high-frequency  antigens  of  IEDB  with  at  least  5  unique  TCR                 

sequences  and  tested  the  models  on  the  remaining  antigens.  All  cross-validations  shown             

across  different  models  are  based  on  a  3-fold  cross  validation  with  seeded  test-train  splits               

resulting   in   the   same   split   across   all   hyper-parameters.  

 

VDJdb   data   processing:  

Primary   processing:  
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We  provided  an  exploratory  analysis  of  this  data  set  in  Supp.  Data  3              

“exploration_vdjdb_data.*”.  We  downloaded  the  data  from  the  VDJdb 7  website  with  the            

following  filters:  Species:  human,  Gene  (chain):  TRB,  MHC  First  chain  allele(s):            

HLA-A*02:01.  This  yielded  3964  records.  We  assigned  TCR  sequences  to  a  single  clonotype              

if  they  were  perfectly  matched  and  downsampled  all  clonotypes  to  a  single  observation.  We               

only  extracted  the  β-chain  and  CDR3  sequences  to  a  length  of  40  amino  acids.  We  padded                 

the   antigen   sequences   to   a   length   of   25   amino   acids.   

 

Test   set   assembly   for   models   fit   on   IEDB   data:  

This  section  describes  how  the  test  described  in  Fig.  2d  and  Supp.  Fig.  5b  was  prepared.                 

We  sub-selected  observations  with  matching  or  non-matching  antigens  with  respect  to  the             

training  set  depending  on  the  application  (described  in  the  figure  caption  or  main  text).  All                

cross-validations  shown  across  different  models  are  based  on  a  3-fold  cross  validation  with              

seeded   test-train   splits   resulting   in   the   same   split   across   all   hyper-parameters.  
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